

- Holonomic approximation is a powerful tool for proving homotopy principle, which asserts that given a formal solution of a partial differential relation, it can be homotoped to a genuine solution.
- We present two applications of holonomic approximation theorem which are special cases of Gromov's homotopy principle for open Diff V-invariant differential relations over open manifolds.

We introduce the language of jets:

Let $d_r = d(n, r)$ be the number of all partial derivatives D^{α} of order r of a function $\mathbb{R}^n \to \mathbb{R}$. Let $N_r = N(n, r) = 1 + d_1 + \cdots + d_r$. Given a smooth map $f : \mathbb{R}^n \to \mathbb{R}^q$ and a point $x \in \mathbb{R}^n$,

$$J_{f}^{r}(x) = \left(x, f(x), f'(x), \dots, f^{(r)}(x)\right)$$

is called the r-jet of f at x. Equivalently, we can regard f as the section $f: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q$. The space $x \times \mathbb{R}^{qN_r}$ can be viewed as a space of all a priori possible values of the jets of the maps $f : \mathbb{R}^n \to \mathbb{R}^q$ at the point $x \in \mathbb{R}^n$. In this context the space

$$\mathbb{R}^n \times \mathbb{R}^{qN_r}$$

is called the space of r-jets of sections $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q$ and denoted by $J^r(\mathbb{R}^n, \mathbb{R}^q)$

Given a section $f : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^q$, the section

 $J_f^r : \mathbb{R}^n \to J^r(\mathbb{R}^n, \mathbb{R}^q), \ x \mapsto J_f^r(x),$

of the trivial bundle

 $p^r: J^r(\mathbb{R}^n, \mathbb{R}^q) = \mathbb{R}^n \times \mathbb{R}^{qN_r} \to \mathbb{R}^n$

is called the r-jet extension of f.

In order to define the r-jet space for an arbitrary fibre bundle, we need the following invariant definition of jets:

Consider a smooth fibre bundle $p: X \to V$. Fix $v \in V$. Two local sections $f: \mathcal{O}pv \to X$ and $g: \mathcal{O}pv \to X$ are called r-tangent at the point v if f(v) = g(v) and

 $J^r_{\phi_*f}(\phi(v)) = J^r_{\phi_*g}(\phi(v))$

for a local trivialization $\phi: U \to R^n \times R^q$ of X in a neighborhood U of the point x = f(v) = g(v), where $\phi_* f$ and $\phi_* g$ are images of the sections f and g. The r-tangency class of a section $f : \mathcal{O}p v \to X$ at a point $v \in V$ is called the r-jet of f at v and denoted by $J_f^r(v)$.

For smooth fibre bundle $p: X \to V$, we define its r-jet space

$$X^{(r)} = \{(v, f) : f : \mathcal{O}p \, v \to X\} / \sim$$

where \sim is the equivalence relation defined by r-tangency. Define $p_0^r : X^{(r)} \to X$ by $p_0^r([v, f]) = f(v)$, and $p^r = p \circ p_0^r : X^{(r)} \to V$.

Remark. For local trivializations $\varphi: U \to \mathbb{R}^n \times \mathbb{R}^q$, the extensions

$$\varphi^r: (p_0^r)^{-1}(U) \to J^r(\mathbb{R}^n, \mathbb{R}^q)$$

sending the r-tangency classes of local sections of X to the r-tangency classes of their images in $J^r(\mathbb{R}^n, \mathbb{R}^q)$ define a natural smooth structure on $X^{(r)}$ such that $p^r: X^{(r)} \to V$ becomes a smooth fibre bundle.

Remark. Since the r-tangency of two sections implies their s-tangency for $0 \leq s < r$, we get projections $p_s^r : X^{(r)} \to X^{(s)}$. Thus, we have a chain a projections:

 $X = X^{(0)} \leftarrow X^{(1)} \leftarrow X^{(2)} \leftarrow \dots \leftarrow X^{(r)} \leftarrow \dots$

HOLONOMIC APPROXIMATION THEOREM AND APPLICATIONS

Zehan Hu

Stanford University, Department of Mathematics

Holonomic Approximation Theorem

We are interested in the following question: Given an r-jet section and an arbitrary small neighborhood of the image of this section in the jet space, can one find a holonomic section in this neighborhood?

The problem of finding a holomonic approximation of a section of the r-jet space near a submanifold A is usually unsolvable. However, we can always find a holonomic approximation of a section $F: V \to X^{(r)}$ near a slightly deformed submanifold \tilde{A} if the original submanifold $A \subset V$ is of positive codimension.

Figure 1: The sets $A, h^1(A), \mathcal{O}p A$ (gray) and $\mathcal{O}p h^1(A)$ (deep gray).

Remarks. By the term polyhedron we mean that A is a subcomplex of a certain smooth triangulation of the manifold V. We assume that V is endowed with a Riemannian metric and the bundle $X^{(r)}$ is endowed with Euclidean structure in a neighborhood of the section $F(V) \subset X^{(r)}$. A diffectopy $h^{\tau} : V \to V, \tau \in [0,1]$, is called δ -small if $h^0 = id_V$ and $dist(h^{\tau}(v), v) < \delta$ for all $v \in V$ and $\tau \in [0, 1]$.

There is also a parametric version of holonomic approximation theorem:

Theorem 2. (Parametric holonomic approximation) Let $A \subset V$ be a polyhedron of positive codimension, $B \subset A$ be a subpolyhedron and

 $F_z: \mathcal{O}p A \to X^{(r)}$

a family of sections parametrized by a cube $I^m = [0, 1]^m$. Suppose that the sections F_z are holonomic for all $z \in \partial I^m$ and holonomic over $\mathcal{O}p B \subset V$ for all $z \in I^m$. Then for arbitrarily small $\delta, \epsilon > 0$ there exists a family of δ -small (in C^0 sense) diffeotopies

$$h_z^{\tau}: V \to V, \ \tau \in [0, 1], \ z \in I^m,$$

and a family of holonomic sections

$$\tilde{F}_z: \mathcal{O}p\,h_z^1(A) \to X^{(r)}, z \in I^m,$$

such that

1.
$$h_z^{\tau}(v) = v$$
 and $\tilde{F}_z(v) = F_z(v)$ for $(z, v) \in (I^m \times \mathcal{O}p B) \cup (\partial I^m \times A);$

2. dist $\left(\tilde{F}_{z}(v), F_{z}|_{\mathcal{O}ph_{z}^{1}(A)}(v)\right) < \epsilon$ for all (z, v) such that $v \in \mathcal{O}ph_{z}^{1}(A)$.

Applications of Holonomic Approximation Theorem

We look at two interesting applications of holomonic approximation theorem:

Theorem 3. Let V be the annulus $\delta^2 \le x_1^2 + x_2^2 \le 4$ in \mathbb{R}^2 . There exists a family of functions $f_t : V \to \mathbb{R}$, $t \in [0, 1]$, such that $\operatorname{grad} f_t \ne 0$, $f_0 = -x_1^2 - x_2^2$ and $f_1 = x_1^2 + x_2^2$

Figure 2: The functions f_0 and f_1

Recall that two immersions are called regularly homotopic if they can be connected by a family of immersions. Denote by V the thickened sphere

$$(1-\delta)^2 \le x_1^2 + x_2^2 + x_3^2 \le (1+\delta)^2$$

 $\operatorname{inv}: \mathbb{R}^3 - \{0\} \to \mathbb{R}^3 - \{0\}, \ \operatorname{inv}(x) = \frac{x}{||x||^2},$

be the inversion,

in \mathbb{R}^3 . Let

 $r: \mathbb{R}^3 \to \mathbb{R}^3, r(x_1, x_2, x_3) = (x_1, x_2, -x_3),$

the reflection and $i_V : V \to \mathbb{R}^3$ the inclusion.

Theorem (Smale's sphere eversion) 4. The map

 $r \circ \operatorname{inv} \circ i_V : V \to \mathbb{R}^3,$

which inverts V inside out, is regularly homotopic to the inclusion $i_V: V \to \mathbb{R}^3$.

Acknowledgements

I would like to thank my faculty mentor, Professor Eliashberg, who introduced me to this intriguing subject. I am grateful of his guidance and help throughout the summer. I would also like to thank SURIM program for funding and support for the research and Dr. Lernik Asserian, the director of SURIM program, for organizing this amazing undergraduate research program.

References

Eliashberg, Y., Mishachev, N. M. (2002). *Introduction to the h-principle* (No. 48). American Mathematical Soc.

