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Abstract
With number theoretic tools of Gauss sums and Jacobi sums, we can develop a way to count number

of solutions to Diophantine equations of the form a1x
l1
1 ` a2x

l2
2 ` ¨ ¨ ¨ ` arx

lr
r ” b pmod pq. Later on, we

will define zeta functions on algebraic sets and elliptic curves, and see their analogy with the Riemann zeta
function and their relation with the Riemann Hypothesis. Finally, we will look into some elliptic curves, and
determine the number of points on them.

1 Introduction

Let fpx1, x2, ¨ ¨ ¨ , xmq “ 0 be a polynomial equation defined on variables x1, x2, ¨ ¨ ¨ , xm. Equations of
the above kind are Diophantine equations. Solutions to Diophantine equations have been intriguing number
theorists for centuries. Mathematicians are especially interested in the integral solutions to some Diophantine
equations. While finding integral solutions by solving the equations is generally hard, we can first attempt
to find solutions over a finite field Fp where p is a prime number.

Starting from the easiest type of Diophantine equation, x2 “ a, a P Fp, we use elementary number theoretic
knowledge of the Jacobi symbol and the Legendre symbol to solve the equation. The next equations we will
naturally think of are the type xn “ a over Fp. Diophantine equation of this type is more interesting in
fields than in Z.

The next model we can think of are x2`y2 “ a over Fp. While we can solve the equation by hand given a
field Fp, we will also care about the number of solutions to the equation. Naturally, we interpret the equation
as a being the sum of two operands that are squares in Fp. Let Npfpxq “ 0q denote the number of solutions
to the equation fpxq “ 0. By looping through all elements in Fp as one of the operands, we have

Npx2 ` y2 “ aq “
ÿ

u`v“a

Npx2 “ uqNpy2 “ vq.

From the equation x2 ` y2 “ a, we can first extend it to the homogeneous equation xn ` yn “ a. Though
it would be impossible for us to find the solutions explicitly, we can write out the number of solutions with
number theoretic techniques of the Gauss sums and Jacobi sums. Furthermore, we can estimate on the
number of solutions. We can also extend the equation to the generalized form a1x

l1
1 `a2x

l2
2 `¨ ¨ ¨`arx

lr
r ” b

pmod pq, and discuss the number of solutions.

Now consider a polynomial and its zeros on a projective plane. On projective spaces, we deal with
homogeneous polynomials. Particularly, we transform non-homogeneous polynomials into homogeneous
ones, which makes many polynomials equations accessible to us. However, when counting zeros on the
curves represented by the polynomials on projective spaces, we need to be particularly careful about points
at infinity.
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The number of solutions to a Diophantine equation over different algebraic objects may be given a gen-
eralized formula or imply existence of roots through estimate. At the same time, the number of solutions
to an equation also gives rise to a zeta function defined by the corresponding polynomial. Surprisingly,
the zeta function defined on an algebraic set is analogous to the Riemann zeta function. In 1964, André
Weil proposed the Weil’s conjecture[5], which is now proved based on the Hasse-Davenport relation. The
conjectures led to the Riemann Hypothesis for projective curves over finite field. What’s more, this is an
analogy to the Riemann Hypothesis. In the end, we will particularly look into some elliptic curves and their
zeta functions. Using characters and given a field, we can find all the points on some elliptic curves. We will
also see an equivalence between Hasse’s Theorem on elliptic curves and the Riemann Hypothesis.

In this paper, we will build up the Gauss sums and Jacobi sums in finding out the number of solutions to
Diophantine equations. Then we introduce projective space and zeta functions. Finally we will see analogy
and relations between the number of solutions and the Riemann Hypothesis.

2 Number of Solutions to xn ` yn “ 1

To begin with, we consider solving the Diophantine equations of the form xn “ a. In solving this equation,
we introduce multiplicative characters.

2.1 Multiplicative Characters

Definition 2.1.1 A multiplicative character on Fp is a multiplicative map χ : F˚p Ñ Czt0u that satisfies

χpabq “ χpaqχpbq for all a, b P F˚p

.

In the rest of the paper, we will denote the trivial multiplicative character by ε and character of order two
by ρ. The trivial character ε is defined by εpaq “ 1 for all a P F˚p . We can easily relate ρ to the Legendre
symbol

`

a
p

˘

over Fp, which is defined as

ˆ

a

p

˙

“

# 0 if a “ 0

1 if a “ m2 for some m P F˚p

´ 1 otherwise.

It is easy to check that the Legendre symbol is of order 2, which will be useful in specifying number of
solutions to specific equations.

Remark To extend the definition on multiplicative characters on the case of 0, we set χp0q to be 0 when
the character χ ‰ ε and εp0q “ 1.

From now on, by character, we mean multiplicative character. Now we turn to some basic properties of
characters.

Proposition 2.1.2 Let χ be a character and a P F˚p . χ satisfies
(i) χp1q “ 1.
(ii) χpaq is a pp´ 1qst root of unity.
(iii) χpa´1q “ χpaq´1 “Ęχpaq.

Proof. To prove the first identity, we see that χp1q “ χp1 ¨1q “ χp1q ¨χp1q. Since χp1q ‰ 0, we have χp1q “ 1.
For the second identity, we first have ap´1 “ 1 by Fermat’s Little Theorem. Then by multiplicity of
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characters, we have 1 “ χp1q “ χpaqp´1. Thus χpaq is a pp´ 1qst root of unity.
To see the third identity, the left equality is trivial by multiplicity. For the rest, consider χpaqĘχpaq “ |χp1q|2
which is 1 from the second identity. Thus χpaq´1 “Ęχpaq.

Let χ, λ be characters. Define χλ to be the map that takes a P F˚p to χpaqλpaq, and χ´1 to be the map
that takes a P F˚p to χpaq´1. Then we have the following proposition concerning the multiplicative group of
characters.

Proposition 2.1.3 The set of characters form a group which is cyclic of order p ´ 1 and identity ε. If
a P F˚p and a ‰ 1, then there exists a character χ with χpaq ‰ 1.

Proof. With multiplicity of characters and the fact that F˚p is cyclic of order p´ 1, we have the characters
also form a cyclic group of order p´ 1. The identity is trivial to verify. Now pick a generator g of F˚p . With
the second identity in Proposition 2.1.2, we consider the map χpgnq “ e

2πin
p´1 . Then χ is a character of order

p´ 1. The elements in this group of character are ε, χ, χ2, . . . , χp´2. Pick an a P F˚p and a ‰ 1. Say a “ gn.
Since a ‰ 1, pp´ 1q - n, thus χpaq “ e

2πin
p´1 ‰ 1.

Remark The above proposition restricts the value of characters of certain orders. For example, if χ is
of order 4, then χ can only take values within the set t1,´1, i,´iu. This fact is useful in justifying the
coefficients in some relations about the Gauss sums. In addition, the existence of a χ with χpaq ‰ 1 is
essential to the sum of characters. With the same a in Proposition 2.1.3, we have

ř

χ χpaq “ 0 where the
sum is over all characters.

One important proposition that relates multiplicative character to number of solutions to Diophantine
equations could be found from Ireland and Rosen[3].

Proposition 2.1.4 If n|p ´ 1, we have Npxn “ aq “
ř

xn“ε χpaq where the sum is over all characters of
order dividing n.

Proof. We approach the problem by splitting into cases. Take a generator of F˚p and consider the map
χpgnq “ e

2πin
p´1 . ε, χ, χ2, . . . , χn´1 are the n characters of order dividing n. The cases concerns if a “ 0 and

if the equation can be solved.
If a “ 0, Npxn “ 0q “ 1 “

ř

χ χp0q. If a ‰ 0 and the equation has solutions, then there are n solutions
over a field and say b is a solution. Then χpaq “ χpbqn “ χnpbq “ 1. There are n such b’s. Thus
ř

χ χpaq “ n “ Npxn “ aq.
If a ‰ 0 and the equation has no solutions, then Npxn “ aq “ 0. We want to show that

ř

χ χpaq “ 0.
A usual technique to prove identities of such sums by Ireland and Rosen[3] is multiplying both sides by a
number not equal to 1. Compared to Proposition 2.1.3, we can find a more restricted character λ such that
λ has order dividing n and that λpaq ‰ 1.

Lemma 2.1.5 If a P F˚p and n | p´ 1 with xn “ a unsolvable, then there is a character λ such that λn “ ε
and that λpaq ‰ 1.

Proof to Lemma As usual, let g be a generator of F˚p . Consider the map λpgnq “ e
2πi
n . This map makes

λn “ ε. Say a “ gl and consider the map χpgnq “ e
2πin
p´1 . Then we have λ “ χ

p´1
n . λpaq “ χpgq

pp´1ql
n “ e

2πil
n .

Since the equation is unsolvable, we must have n - l, thus λpaq ‰ 1.

With such λ, we multiply both sides with λpaq, and we have λpaq
ř

χ χpaq “
ř

χ χpaq. So
ř

χ χpaq “ 0.

The completion of Proposition 2.1.5 does not solve all Diophantine equations of the type xn “ a over Fp.
To extend on the proposition, given an n, consider d “ gcdpm, p´ 1q.
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Proposition 2.1.6 Npxn “ aq “
ř

χpaq where the sum is over all χ such that χd “ ε.

Proof. The proof is similar to that of Proposition 2.1.4. Let χ be a character of order d. Then χd “

ε “ χp´1 “ χn. Now take a generator g of F˚p and define the map χpgmq “ e
2πim
p´1 . There are exactly d

characters of order dividing d in the multiplicative group of characters, and they are exactly the characters
ε, χ, chi2, . . . , χd´1.
If a “ 0, the case is trivial. If a ‰ 0 and xm “ a solvable, then there exists an b such that bm “ a. And
there are altogether m solutions to the equation. Since χd “ ε and d|m, χpaq “ χmpbq “ εpbq

m
d “ 1. Thus

ř

χd“ε χpaq “ d.
If a ‰ 0 and xm “ a unsolvable, then we want to show that

ř

χpaq “ 0. Denote the sum by T . From
Lemma 2.1.5, we know that there is a character λ of such that λd “ ε and that λpaq ‰ 1. Then λpaqT “ T .
T “ 0.

Now we finished our discussion on number of solutions to xn “ a over Fp. This is fundamental in counting
number of solutions to Diophantine equations, because given an equation whose terms are all univariate xi’s,
we are now equipped with the method to split the equation and solve each terms xnii “ ai.

From the last subsection, it is easy to verify that Npx2 “ aq “ 1 `
`

a
p

˘

where
`

a
p

˘

denotes the Leg-
endre symbol. Now we want to count solutions of equations of form xn ` yn “ 1 over Fp. We start with the
simple case when n “ 2 and we can prove many variations of the equation. In this subsection, we introduce
Gauss and Jacobi sums to denote the inner product when counting number of solutions of split terms of the
original equation.

Before we solve the equation x2` y2 “ a, we first introduce the Gauss sums and its important properties.

2.2 Gauss sums

Definition 2.2.1 Suppose a field F has pn elements. Then we define the trace of α for α P F to be
tr(α)=α` αp ` ¨ ¨ ¨ ` αp

n´1

. We also define the function φ : F Ñ C by the formula φpαq “ ζ
trpαq
p , where ζp

is a pth root of unity. Now we define the Gauss sum on the field F belonging to character χ.

Definition 2.2.2 Let χ be a character of F and α P F˚. Let gαpχq “
ř

tPF χptqφpαtq is called the Gauss
sum on F belonging to character χ.

First we consider the case when n “ 1. Then |F| “ p. Let ζ be a pth root of unity. Then tr(α)=α and
φpαq “ ζα. Let χ be a character on Fp and the Gauss sum is gαpχq “

ř

tPF χptqφpαtq “
ř

tPF χptqζαt.
When α “ 1, we usually denote g1pχq as gpχq. Next we will show the relation between Gauss sums and
characters.

Proposition 2.2.3 Consider a field Fp and a character χ on the field. If α ‰ 0 and χ ‰ ε, then gαpχq “
χpα´1qgpχq. If α ‰ 0 and χ “ ε or α “ 0 and χ ‰ ε, then gαpεq “ 0. If α “ 0 and χ “ ε, then g0pεq “ p.

Proof. In the first case when α ‰ 0 and χ ‰ ε, it follows that

gαpχq “
ÿ

tPF

χptqζαt “ χpα´1q
ÿ

tPF

χpαtqζαt.

Since α and t are elements in Fp, so αt covers all elements in the field. Therefore gαpχq “ χpα´1qgpχq. In the
second case, gαpχq “ g0pχq “

ř

tPF χptq. Thus we are left to prove that
ř

tPF χptq “ 0. We prove this with
a previous technique by multiplying both sides with a number not equal to 1. Let

ř

tPF χptq “ S. Choose
an element β P F such that χpβq ‰ 1. χpβqS “

ř

tPF chipβtq “ S. Since χpβq ‰ 1, S “ 0.
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The next proposition inspires the connection between Gauss sums and Jacobi sums in the later subsections.

Proposition 2.2.4 If χ ‰ ε, then |gpχq| “ ?p.

Proof. The idea by Ireland and Rosen[3] is to evaluate the sum
ř

a gapχq
Ğgapχq in two ways with case studies

on a.
If a ‰ 0, by Proposition 2.2.3 and Proposition 2.1.2, Ğgapχq “ χpa´1qgpχq “ χpaqĘgpχq. Thus |gpχq|2 “
gapχqĞgapχq “ χpa´1qgpχqχpaqĘgpχq “ χpa´1qχpaqgpχqĘgpχq.
If a “ 0, by Prop 2.2.3, gapχq “ 0. So

ř

a gapχq
Ğgapχq “ pp´ 1q|gpχq|2 for summation over all a P Fp.

On the other hand, by definition of the Gauss sum,
ÿ

a

gapχqĞgapχq “
ÿ

a

ÿ

x

ÿ

y

χpxqĘχpyqζax´ay.

If x ‰ y, then
ř

a ζ
ax´ay “

ζbp´1
ζb´1

“ 0. Else
ř

a ζ
ax´ay “

ř

a ζ0 “ p. Therefore gapχqĞgapχq “ pp ´ 1qp and
thus pp´ 1q|gpχq|2 “ pp´ 1qp. This tells us |gpχq| “ ?p.

Remark From the definition of Gauss sum, we can derive that Ęgpχq “
ř

t
Ěχptqζ´t “ χp´1qgpχ̄q.

After the introduction to Gauss sum, we return to the goal of solving x2 ` y2 “ a. We first consider the
case when a “ 1. In this case, we can derive that

Npx2 ` y2 “ 1q “
ÿ

u`v“1

Npx2 “ uqNpy2 “ vq

where the sum is over all u P Fp. By Proposition 2.1.4, we have that Npx2 “ uq “
ř

x2“ε χpuq “ 1 `
`

u
p

˘

.
Therefore we have

Npx2 ` y2 “ 1q “
ÿ

u`v“1

p1`

ˆ

u

p

˙

qp1`

ˆ

v

p

˙

q “ p`
ÿ

u

ˆ

u

p

˙

`
ÿ

v

biggp
v

p

˙

`
ÿ

u`v“1

ˆ

u

p

˙ˆ

v

p

˙

.

With remark following Prop. 2.1.3, we can cancel out the terms
ř

u

`

u
p

˘

and
ř

v

`

v
p

˘

. The remaining
summation value is unsolved at this moment and we will figure it out in the next subsection with Jacobi
sums.
With Proposition 2.1.6, we can analyze on the equation xn ` yn “ 1 over Fp where p is prime and d “
gcdpn, p´ 1q. A natural way to count is

Npxn ` yn “ 1q “
ÿ

u`v“1

Npxd “ uqNpyd “ vq.

Let χ ‰ ε be a character such that χd “ ε. Then ε, χ, χ2, ¨ ¨ ¨ , χd are all characters of order dividing d. By
Prop. 2.1.4,we have

Npxn ` yn “ 1q “
d´1
ÿ

i“0

d´1
ÿ

j“0

ˆ

ÿ

u`v“1

χipuqχjpvq

˙

.

We are interested in the inner product in the above expression with the restriction that u` v “ 1. If we can
generalize the inner sum, we can write the expression in a neat way and thus we introduce the Jacobi sums.

2.3 Jacobi sums

In this subsection, we introduce Jacobi sums and use its properties to finish the discussion on Npx2`y2 “ 1q.
Moreover, we shall see the basic connection between Gauss sums and Jacobi sums.
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Definition 2.3.1 Let χ and λ be characters of Fp. The Jacobi sum Jpχ, λq is defined by Jpχ, λq “
ř

a`b“1 χpaqλpbq.

To close up the discussion on Npx2`y2 “ 1q, we present a theorem from Ireland and Rosen[3] that connects
Gauss sums and Jacobi sums.

Theorem 2.3.2 Let χ and λ be nontrivial characters. Then Jpχ, χ´1q “ ´χp´1q. If χλ ‰ ε, then
Jpχ, λq “ gpχqgpλq

gpχλq .

Proof. Jpχ, χ´1q “
ř

a`b“1 χpaqχ´1pbq “
ř

a‰1 χp a
1´a q. Since

a
1´a never reaches the value -1 and we know

ř

a χpaq “ 0 from previous remark, we must have Jpχ, χ´1q ` χp´1q “ 0.
For the second part of the proof, first we write out gpχqgpλq.

gpχqgpλq “
ÿ

x,y

χpxqλpyqζx`y

“
ÿ

t

ˆ

ÿ

x`y“t

χpxqλpyq

˙

ζt.

If t “ 0, gpχqgpλq “
ř

x χpxqλp´xq “
ř

x λp´1qχλpxq “ 0 when character χλ ‰ ε. On the other hand,
Jpχ, λq has the same expression. So the theorem holds in this case.
If t ‰ 0, we try to relate to the restriction of a ` b “ 1 in a Jacobi sum by letting x “ ta and y “ tb.

gpχqgpλq “
ř

t

ˆ

ř

a`b“1 χptaqλptbq

˙

ζt “
ř

t χλptqJpχ, λqζ
t “ gpχλqJpχ, λq.

Before we move on to more properties of Jacobi sums, we go back to the expression Npx2 ` y2 “ 1q “
p`

ř

u`v“1

`

u
p

˘`

v
p

˘

. Now we write the Legendre symbol as character ρ of order 2. Then ρ “ ρ´1. With The-
orem 2.3.2, we know that Jpρ, ρq “ ´ρp´1q. Notice that Jpρ, ρq “

ř

u`v“1 ρpuqρpvq “ sumu`v“1

`

u
p

˘`

v
p

˘

.
Thus Npx2 ` y2 “ 1q “ p´ ρp´1q “ p`

`

frac´1p
˘

. With the Law of Quadratic Reciprocity, we have N “ p´ p´1qfracp´12.

Example 2.3.3 We evaluateNpx3 ` y3 “ 1q by taking n “ 3, and assume that p ” 1 pmod 3q. Take a
character χ of order 3. Then Npx3 ` y3 “ 1q “ p ´ χp´1q ´ χ2p´1q ` Jpχ, χq ` Jpχ2, χ2q. We call such
χ a cubic character. Notice that for such χ, χp´1q “ χp´1q3 “ χ3p´1q “ 1. Also χ2 “ χ´1 “ χ̄. Thus
χp´1q “ χp ´ 1q “ 1. Next, we have Jpχ2, χ2q “ Jpχ̄, χ̄q “

ř

a`b“1
Ğχpaqχpbq “ ĞJpχ, χq. Thus we have

Npx3 ` y3 “ 1q “ p´ 2` 2 Re Jpχ, χq.

Corollary 2.3.4 If χ, λ, and χλ are not equal to ε, then |Jpχ, λq| “ ?p.

Proof. This corollary follows easily from Theorem 2.3.2 with the multiplicity of norm of complex numbers.
|Jpχ, λq| “ |gpχq||gpλq|

|gpχλq| “
?
p.

With this corollary, in the evaluation in Example 2.3.3, we can also say that |Npx3 ` y3 “ 1q “ p `
2| “ |Jpχ, χq ` Jpχ2, χ2q| ď 2

?
p by the triangular inequality. This gives us an intuition on estimating

Npxn ` yn “ 1q.
For convenience, we assume that p ” 1 pmod nq. Let χ be a character of order dividing n. Then

Npxn ` yn “ 1q “
n´1
ÿ

i“0

n´1
ÿ

j“0

Jpχi, λjq.

When i “ j “ 0, we have that Jpχ0, χ0q “ Jpε, εq “ p. When i or j is 0, we have Jpχi, χjq “ Jpε, χnq “
0. When i ` j “ n with i, j ‰ 0, Jpχi, χjq “ Jpχi, χ´iq “ ´χip´1q by Theorem 2.3.2. Notice that
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řn´1
i“0 Jpχi, χ´iq “ ´

řn´1
i“0 χip´1q. Now if -1 is an nth power, then χp´1q “ χnp´1q “ 1 and the sum

´χip´1q “ n. Otherwise, let the sum be T . Since χp´1q is either 1 or -1, thus nonzero. χp´1qT “ T and
T “ 0. Therefore,

řn´1
i“1 ´χ

ip´1q “ 1´ T . Notice that this technique in evaluating sum of characters is very
common.
Define the function

δnp´1q “
! 1 if -1 is an nth power

0 otherwise.

With substitution, we have Npxn ` yn “ 1q “ p ` 1 ´ nδnp´1q `
ř

1ďi,jďn´1i`j‰n Jpχi, χjq. With similar
estimation on the case of n “ 3, for general n, the above derivation leads to the following proposition.

Proposition 2.3.5 |Npxn ` yn “ 1q ` δnp´1qn´ pp` 1q| ď pn´ 1qpn´ 2q
?
p.

Proposition 2.3.5 tells us that for a given n and p ” 1 pmod nq, if the prime p is large enough, we are
guaranteed that the equation xn ` yn “ 1 has many non-trivial solutions. When we introduce projective
space in the next section, we will read nδnp´1q as number of points at infinity on the curve xn ` yn “ 1,
and the coefficient pn´ 1qpn´ 2q is related to the genus[2] of the curve. In this paper, we will only look into
the elliptic curves later whose genus is 1.

2.4 More on Characters, Jacobi Sums, and Gauss Sums

In this subsection, we will present several propositions and corollaries that describes the involves the three
tools. Some of the relations might be useful for analysis on the number of solutions to more complicated
Diophantine equations.

Proposition 2.4.1 Suppose that p ” 1 pmod nq and that χ is a character of order n. Then gpχqn “
pχp´1qJpχ, χqJpχ, χ2q . . . Jpχ, χn´2q for n ě 3.

Proof. In the case of n “ 2, use Theorem 2.3.2 and we have that gpχq2 “ Jpχ, χqgpχ2q for all characters χ.
For n “ 3, by multiplying gpχq on both sides, we have that gpχq3 “ Jpχ, χqgpχ2qgpχq “ Jpχ, χqgpχqgpχ̄q.

Lemma 2.4.2 Ęgpχq “ χp´1qgpχ̄q.

Proof to Lemma Ęgpχq “
ř

t
Ěχptqζ´t “

ř

t χp´1qĞχp´tqζ´t “ χp´1qgpχ̄q.

gpχqgpχ̄q “ gpχqĘgpχq{χp´1q. Since χp´1q is either 1 or -1, 1{χp´1q “ χp´1q. With Proposition 2.2.4, we
have gpχqĘgpχq “ p. Thus when n “ 3, gpχ3q “ pχp´1qJpχ, χq. Now for any n ě 3, the identity that
gpχqn “ Jpχ, χq . . . Jpχ, χn´2qgpχn´1qgpbarχq “ pχp´1qJpχ, χq . . . Jpχ, χn´2q.

In the case of n “ 3 in Proposition 2.4.1, the cubic character χp´1q satisfies χp´1q “ χ3p´1q “ 1. Thus we
have the following corollary.

Corollary 2.4.3 If χ is a cubic character, then gpχq3 “ pJpχ, χq.

Suppose that p ” 1 pmod dq, ζ “ e2πi{p, and consider
ř

x ζax
d

. Then
ř

r Npx
d “ rqζar “

ř

x ζax
d

.

Corollary 2.4.4 Assume that p - a,
ř

χ gapχq “
ř

χ ζax
d

, where the sum is over all χ such that χd “ ε
and χ ‰ ε.

Proof.
ÿ

χ

gapχq “
ÿ

χd“ε

ÿ

r

χprqζar “
ÿ

r

`

ÿ

χd“ε

χprq
˘

ζar “
ÿ

r

Npχd “ rqζar “
ÿ

χ

ζax
d

.
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3 Number of Solutions to a1x
l1
1 ` a2x

l2
2 ` ¨ ¨ ¨ ` arx

lr
r “ b

Our goal in the this section is count solutions to

a1x
l1
1 ` a2x

l2
2 ` ¨ ¨ ¨ ` arx

lr
r ” b over the field Fp. (1)

In the last section, we only dealt with two variables. To deal with more complicated Diophantine equations,
we introduced extended Jacobi sums and reach a general formula.

3.1 Extended Jacobi Sums

Before we move on to the general form of a1x
l1
1 ` a2x

l2
2 ` ¨ ¨ ¨ ` arx

lr
r ” b,

Definition 3.1.1 Let χ1, χ2, ¨ ¨ ¨ , χl be characters on Fp. A Jacobi sum is defined by the formula

Jpχ1, χ2, ¨ ¨ ¨ , χlq “
ÿ

t1`t2`¨¨¨`tl“1

χ1pt1qχ2pt2q . . . χlptlq.

In this section, we will also consider the case when b “ 0 in p1q. To deal with this case, we also extend the
following definition.

Definition 3.1.2 Let the characters χ1, χ2, ¨ ¨ ¨ , χl be the same as in Definition 3.1.1. Set

J0pχ1, χ2, ¨ ¨ ¨ , χlq “
ÿ

t1`t2`¨¨¨`tl“0

χ1pt1qχ2pt2q . . . χlptlq.

With these definitions, it is easy to verify that J0pε, ε, ¨ ¨ ¨ , εq “ Jpε, ε, ¨ ¨ ¨ , εq “ pl´1 since there are only l´1
free variables in the linear Diophantine equation. The next identity we are curious about have the restriction
that some but not all of the characters χi’s are trivial ones. It turned out that this is also a special case.

Proposition 3.1.3 If some but not all of the characters χi’s are trivial characters, then J0pχ1, χ2, ¨ ¨ ¨ , χlq “
Jpχ1, χ2, ¨ ¨ ¨ , χlq “ 0

Proof. Since the summation of both J0 and J are over all the l´tuples of characters, the order of the l´tuples
does not matter. Without loss of generality, say the characters χ1, χ2, ¨ ¨ ¨ , χi are all the nontrivial characters.

J0pχ1, χ2, ¨ ¨ ¨ , χlq “
ÿ

t1`t2`¨¨¨`tl“0

χ1pt1qχ2pt2q ¨ ¨ ¨χiptiq

“ pl´s´1Πi
k“1

ˆ

ÿ

tk

χkptkq

˙ .

The last step is understood as fixing those ti’s such that χi’s are non-trivial. For the remaining trivial
characters, only l ´ s´ 1 of the ti’s are free variables.
As for Jpχ1, χ2, ¨ ¨ ¨ , χlq, apply the same steps and yield the result 0.

The proposition above will help cancel out many terms in counting solutions to complicated equations. The
next propositions are analogous to the simpler ones in the last section. We will first show the result of
J0pχ1, χ2, ¨ ¨ ¨ , χlq in another special case.

Proposition 3.1.4 Assume that χl ‰ ε. Then

J0pχ1, χ2, ¨ ¨ ¨ , χlq “

#

0 if χ1χ2 ¨ ¨ ¨χl ‰ ε,

χlp´1qpp´ 1qJpχ1, χ2, ¨ ¨ ¨ , χl´1q otherwise.
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Proof. We omit the setp-by-step proof from Rosen and Ireland[3]. The main proof idea is that we get the
intuition from the term Jpχlp´1qpp´1qJpχ1, χ2, ¨ ¨ ¨ , χl´1q, which indicates us to split the character χl from
the rest and sum over all χlpsq. The nonzero s contributes to the coefficient p ´ 1. The inner sum that
contributes to Jpχlp´1qpp ´ 1qJpχ1, χ2, ¨ ¨ ¨ , χl´1q has restriction t1 ` t2 ` ¨ ¨ ¨ ` tl´1 “ ´s reminds us of
the technique of letting ti “ ´sti1 . By using the technique, we can derive the extended Jacobi sum with an
coefficient χ1χ2 ¨ ¨ ¨χl´1p´sq, and this term has different values based on the two cases.

Next we see the connection between Gauss sums and the extended Jacobi sum, which is an analogy to
Theorem 2.3.2. This following theorem applies the previous proposition in different cases.

Theorem 3.1.5 Assume that χ1, χ2, . . . , χl are nontrivial and that χ1χ2dotsχl ‰ ε. Then gpχ1qgpχ2q ¨ ¨ ¨ gpχlq “
Jpχ1, χ2, . . . , χlqgpχ1, χ2, . . . , χlq.

Proof.
gpχ1qgpχ2q ¨ ¨ ¨ gpχlq “

ÿ

s

`

ÿ

t1`t2`¨¨¨`tl“s

χ1pt1qχ2pt2q ¨ ¨ ¨χlptlq
˘

ζs.

Then the case of s “ 0 and s ‰ 0 corresponds to Proposition 3.1.4.

Similar to our discussion on Jacobi sums in Section 2, we also want to know the norm of the extended Jacobi
sums. Here we present a theorem from Ireland and Rosen[3] without proof. This theorem is an significant
part in the number of solutions of a generalized equation.

Theorem 3.1.6 Assume that χ1, χ2, ¨ ¨ ¨ , χr are nontrivial.
If χ1χ2 ¨ ¨ ¨χr ‰ ε, then

|Jpχ1, χ2, ¨ ¨ ¨ , χrq| “ p
r´1
2 .

If χ1χ2 ¨ ¨ ¨χr “ ε, then
|J0pχ1, χ2, ¨ ¨ ¨ , χrq| “ pp´ 1qp

r
2´1

and
|Jpχ1, χ2, ¨ ¨ ¨ , χrq| “ p

r
2´1.

3.2 Generalization Formula of N

Now to count the solution to a1x
l1
1 ` a2x

l2
2 ` ¨ ¨ ¨ ` arx

lr
r ” b pmod pq, let N denote the number for easier

notation. We then have
N “

ÿ

Npxl11 “ u1qNpx
l2
2 “ u2q ¨ ¨ ¨Npx

lr
r “ urq

where the sum is over all (u1, u2, ¨ ¨ ¨ , ur) such that a1u1`a2u2`¨ ¨ ¨ arur “ b. For convenience of calculation,
we assume that li|p ´ 1 for all i and χlii “ ε. Then by Proposition 2.1.4, we have that Npχi “ uiq “
ř

χli“ε χipuiq. Now we derive that

N “
ÿ

χ1,χ2,¨¨¨ ,χr

ÿ

u1,u2,¨¨¨ ,ur

χ1pu1qχ2pu2q ¨ ¨ ¨χrpurq.

Again we have to discuss the case of b “ 0 and b ‰ 0, since this affects which Jacobi sum to use.
If b “ 0, we should use the definition of J0. If b ‰ 0, then ti “ aiui

b and use the extended Jacobi sum. With
all the cases together, we have the following theorem from Ireland and Rosen[3].

Theorem 3.2.1 If b “ 0, then

N “ pr´1 `
ÿ

χ1pa
´1
1 qχ2pa

´1
2 q . . . χrpa

´1
r qJ0pχ1, χ2, ¨ ¨ ¨ , χrq.

The sum is over all r-tuples of characters where χlii “ ε, χi ‰ ε for i “ 1, 2, ¨ ¨ ¨ , r, and χ1χ2 . . . χr “ ε. If
M is the number of such r-tuples, then |N ´ pr´1| ďMpp´ 1qpp

r
2´1q.
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If b ‰ 0, then

N “ pr´1 `
ÿ

χ1χ2 ¨ ¨ ¨χrpbqχ1pa
´1
1 qχ2pa

´1
2 q . . . χrpa

´1
r qJpχ1, χ2, ¨ ¨ ¨ , χrq.

The sum is over all r-tuples of characters where χlii “ ε, χi ‰ ε for i “ 1, 2, ¨ ¨ ¨ , r. If M1 is the number
of such r-tuples with χ1χ2 ¨ ¨ ¨χr “ ε, and M2 the number of such r-tuples with χ1χ2 ¨ ¨ ¨χr ‰ ε, then
|N ´ pr´1| ďM1p

p r2´1q `M2p
pr´1q

2 .

The proof of Theorem 3.2.1 applies the triangular inequality to the Theorem 3.1.6. Up until this theorem,
we have obtained the way to count number of solutions to p1q and made estimations on the number. As
connection to later sections, Theorem 3.2.1 will also help us on counting points on algebraic curves on pro-
jective hypersurface.

After finishing counting the number of solutions to the discussed Diophantine equations over Fp, in the
rest of the paper, we will consider the number of solutions to the equations over more general finite fields.
However, we will not focus entirely on finding out the formula to count as in the previous sections. One of our
goal in this paper is to relate the number of solutions to Diophantine equations to the Riemann Hypothesis
through zeta functions.

we will first try to understand the pojective hypersurface. Then we will the zeta function on a hypersurface
related to a polynomial, and see how the zeta function is analogous to the Riemann zeta function.

4 Number of Points in Projective Space

In this section, we try to understand the projective space, and why we care about "points at infinity". This
section provides background knowledge in the future calculation of zeta functions.

Definition 4.1 Let F be a field and let affine n-space be the set of all n-tuples pa1, a2, ¨ ¨ ¨ , anq with each
ai P F .

With the above definition, we can see the affine n-space as a vector space over F and each n´tuple as a
point. The next concept projective space is more extensively used in the later discussions.

Definition 4.2 Consider the set Apn`1qpF qzt0u. Now pick two points pa0, a1, ¨ ¨ ¨ , anq and pb0, b1, ¨ ¨ ¨ , bnq
in this set. We define an equivalence relation between the two points as the following: pa0, a1, ¨ ¨ ¨ , anq and
pb0, b1, ¨ ¨ ¨ , bnq are equivalent if there is an γ P F˚ such that ai “ γbi for all 0 ‰ i ‰ n. A projective space
PnpF q is defined to be the set of all equivalence classes in Apn`1qpF qzt0u. Each equivalence class is called a
point in PnpF q.

Let F be a field with q elements. With basic field theory, we know that PnpF q has qn ` qn´1 ` ¨ ¨ ¨ ` q ` 1
points. Clearly PnpF q has more points than AnpF q. Pick a point x “ px0, x1, ¨ ¨ ¨ , xnq P P

npF q. If x0 ‰ 0,
consider a map φ such that φpxq “ px1

x0
, x2

x0
, ¨ ¨ ¨ , xnx0

q which falls in AnpF q.

Definition 4.3 Let H̄ be the set of points x P PnpF q such that x0 “ 0. The set H̄ is called the plane at
infinity.
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It is not hard to show that the map φ is a bijection from PnpF q ´ H̄ to AnpF q. Moreover, we can say that
PnpF q contains a copy of AnpF q and a copy of Pn´1pF q.
Next, we are going to relate the points in the projective space with polynomials. The most important object
is projective hypersurface. Moreover, within projective space, we are particularly dealing with homogeneous
polynomials.

Definition 4.4 Let F rx1, x2, . . . , xns be a polynomial ring in variables xi’s over field F . Let fpxq P
F rx1, x2, . . . , xn be a polynomial. Write f as fpxq “

ř

pi1,i2,¨¨¨ ,inq
ai1,i2,...,inx

i1
1 x

i2
2 ¨ ¨ ¨x

in
n . f is said to be

homogeneous if the sums
řn
k“1 ik over all n´tuple indices pi1, ¨ ¨ ¨ , inq are the same.

Now suppose K Ě F is a field. Let fpxq P F rx1, x2, . . . , xns be a polynomial and let a be a point in AnpKq.
Then plug in each coordinate of a into f and calculate fpaq. If fpaq “ 0, we say a is a zero of fpxq. With
the map f , we will define projective hypersurface.

Definition 4.5 Let fpxq be a nonzero polynomial and define H̄f̄ pF q “ ta P A
npF q | fpaq “ 0u. H̄f̄ pF q is

called the projective hypersurface defined by f in AnpF q.

Remark L et f P F rx1, x2, . . . , xnsIf we define f̄pyq “ f̄py0, y1, . . . , ynq by f̄pyq “ y
degpfq
0 f

`

y1
y0
, dots, yny0

˘

.

Then sf is homogeneous. This will be a widely used method of transforming a polynomial into homogenous
one when working in projective hypersurface.

Now we are interested in the number of points a curve on the hypersurface, which is the same as the number
of solutions to a Diophantine equation over a given field. When we count the number of points, we should
not forget about the points at infinity, namely the point with x0 “ 0.

Recall the last theorem in Section 3 where we obtained a generalized formula for equation a1x
l1
1 ` a2x

l2
2 `

¨ ¨ ¨`arx
lr
r “ b. With the definition of projective hypersurface, we derive the following theorem from Theorem

3.2.1.

Theorem 4.6 Suppose F is a field with q elements with q ” 1 (mod m). The homogeneous equation
a0x

m
0 ` a1x

m
1 ` ¨ ¨ ¨ ` anx

m
n “ 0, a0, a1, ¨ ¨ ¨ , an P F

˚, defines a hypersurface in PnpF q. The number of points
on this hypersurface is given by

qn´1 ` qn´2 ` ¨ ¨ ¨ ` q ` 1`
1

q ´ 1

ÿ

χ0,χ1,¨¨¨ ,χn

χ0pa
´1
0 q ¨ ¨ ¨χnpa

´1
n qJ0pχ0, χ1, ¨ ¨ ¨ , χnq,

where χm “ ε, χi ‰ ε, and χ0χ1 ¨ ¨ ¨χn “ ε. Moreover, under these conditions, J0pχ0, χ1, ¨ ¨ ¨ , χnq “
1
q gpχ0qgpχ1q ¨ ¨ ¨ gpχnq.

Example 4.7 Let f “ ´y2
0 ` y

2
1 ` y

2
2 ` y

2
3 be a polynomial on F ry0, y1, y2, y3s with F a field of q elements.

Consider the projective hypersurface H̄f̄ pF q defined by f . Then the number of points on this hypersurface
N1 “ q2`q`1`χp´1q 1

q gpχq
4. We know χ is of order 2. Thus gpχq2 “ χp´1qq. ThusN1 “ q2`1`1`χp´1qq.

Example 4.8 We use this example to review the Diophantine equation xn ` yn “ 1 that we analyzed in
the first part of the paper. Write this equation in homogeneous form in a projective space. Now we have
xn1 ` xn2 “ xn0 . Suppose p0, x1, x2q is a point at infinity. Then we need to solve xn1 “ ´xn2 in a projective
space. If -1 is a nth power, then xn1 “ p´x2q

n and there are n solutions. If -1 is not a solution, then the
equation does not have solutions. Therefore, the number of points at infinity is the same as the function
nδnp´1q where

δnp´1q “
! 1 if -1 is an nth power

0 otherwise.

as in Section 2.3.
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5 Zeta Functions

In this section, we will introduce zeta functions defined on different objects. Most of the zeta functions here
are based on number of points of a curve over different fields. One important topic in this section is the
Weil’s conjecture by André Weil [5], which is based on the Hasse-Davenport relation and has been proved
now. The Weil’s conjectures connects the rationality of zeta functions on algebraic curves to the Riemann
Hypothesis. The zeta functions also reveal analogies to the Riemann Hypothesis.

5.1 Zeta Functions on Projective Hypersurface

For notation in this section, let F be a field with q elements and f P F rx0, x1, ¨ ¨ ¨ , xns be a homogeneous
polynomial. Let field Fk be the field containing F with qk elements. Let Nk be the number of zeros of f in
PnpFkq.

Definition 5.1.1 The zeta function of the hypersurface defined by f is the series given by

Zf puq “ expp
8
ÿ

s“1

Nsu
s

s
q.

Example 5.1.2 Consider homogeneous equation y3
0 ` y3

1 ` y3
2 “ 0 over Fp where p is a prime and p ” 1

pmod 3q. Let homogenerous polynomial fpyq “ y3
0 ` y

3
1 ` y

3
2 ,

N1 “ p` 1`
1

p
gpχq3 `

1

p
gpχ2q3

where χ is a cubic character on Fp.

In section 3, we have proved the following lemma.

Lemma 5.1.3 Let π “ Jpχ, χq where χ is a cubic character on Fp, then gpχq3 “ pπ and ππ̄ “ p.

With Lemma 5.1.3, we have N1 “ p ` 1 ` π ` π̄. However, in zeta function Zf puq, we need to know all
of the Ns for s “ 0, 1, 2, . . . The Hasse-Davenport relation proves the correctness of Ns that we will state
immediately for all s P N. Let us assume the Hasse-Davenport relation at this moment. We state that

Ns “ ps ` 1´ p´πqs ´ p´π̄qs.

Then we derive the zeta function on f from Example 5.1.2 to be

Zf puq “
p1` πuqp1` π̄uq

p1´ uqp1´ puq
.

Luckily, we have Zf puq to be a rational function for this f , and the zeros of the zeta function in this case
are ´π´1 and ´π̄´1, both with absolute value p´1{2.

The Weil’s conjectures[5] say that if f is a degree-d non-singular nonzero homogeneous polynomial on
algebraic extension of F on variables x0, x1, ¨ ¨ ¨ , xn, then Zf puq is a rational function of form

P puqp´1qn

p1´ uqp1´ quq . . . p1´ qn´1uq
,

with P puq having degree pd´1qpd´2q{2 and all zeros have absolute value qpn´1q{2. In exploring the rationality
of the zeta function, with the expansion of the zeta function, we may set Zf puq “

P puq
Qpuq where P,Q are

polynomials. Since Zp0q “ 1, we have P p0q “ Qp0q. On the other hand, since expansion around 0 has left
only constant terms, we have P p0q “ Qp0q “ 1. Assume that Zf puq “ Πi p1´ αiuqΠj p1´ βjuq where αi, βj
are complex.
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Proposition 5.1.4 The zeta function is rational if and only if there exists complex numbers αi and βj such
that

Ns “
ÿ

j

βsj ´
ÿ

i

αsi .

Remark We are not proving for this proposition in detail here. The main idea from Ireland and Rosen[3]
is to evaluate the zeta function in two ways. Evaluate the zeta function by both its definition and the
factorization. Take logarithmic derivative and compare the coefficients in the expanded geometric series. It
is noteworthy that this technique of taking logarithmic derivative and comparing coefficients used in proving
this proposition is extensively used in learning zeta functions.

5.2 Analogy to Riemann Zeta Function

In this subsection, we will define prime divisors on an algebraic variety, and find the analogy between zeta
function on the algebraic variety and the Riemann zeta function.
Let F be a finite field with q elements and let V be an algebraic set in affine space AnpF q. Then the zeta
function of V is

NV puq “ expp
8
ÿ

s“1

Nsu
s

s
q

where Ns denotes the number of points in AnpFqsq satisfying equations that defines V . Now let K Ą F be
an s-degree extension over F . extend V to the algebraic set in AnpKq without changing the notation. Thus
V has Ns points with their coordinates in K.

Definition 5.2.1 If α “ pa1, a2, ¨ ¨ ¨ , anq P V , let Fqd be the smallest field containing F and a1, a2, ¨ ¨ ¨ , an.
We say that α is a point of degree d. A prime divisor on V is a set, denoted by β, of the form tαq

j

|j “
0, 1, 2, ¨ ¨ ¨ , d´ 1u where α is a point on V of degree d. We also define bd to be the number of prime divisors
on V of degree d. Denote prime divisors by B and its degree by d.

Now we state the following proposition:

Proposition 5.2.2 ZV puq “ ΠB p
1

1´udeg B q

Proof. Based on our definition of bd in Definition 5.2.1, we have

ΠB p
1

1´ udeg B
q “ Π8n“1

` 1

1´ un
˘bn

. (2)

Take logarithmic derivative of the right hand side of p2q and we have

1

u

8
ÿ

n“1

nbnu
n

1´ un
“

1

u

8
ÿ

n“1

nbnpu
n ` u2n ` u3n ` . . . q

“
1

u

8
ÿ

n“1

`

ÿ

d|n

dbd
˘

un
.

Compare with the coefficients of each term of un in ZV puq. We want to show that Ns “
ř

d|s dbd.

Lemma 5.2.3 Ns “
ř

d|s dbd.

Proof to Lemma I f we fix a base field of Fqs , the prime divisors are disjoint and of same size, therefore
partitioning the algebraic set V . Notice that subfields of Fqs are all of size qd where d|s. On the other hand,
for a fixed α, the smallest subfield of Fqs that α lies in defines a unique prime divisor with degree d|s. Thus
with the definition of bd in Definition 5.2.1, we have Ns “

ř

d|s dbd. With the completion of the lemma, the
proposition holds.
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Remark If we let u “ q´s, we have Zpq´sq “ ΠB p 1
1´q´s deg B q=ΠB

1
1´p 1

qB
qs
. Here we can see an

the zeta function has an analogy with the expression of the Riemann zeta function, which is defined as
ζpsq “

ř8

n“1 n´s “ Πp p1´ p
´sq´1.

5.3 Hasse-Davenport Relation

As mentioned earlier, we counted Ns on the assumption of the Hasse-Davenport Relation. This relation[1]
is proved with manipulation of characters and Gauss sums. And the significance of the relation is that it
tells us the number of zeros of a homogeneous polynomial of type a0x

m
0 ` a1x

m
1 ` ¨ ¨ ¨ ` anx

m
n over different

fields Fqs in its projective hypersurface. Here Fqs is the sth extension of the field Fq.

In this section, we will not present a complete proof of the Hasse-Davenport relation[1]. Instead, we will
make more attempt to understand the significance of the theorem and how it relates to the rationality of
zeta funcion. Let us start from stating the theorem.

Definition 5.3.1 Let F be a field with q elements and E is an sth extension of F . If α P E, the trace of α
from E to F is defined as trpαq “ α`αq`¨ ¨ ¨`αq

s´1

. The norm of α is defined as NE{F pαq “ α ¨αq ¨ ¨ ¨αq
s´1

.

Let χ be a nontrivial character of F and define χ1 “ χ ˝ NFqs {F . Thus χ
1 is a character of Fqs . Then the

Hasse-Davenport relation states that

Theorem 5.3.2 p´gpχqqs “ ´gpχ1q.

Now we return to the homogeneous polynomial fpx0, x1, . . . , xnq “ a0x
m
0 `a1x

m
1 `¨ ¨ ¨`anx

m
n . For convenience,

assume that q ” 1 pmod mq. By Theorem 4.6, we have that

Ns “
n´1
ÿ

i“0

qsi `
1

qs

ÿ

χ
psq
0 ,¨¨¨ ,χ

psq
n

χ0pa
´1
0 q ¨ ¨ ¨χpsqn pa

´1
n qgpχ

psq
0 q ¨ ¨ ¨ gpχpsqn q.

From Ireland and Rosen[3], the Hasse-Davenport relation and the above expression of Ns show that

Ns “
n´1
ÿ

k“0

qks ` p´1qn`1 `
ÿ

χ0,...,χn

r
p´1qn`1

q
χ0pα

´1
n q ¨ ¨ ¨χnpα

´1
n qgpχ0q ¨ ¨ ¨ gpχnqs

s.

Besides giving out a clean expression of Ns with just characters and Gauss sums, this expansion of Ns
coincides with the expression of Proposition 5.1.4. Then with Prop 5.1.4, the zeta function Zf puq will be
rational. In fact, Ireland and Rosen[3] tells us that under this condition,

Zf puq “
P puqp´1qn

p1´ uqp1´ quq ¨ ¨ ¨ p1´ qn´1mq
.

The results brought by the Hasse-Davenport takes the Zf puq to an analogy with the zeta function.

6 Elliptic Curves

In this section, we will first learn about elliptic curves over fields and their zeta functions. Then we will
find their relation to the Riemann Hypothesis. In the end, we will study two widely studied curves of form
y2 “ x3 `D and y2 “ x3 ´Dx, and focus on the number of points on them.
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Definition Consider a curve defined by a homogeneous polynomial fpx0, x1, . . . , xnq P F rx0, x1, . . . , xns
where K is a field. Elliptic curves are non-singular cubic curves fpx0, x1, x2q P Krx0, x1, x2s if there is at
least one rational root.

The next definition explains nonsingularity on algebraic geometry.

Definition Let L be a field that contains K. A point a in the projective hypersurface H̄f pLq is called
nonsingular if there is no solution to the equations

Bf

Bxi
“ 0 for all 0 ď i ď n.

If a curve in f rx0, x1, . . . , xns is nonsingular, all the points in H̄F pLq are nonsingular for any extensions L
of K. all the points in of the form y2 “ x3 ` ax` b over Q.

Remark We will use the notation EpLq instead of H̄F pLq. WHile there are many interesting aspects of
elliptic curves to be read about, we are more focused on the number theoretic aspects.

With the technique of completing the cube on a cubic elliptic curve over field K, we can transform the curve
into the form x0x

2
2 “ x3

1 ´ Ax
2
0x1 ´ Bx

3
0, A,B P K. However, we will see terms with coefficients 1

2 and
1
3 . Therefore, when the characteristic of K is not 2 or 3, we can transform every elliptic curve into the above
form. p0, 0, 1q is the only point at infinity and the affine form of the curve is y2 “ x3´Ax´B. More details
could be find in [4]

Now we are interested in the behavior of an elliptic curve E defined over field Fp where p - ∆. ∆ “

16p4A3 ´ 27B2q is the discriminant. Let Ep denote the reduction of E modulo p.

6.1 Zeta Functions of Elliptic Curves

In this section, we will introduce two kinds of zeta functions related to elliptic curves. We will also see an
equivalence related to Riemann Hypothesis for algebraic curves over finite fields.

Let Npm denote the number of points in EppFpmq. If we see all points on the curve form an algebraic set,
we have that the zeta function

ZpEp, uq “ exp
`

8
ÿ

m“1

Npmu
m

m

˘

.

Elliptic curves are of genus[2] 1. According to Ireland and Rosen[3], by the Riemann-Roch theorem[4], we
can prove that

ZpEp, uq “
1´ apu` pu

2

p1´ uqp1´ puq
, ap P Z.

Write 1´ apu` u “ p1´αuqp1´ βuq where α and β are complex conjugates. Then α` β “ ap and αβ “ p.
What interests us is the Hasse’s theorem which says |Np ´ pp ` 1q| ď 2

?
p. The significance of the Hasse’s

theorem is that it is connected with the Riemann Hypothesis for elliptic curves.
Before proving the equivalence, we first see howNpm is calculated. With the common technique of logarithmic
derivation, we have Npm “ pm ` 1´ αm ´ βm. For Np, we will have Np “ p` 1´ α´ β.

Proposition 6.1.1 The Hasse’s theorem for Np is the equivalent statement to Riemann Hypothesis for
elliptic curves.

Proof. Suppose that α`β ď 2
?
p. Notice that α, β are the two roots of the quadratic equation x2´apx`p “

0. Therefore, the discriminant ∆ “ pα` βq2 ´ 4αβ “ pα´ βq2. Since α and β are complex conjugates, this
forces ∆ ď 0. Clearly, the two roots exists. Thus ∆ “ 0, and the zeros of the zeta function ZpEp, uq lie on

15



the circle of radius
frac1

?
p on the complex plane. This implies the Riemann Hypothesis for elliptic curves, which says |α| “

|β| “
?
p.

On the other hand, if we assume the Riemann Hypothesis for elliptic curves, then |α| “ |β| “
?
p. Then

|Np ´ 1´ p| “ |α` β| ď 2
?
p.

Definition 6.1.2 For p - ∆, substitute u with s´s in ZpEp, p´sq. Then define the result as the local zeta
function of E at p,

ζpEp, sq “
1´ app

´s ` p1´2s

p1´ p´sqp1´ p1´sq
.

For p |∆, define

ζpEp, sq “
1

p1´ p´sqp1´ p1´sq
.

Definition 6.1.3 The global zeta function is defined as the product of the local zeta functions over all
primes.

ζpE, sq “ Πp ζpEp, sq.

Since ζpsq “ Πp

frac11´ p´s, we can write

ζpE, sq “ ζpsqζps´ 1qΠp-∆ p1´ ap p
´s ` p1´2sq.

The product part gives rise to a new concept.

Definition 6.1.4 The function LpE, sq “ Πp-∆ p1´ ap p
´s ` p1´2sq´1 is defined as the L-function of E.

Now we are interested in a general formula for the number of solution of elliptic curves over finite field
Fp and integral solutions over Z. The previous case is called the local case while the latter one is called the
global case. We are looking into curves of form y2 “ x3 ` D and y2 “ x3 ´ Dx where in both forms D is
an integer. In the local cases, we will finally reach the goal of proving that the number of points on these
curves can be completely determined with the help of Jacobi sums. Meanwhile, for the global cases, we will
also care about analytic continuation.

6.2 Local case for y2 “ x3 ` D

For this curve E, the discriminant ∆ “ ´s433D2, so we only need to restrict primes p such that p ‰ 2 or 3
and p - D. Restrict the curve under mod p, and denote the Ep by y2 “ x3` D̄ with D̄ being the equivalence
class of D under modulo p. This curve E has only one point at infinity, px0, x1, x2q “ p0, 0, 1q. Therefore,
Np “ 1 ` Npy2 “ x3 ` D̄q. So Now we need to consider two cases of p ” 1 and 2 mod 3. If p ” 2 mod 3,
then φ : xÑ x3 is an automorphism on F˚p . Thus NpEpq “ Npy2 “ x`Dq “ p` 1.
On the other hand, if p ” 1 mod 3, let χ be a character of order 3 and ρ a character of order 2. Then with
findings in earlier sections,

Npy2 “ x3 `Dq “ p`
ÿ

a`b“D

ρpaqχpbq `
ÿ

a`b“D

ρpaqχ2pbq.

Let a “ Da1 and b “ Db1 to use Jacobi sums, we have

Np “ p` 1` ρχpDqJpρ, χq ` ĞρχpDq ĞJpρ, χq.

At this point, we can say that the number of solutions of this curve over finite field is determined up to p.
In some cases, we can write out the Jacobi sums explicitly.
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6.3 Local case for y2 “ x3 ´ Dx

Similar to the analysis for the previous local case, we first find out the discriminant ∆ “ 26D3 and there is
only one point at infinity (0,0,1). Therefore, we have Np “ 1`Npy2 “ x3 ´ D̄x.q Thus we consider primes
such that p ‰ 2 and p - D this time. For this curve, we use a more complicated way by setting up a bijective
map[3].
Let the curve y2 “ x3 ´Dx be denoted by C and consider the curve u2 “ v4 ` 4D denoted by C 1. Define
the map T pu, vq “ p 1

2 pu ` v2q, 1
2vpu ` v2q and the map Spx, yq “ p2x ´ y2

x2 ,
y
x q. Let number of points on C

be N and that on C 1 be N 1. With simple calculation, it can be shown that N “ N 1 ` 1 because (0,0) can
only be mapped one way. Again, we consider the congruence of p. Let λ be a character on Fp of order 4. If
p ” 1 mod 4, by similar calculation, we have

N “
ÿ

a`b“4D

Npu2 “ aqNpv4 “ ´bq “ p´ 1` Ğλp´4DqJpρ, λq ` λp´4DqĞJpρ, λq.

If p ” 3 mod 4, Np “ 2 ` N 1 “ 2 ` p ´ 1 “ p ` 1 because of the method of descent. Now we have proved
that in this case, the number of points on this elliptic curve can also be completely determined.

6.4 Improvement on Np

In the past two subsections, we were able to write Np for both curves in terms of Jacobi sums. Ireland and
Rosen[3] showed that we can actually do better and write out Np in local cases with explicit functions. Once
again, identities linked to characters, Gauss sums and Jacobi sums are the crucial part.

For both cases, developing the explicit functions needs cubic reciprocity and higher power residue symbols.
Here we present the function from Ireland and Rosen[3] as following.

Theorem 6.4.1 Suppose p ‰ 2 or 3, and p - D. Consider the elliptic curve y2 “ x3 `D over Fp. If p ” 2
pmod 3q then Np “ p` 1. If p ” 1 mod 3, let p “ ππ̄ with π P Zrωs and π ” 2 pmod 3q. Then

Np “ p` 1`

ˆ

Ě4D

π

˙

6

π `

ˆ

4D

π

˙

6

π̄.

Theorem 6.4.2 Suppose p ‰ 2 and p - D. Consider the elliptic curve y2 “ x3 ´ Dx over Fp. If p ” 3
pmod 4q then Np “ p` 1. If p ” 1 pmod 4q, let p “ πp̄i with π P Zris and π ” 1 pmod pq2` 2iq. Then

Np “ p` 1´

ˆ

D̄

π

˙

4

π ´

ˆ

D

π

˙

4

π̄.

Now we replace the ξ in Lemma 6.4.1 and replace it with a character χ of order 3 in Np at the end of
subsection 6.2. Np “ p` 1` ρχpDqχp4qJpχ, χq ` ĞρχpDq Ğχp4qJpχ, χq. Since ρp4q “ 1, ρχpDqχp4q “ ρχp4q.

6.5 Hecke L-function and the Global Cases

Similar to the local cases, in global cases we can still prove that the number of points on the elliptic curve over
Z is deterministic. But the analysis on the global cases, by Ireland and Rosen[3], requires the L´function
we defined earlier in this section and Hecke L-function. about the analytic continuation of the L-function.

7 More Topics

From the reading on the topic of number of solutions to Diophantine equations, we are mostly dealing with
equations of the well-formed kind

řn
i“1 aix

li
i “ b. We can explore on complicated equations. As for the
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connection between various zeta functions and Riemann Hypothesis, more could be studied with some taste
in analytic number theory and complex analysis. We can also think about construction in algebraic number
theory to express some characters and Jacobi sums as explicit functions as in the Section 6.4.
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