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Motivation
In genetics, individuals inherit copies of a gene
from each of their parents; some organisms show
polyploidy, where a gene is represented in more
than two copies in an individual. We can measure
genetic dissimilarity between individuals by
considering the pairwise dissimilarity of vectors
of individual alleles. Assuming random mating,
each vector can be regarded as a random, un-
ordered draw with frequencies given in the popu-
lation. Our measure of genetic dissimilarity thus
becomes a more general measure of dissimilarity
between random, unordered draws with replace-
ment. We examine the mathematical properties
of this dissimilarity, which has multiple combina-
torial applications.

Definitions
We denote a collection of I distinct objects by:

AI “ tA1, . . . , AIu.

The space of ordered draws of size K is the prod-
uct AK

I . The space of unordered draws is
GK

I “ AK
I

M

SK

where SK acts on AK
I by permuting the order of

coordinates. We uniquely represent G P GK
I with

a vector

g “

´

c1, . . . , cI

¯

I
ÿ

i“1
ci “ K

where ci is the count of Ai in G. We define our
dissimilarity measure D as

D`g1, g2
˘

“ 1 ´
1

K2
@g1, g2

D

This computes the proportion of all pairs taking
one item from each draw that are not matches:

A1 A2 A3 A4

A1 A1A1 A2A3 A1A3 A1A4

A2 A1A2 A2A2 A2A3 A2A4

A3 A1A3 A2A3 A3A3 A3A4

A4 A1A4 A2A4 A3A4 A4A4

DpG1, G2q “
3
4

Table: Computation of D in K “ 4, I ě 4 case.

D is not a distance metric on our space, as it does
not obey the triangle inequality.

Enumerating Cases
We represent a pair of draws pg1, g2q P GK

I ˆ GK
I

by concatenating them into a 2 ˆ I matrix

ĝ “

¨

˝

g1
g2

˛

‚ “

¨

˝

g1
1 ¨ ¨ ¨ gI

1
g1

2 ¨ ¨ ¨ gI
2

˛

‚

By the symmetry of D in its arguments, the order
of our pair of draws does not matter, so we take

PK
I “ GK

I ˆ GK
I

M

S2

where S2 permutes the rows of each ĝ P GK
I ˆ GK

I .
To reduce our cases further, we take

CK
I “ PK

I

M

SI

where SI acts by permuting the columns of ĝ.
We denote equivalence classes of a matrix ĝ as

“ĝ‰

„ P PK
I

“ĝ‰

P CK
I

CK
I is the set of 2ˆI nonnegative integer matrices

with rows summing to K, up to permutation of
rows and columns.

Draws ĝ D

A1A1, A1A1

¨

˝

2 0 0 0
2 0 0 0

˛

‚ 0

A1A1, A1A2

¨

˝

2 0 0 0
1 1 0 0

˛

‚

1
2

A1A1, A2A2

¨

˝

2 0 0 0
0 2 0 0

˛

‚ 1

A1A1, A2A3

¨

˝

2 0 0 0
0 1 1 0

˛

‚ 1

A1A2, A1A2

¨

˝

1 1 0 0
1 1 0 0

˛

‚

1
2

A1A2, A1A3

¨

˝

1 1 0 0
1 0 1 0

˛

‚

3
4

A1A2, A3A4

¨

˝

1 1 0 0
0 0 1 1

˛

‚ 1

Table: Enumeration of elements in CK
I for K “ 2,I ě 2,

each given by its representative draws and matrix.

Proposition For I ě 2K this
enumeration is independent of I .

The size of CK
I , denoted MK, for I ě 2K is the

OEIS sequence A331722:
MK “ 2, 7, 21, 66, 192, . . . .

Probability of Cases
Let the drawing probability of Ai be pi and qi in
each draw, respectively. As vectors,

p “ pp1, . . . , pIq q “ pq1, . . . , qIq

For each “ĝ‰, we find its probability by summing
across each element in the orbit of “ĝ‰

„:
P

´

“ĝ‰

¯

“

ÿ

HPOrbitSI
p
“

ĝ
‰

„
q

P pHq

“ C
`ĝ˘

ÿ

i1‰¨¨¨‰iNpĝq

p

Npĝq
ź

j“1
p

gj
1

ij
q

gj
2

ij
`

Npĝq
ź

i“1
p

gj
2

ij
q

gj
1

ij
q

where the first N
`ĝ˘ columns of ĝ are nonzero

(we can always find such an element in each SI-
equivalence class). The coefficient C

`ĝ˘ is

C
`ĝ˘

“
pK!q2

p1 ` 1r1“r2qp
śL

ℓ“1|tcℓu|!q
I

ź

i“1

1
gj

1! gj
2!

where c1, . . . , cL are the unique nonzero columns
in ĝ, |tcℓu| is the count of each cℓ in ĝ, and ri is
the set of nonzero entries in the ith row of ĝ.

Expected Dissimilarity
We can use these probabilities and their respec-
tive D values to compute an expectation for a
given K. We prove that, in general,

E“Dpp, qq
‰

“ 1 ´
@p, qD

.

We expect the mean dissimilarity to be minimized
when two draws are taken with the same proba-
bilities (i.e. p “ q). However,

Theorem For any K, I and p, q :
E“Dpp, pq

‰

ď E“Dpp, qq
‰

iff @p, qD

ď
@p, pD

.

Therefore, this inequality does not always hold,
such as when p “

`0.8, 0.2, 0, . . . , 0˘ and q “
`0.9, 0.1, 0, . . . , 0˘. Nonetheless, we have

Theorem For any K, I and p, q:
1
2

´

E“Dpp, pq
‰

` E“Dpq, qq
‰

¯

ď E“Dpp, qq
‰

.

Thus, for any p and q, E“Dpp, qq
‰ is bounded

below by either E“Dpp, pq
‰ or E“Dpq, qq

‰.

Connections
The combinatorial nature of our problem con-
nects to multiple settings:
‚EpDq measures genetic difference between
populations. We find conditions for when
intrapopulation genetic variation (E“Dpp, pq

‰

and E“Dpq, qq
‰) exceeds interpopulation

difference (E“Dpp, qq
‰).

‚ When drawing without replacement from large
population of objects, samples behave similarly
to random unordered draws with replacement.
In this instance, ErDs provides a measure of
variability among these samples.

‚ The probability expressions determined can be
used to compute expected values of other
measures on the space of draws.

Open Questions
‚ Can we determine a generating function for
the elements of CK

I and algorithmically
enumerate its elements?

‚ Can we show that the probability of our
single-population dissimilarity exceeding our
two-population dissimilarity approaches 0 as
K grows large?
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