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Introduction

• Holonomic approximation is a powerful tool for proving homotopy prin-
ciple, which asserts that given a formal solution of a partial differential
relation, it can be homotoped to a genuine solution.

• We present two applications of holonomic approximation theorem
which are special cases of Gromov’s homotopy principle for open Diff
V-invariant differential relations over open manifolds.

The Language of Jets

We introduce the language of jets:
Let dr = d(n, r) be the number of all partial derivatives Dα of order r of a
function Rn → R. Let Nr = N(n, r) = 1 + d1 + · · · + dr. Given a smooth
map f : Rn→ Rq and a point x ∈ Rn,

Jrf (x) =
(
x, f (x), f ′(x), . . . , f (r)(x)

)
is called the r-jet of f at x. Equivalently, we can regard f as the section
f : Rn → Rn × Rq. The space x × RqNr can be viewed as a space of all
a priori possible values of the jets of the maps f : Rn → Rq at the point
x ∈ Rn. In this context the space

Rn × RqNr

is called the space of r-jets of sections Rn → Rn × Rq and denoted by
Jr(Rn,Rq)

Given a section f : Rn→ Rn × Rq, the section

Jrf : Rn→ Jr(Rn,Rq), x 7→ Jrf (x),

of the trivial bundle

pr : Jr(Rn,Rq) = Rn × RqNr → Rn

is called the r-jet extension of f.
In order to define the r-jet space for an arbitrary fibre bundle, we need the
following invariant definition of jets:
Consider a smooth fibre bundle p : X → V . Fix v ∈ V. Two local sections
f : Op v → X and g : Op v → X are called r-tangent at the point v if
f (v) = g(v) and

Jrϕ∗f (ϕ(v)) = Jrϕ∗g(ϕ(v))

for a local trivialization ϕ : U → Rn × Rq of X in a neighborhood U of the
point x = f (v) = g(v), where ϕ∗f and ϕ∗g are images of the sections f and
g. The r-tangency class of a section f : Op v → X at a point v ∈ V is called
the r-jet of f at v and denoted by Jrf (v).

For smooth fibre bundle p : X → V , we define its r-jet space

X(r) = {(v, f ) : f : Op v → X}/ ∼

where ∼ is the equivalence relation defined by r-tangency.
Define pr0 : X

(r)→ X by pr0([v, f ]) = f (v), and pr = p ◦ pr0 : X
(r)→ V .

Remark. For local trivializations φ : U → Rn × Rq, the extensions

φr : (pr0)
−1(U)→ Jr(Rn,Rq)

sending the r-tangency classes of local sections of X to the r-tangency
classes of their images in Jr(Rn,Rq) define a natural smooth structure on
X(r) such that pr : X(r)→ V becomes a smooth fibre bundle.

Remark. Since the r-tangency of two sections implies their s-tangency for
0 ≤ s < r, we get projections prs : X(r) → X(s). Thus, we have a chain a
projections:

X = X(0)← X(1)← X(2)← · · · ← X(r)← · · ·

Holonomic Approximation Theorem

We are interested in the following question: Given an r-jet section and an arbitrary
small neighborhood of the image of this section in the jet space, can one find a holo-
nomic section in this neighborhood?

The problem of finding a holomonic approximation of a section of the r-jet space near
a submanifold A is usually unsolvable. However, we can always find a holonomic
approximation of a section F : V → X(r) near a slightly deformed submanifold Ã if the
original submanifold A ⊂ V is of positive codimension.

Theorem 1. (Holonomic Approximation) Let A ⊂ V be a polyhedron of positive codi-
mension and

F : OpA→ X(r)

a section. Then for arbitrarily small δ, ϵ > 0 there exists a δ-small (in C0 sense)
diffeotopy

hτ : V → V, τ ∈ [0, 1],

and a holonomic section
F̃ : Op h1(A)→ X(r)

such that
dist

(
F̃ (v), F |Op h1(A)(v)

)
< ϵ

for all v ∈ Op h1(A)

Figure 1: The sets A, h1(A),OpA (gray) and Op h1(A) (deep gray).

Remarks. By the term polyhedron we mean that A is a subcomplex of a certain smooth
triangulation of the manifold V. We assume that V is endowed with a Riemannian metric
and the bundle X(r) is endowed with Euclidean structure in a neighborhood of the section
F (V ) ⊂ X(r). A diffeotopy hτ : V → V, τ ∈ [0, 1], is called δ-small if h0 = idV and
dist(hτ (v), v) < δ for all v ∈ V and τ ∈ [0, 1].

There is also a parametric version of holonomic approximation theorem:

Theorem 2. (Parametric holonomic approximation) Let A ⊂ V be a polyhedron of
positive codimension, B ⊂ A be a subpolyhedron and

Fz : OpA→ X(r)

a family of sections parametrized by a cube Im = [0, 1]m. Suppose that the sections
Fz are holonomic for all z ∈ ∂Im and holonomic over OpB ⊂ V for all z ∈ Im. Then
for arbitrarily small δ, ϵ > 0 there exists a family of δ-small (in C0 sense) diffeotopies

hτz : V → V, τ ∈ [0, 1], z ∈ Im,

and a family of holonomic sections

F̃z : Op h1z(A)→ X(r), z ∈ Im,

such that

1. hτz(v) = v and F̃z(v) = Fz(v) for (z, v) ∈ (Im ×OpB) ∪ (∂Im × A);

2. dist
(
F̃z(v), Fz|Op h1z(A)(v)

)
< ϵ for all (z, v) such that v ∈ Op h1z(A).

Applications of Holonomic Approximation
Theorem

We look at two interesting applications of holomonic approximation theorem:

Theorem 3. Let V be the annulus δ2 ≤ x21 + x22 ≤ 4 in R2. There exists a family
of functions ft : V → R, t ∈ [0, 1], such that gradft ̸= 0, f0 = −x21 − x22 and
f1 = x21 + x22

Figure 2: The functions f0 and f1

Recall that two immersions are called regularly homotopic if they can be connected
by a family of immersions. Denote by V the thickened sphere

(1− δ)2 ≤ x21 + x22 + x23 ≤ (1 + δ)2

in R3. Let
inv : R3 − {0} → R3 − {0}, inv(x) =

x

||x||2
,

be the inversion,

r : R3→ R3, r(x1, x2, x3) = (x1, x2,−x3),

the reflection and iV : V → R3 the inclusion.

Theorem (Smale’s sphere eversion) 4. The map

r ◦ inv ◦ iV : V → R3,

which inverts V inside out, is regularly homotopic to the inclusion iV : V → R3.
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