
INTEGER FORMS AND ELLIPTIC CURVES

YUZU IDO, IAN RUOHONIEMI, AND MATTHEW STEVENS

Abstract. In this paper we develop the necessary background to un-
derstand Bhargava’s 2015 result on the average rank of elliptic curves.
We do this through expanding on integer forms, specifically quadratic
and quartic forms, before going into depth on Galois cohomology and
its role in elliptic curves.
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1. Introduction

Few topics in algebra have as deep a historical establishment as that of
integer forms. Quadratic forms, the degree two case of integer forms, have
been studied since antiquity. Their theory was extensively developed by
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the work of Euler and Legendre, and then formalized and made rigorous in
Gauss’ Disquisitiones. However, progress then decreased in this branch of
algebra, as other topics took the forefront.

A much more recent topic in algebra is elliptic curves, which has been
in vogue since the early twentieth century. The main theorem in the basic
theory of elliptic curves, the Mordell-Weil theorem, was not proven until
1929, and much remains unknown about the behavior of the elliptic curve
group. One of the Millennium Prize questions, the Birch Swinnerton-Dyer
Conjecture, deals with determining the rank of elliptic curves, one of the
properties of the elliptic curve group. It is into this large open topic that
integer forms have made their return. In his recent publications Bhargava
has developed a connection between counting quartic forms and the average
size of the Selmer group, and he has used this to prove novel and insightful
results about the average rank of elliptic curves [1]. This paper shall lay
the groundwork for understanding elliptic curves and quadratic forms well
enough for a study of Bhargava’s result.

This paper is generally organized into two large categories. As an intro-
duction to integer forms, the first half is dedicated to the theory of quadratic
forms. The second half shall focus on the theory of elliptic curves and its con-
nection to quartic forms through the Selmer and Tate-Shafarevich groups.
In the first half, the general properties of quadratic forms shall be enumer-
ated. We will focus on when they represent zero (§2), what invariants they
have (§3), and how many equivalence classes there are as the invariants vary,
looking at binary quadratic forms specifically (§4). In the second half, after
developing the basic theory of elliptic curves (§5), we will proceed to talk
about some of the fundamental results in their group structure (§6). Af-
ter this, at the expense of assuming some category theory we will develop
the connection between quadratic forms and elliptic curves, by introducing
Galois cohomology (§7) and other important geometric machinery (§8). We
then apply Galois cohomology to the Tate-Shafaravich and Selmer groups
(§9), and then finally show how counting quartic forms can give insight into
the Selmer group, and therefore the average rank of elliptic curves (§10).

2. When Do Forms Represent Zero?

To begin our discussion of integer forms, we need to first define what they
are.

Definition 2.1. An integer form is a homogeneous polynomial with integer
coefficients.

For example, x2 + 3xy + 4y2 is an integer form. Since it is of degree
two, we call it a quadratic form, and since it is in two variables, we know
additionally that it is a binary quadratic form. Similarly, we call x2 + 4yz
a ternary quadratic form, and x3 + 2x2y − 4y3 a binary cubic form. In
this section, we will focus on when these forms represent zero, that is,
when the form f has a nontrivial set of variables x1, x2, ..., xn such that
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f(x1, ..., xn) = 0. We shall first consider a general statement for quadratic
forms, Hasse-Minkowski Theorem, before narrowing our focus to an earlier
result of Gauss.

2.1. Serre’s Proof of Hasse-Minkowski. A common concern of both al-
gebra and number theory is finding when equations have rational solutions.
Finding real solutions is often comparatively easy, and finding solutions mod-
ulo a prime is also not too difficult. Fortunately, there is a way to obtain
a rational solution given a real solution and a solution modulo every prime.
However, before we can formalize that, we need to introduce the concept of
the p-adics.

Recall the definition of the standard Euclidean metric on Q: for x, y ∈ Q,

d(x, y) = |x − y|, where |a| =
{
a if a ≥ 0
−a if a < 0

. When we complete Q with

this metric we get the real numbers. However, suppose we use a different
norm. For a given prime p, every a ∈ Q can be represented uniquely as pn bc ,
where n ∈ Z and neither b nor c are divisible by p. Then we can define
|a|p = p−n, with |0| = 0 by fiat. Intuitively, a number is p-adically small
if it is highly divisible by p. Showing that the p-adic norm satisfies all the
properties of a norm is left as an exercise for the reader.

Definition 2.2. The field Qp, called the field of p-adics, is defined as the
completion of Q using the metric d(x, y) = |x− y|p.

This field is actually a PID, and as such has very nice properties, including
unique factorization. There is also a very close connection between the p-
adics and values modulo pn.

Lemma 2.3 (Hensel). Let f(x) be a polynomial with integer coefficients,
and let p be some prime. Given some α0 such that f(α0) ≡ 0 mod p and
f ′(α0) 6≡ 0 mod p, the infinite sequence αn+1 = αn − f(αn)

f ′(αn) . Converges to
a value α that is a root of f . Each αn satisfies f(αn) ≡ 0 mod pn.

This method parallels Newton’s method for finding a root to a polynomial,
except that it functions in the p-adics. We also see that as we increase n,
our solutions modulo pn get closer and closer to the p-adic solution.

We shall now state the main result of this section. Recall a polynomial
represents zero if it has a nontrivial root. We then have the following theo-
rem:

Theorem 2.4 (Hasse-Minkowski). A quadratic form f represents 0 in Q if
and only if it represents 0 in Qp for all primes p and it represents 0 in R.

We will use a proof of Serre [16] to illustrate this result. Before that,
though, we need to introduce one additional bit of machinery.

Definition 2.5. Let a, b be nonzero elements of Q. Then the value

(a, b)ν :=

{
+1 if z2 = ax2 + by2has a solution in (Qp)

3

−1 if z2 = ax2 + by2has no solution in (Qp)
3
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is called the Hilbert symbol of a and b.

The Hilbert symbol satisfies some very nice properties. First, (a, b)ν =
(b, a)ν . Second, (a, bc)ν = (a, b)ν · (a, c)ν . Third, as ν varies, (a, b)ν is almost
always +1. Finally,

∏
p

(a, b)ν = 1. Proofs of these properties can be found in

chapter III of [16]. These properties will play an important role in proving
Hasse-Minkowski for the quaternary case. With these definitions, we are
now ready to prove Theorem 2.3.

Proof. Let f be written in diagonal form, then normalized so that the first
coefficient is 1. Sufficiency in this formulation is clear, so we will focus on
necessity, by considering binary, ternary, and quaternary forms separately,
and then using induction to prove all higher forms.

Binary: Let f = X2 − aY 2. For there to be a real solution, we see that a
must be positive. We write a in terms of its prime decomposition, as follows:
a =

∏
p
pνp(a). We consider the solution in each Qp; we find

(
X
Y

)2
= a, which

since each Qp is a UFD requires that νp(a) is even. Hence a is a square, so
there is a solution in Q, (

√
a, 1).

Ternary: We construct f = X2 − aY 2 − bZ2, where a, b are squarefree.
We now do induction on |a|+ |b|, assuming |b|/ge|a|. If |b|+ |a| = 2, we see
f = X2 ± aY 2 ± bZ2, which has a clear rational solution every time it has a
real solution. For the higher cases, we see |b| ≥ 2, so we let b = ±p1 · ... · pk
where the pk are distinct primes. For a given pi we consider the solution in
Qpk modulo pi, and find X2 − aY 2 ≡ 0 mod pi. If Y ≡ 0 mod pi, then
X ≡ 0 mod pi, and furthermore since b is squarefree we see Z ≡ 0 mod pi.
We can thus divide (X,Y, Z) by pi until we find an (X ′, Y ′, Z ′) where Y 6≡ 0

mod pi. Then a ≡
(
X′

Y ′

)2
mod pi, so a is a square mod each pi, and hence

a is a square mod b. Thus there exist t, b′ such that t2 = a+ bb′. We choose
t such that |t| ≤ |b|/2. Since bb′ = t2 − a, we see bb′ is a norm of k(

√
a) for

k = Q or k = Qp for all primes p. Thus f represents 0 in k if and only if
f ′ = X2 − aY 2 − b′Z2 represents 0. However, based on our choice of t we
see that b′ < b, so the inductive argument is complete.

Quaternary: We write f = aX2 + bY 2 − (cZ2 + dW 2). For each ν we
find an xν that is represented by both aX2 + bY 2 and cZ2 + dW 2. This
implies that (xν ,−ab)ν = (a, b)ν and (xν ,−cd)ν = (c, d)ν for all primes ν.
By theorem 4 in chapter III of [16], this is exactly sufficient to generate a
single value x ∈ Q∗ that satisfies (x,−ab)ν = (a, b)ν and (x,−cd)ν = (c, d)ν
for all primes ν. Therefore aX2+bY 2+xT 2 represents zero at all local places,
so by the tertiary case it represents 0 in Q. Following the same logic with
cZ2 +bW 2 +xT 2 we find values of X,Y, Z,W ∈ Q such that x is represented
by aX2 + bY 2 and cZ2 + dW 2, which shows that f represents 0.

General Case: We write f = h − g, where h = k1X
2
1 + k2X

2
2 and g =

k3X
2
3 +...+knX

2
n. We consider the set of all primes that divide the coefficients

in g, along with 2 and ∞. This is a finite set; for each ν in this set we can
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find an aν that is represented by both h and g in Q∗ν . Since the squares of
Q∗ν form an open set, by approximation theorem this implies the existence
of x1, x2 ∈ Q such that with a = h(x1, x2), we have a/aν is a square in Q∗ν
for all ν. We consider the form f1 = aZ2 − g, which represents 0 in all Qν

and is of a lesser order. Thus by the inductive hypothesis g represents a in
Q, so f represents 0 in Q.

�

2.2. Gauss’s Article 294 Algorithm. Before the development of the p-
adics and long before Hasse and Minkowski, the question of when polyno-
mials have integer (and for homogeneous polynomials, equivalently rational)
solutions was a topic of deep interest. Gauss was able to prove the following
theorem.

Theorem 2.6 (Gauss,[7]). Let a, b, c be relatively prime, nonzero, squarefree
integers. Then the quadratic form

(2.1) f = ax2 + by2 + cz2

will represent zero if and only if −bc,−ac,−ab are squares modulo a, b, c
respectively, and not all of a, b, c have the same sign.

Incredibly, this is a special case of the ternary case of Hasse-Minkowski!
If a, b, c do not all have the same sign, then a real solution exists, and the
results about modular squares are implied by solutions over all p-adics for
p|abc. To see this, we consider −bc and a. By Chinese Remainder Theorem
we can combine the p-adic solutions for each p|a to get a single solution to
the equation modulo a. Let this solution be x0, y0, z0. We then see that

(2.2) by2
0 + cz2

0 ≡ 0 mod a⇒ −bc ≡ (c
z0

y0
)2 mod a

which is exactly what we set out to show. We can construct the results
for −ac and −ab identically.

2.2.1. Proof of Theorem 2.5. We will first illustrate the necessity of the con-
ditions given. Suppose p, q, r is some nontrivial solution to f = 0. We can
assume without loss of generality that the three values are relatively prime
integers. Furthermore, we observe that they are relatively prime to each
other. If p and q had a common divisor µ, then cr2 ≡ 0 mod µ2, which
since c is squarefree implies r ≡ 0 mod µ, a contradiction. We find that
−ap2 is represented by by2 + cz2, so by article 154 in Disquisitiones the de-
terminant −bc is a square modulo ap2, and thus a square modulo a. Identical
logic shows that −ac is a square modulo b and −ab is a square modulo c.

Proof of sufficiency will be split into two parts: first, we will show that f
can be transformed to a form where all the terms have coefficients divisible
by abc; second, we will construct a solution to this quadratic form, and thus
construct a solution to f .
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2.2.2. Finding an Equivalent Form. In order to find a form which satisfies
the above condition, we need to first find A,B,C such that A is relatively
prime to b and c, B is relatively prime to a and c, and C is relatively prime
to a and b. We do this by finding values that satisfy the following conditions:

A ≡ c mod bA ≡
√
−ab mod c(2.3)

B ≡ a mod cB ≡
√
−bc mod a(2.4)

C ≡ b mod aC ≡
√
−ac mod b(2.5)

This is guaranteed to be possible by the fact that a, b, c are relatively
prime. We notice

(2.6) A2a+B2b+ C2c ≡ −b2c+ c2b ≡ 0 mod a

So A2a + B2b + C2c is divisible by a and likewise by b and c. If A,B,C
happen to have a common divisor, we factor out by it, and since it will be
relatively prime to abc, it will not affect the above property.

We now construct three values α, β, γ such that αAa + βBb + γCc = 1.
Following this, we use the method in article 279 of Disquisitiones to find
α′, α′′, β′, β′′, γ′, γ′′ satisfying

β′γ′′ − γ′β′′ = Aa(2.7)

γ′α′′ − α′γ′′ = Bb(2.8)

α′β′′ − β′α′′ = Cc(2.9)

Let f have matrix representation M , and let d = −abc be the determinant
of f . If we then define

(2.10) N =

dα α′ α′′

dβ β′ β′′

dγ γ′ γ′′


We see that every term of NTMN is divisible by d. By the properties of the
entries, we see that det(N) = d, hence the determinant of NTMN is d3.

2.2.3. Finding a Rational Point. Article 277 demonstrates a way to send any
indeterminate form of discriminant 1 to the form x2 + 2yz. We can thus use
this method to find matrix L such that

(2.11) LT
NTMN

d
L =

1 0 0
0 0 1
0 1 0


We thus find LTNTMNL represents d2x2 + 2dyz, so if we plug in (0, 1, 0)

or (0, 0, 1) into this form, we get a solution. This is equivalent to saying that
the last two columns of NL are representations of 0 in f .�
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2.2.4. The Implementation. We successfully wrote an implementation of the
algorithm Gauss gave in article 294 in Python, the code for which can be
found at github.com/AgentChicken/Article294. Since the method Gauss
gave was entirely constructive, writing the implementation was not too chal-
lenging, although since it followed Gauss’ method it failed to include some
more modern optimizations. As a proof of concept, though, it successfully
illustrated the practicality and innovation of Gauss’ work.

3. Invariants of Binary Forms

Define VD as the vector space of binary forms of degree D with integer
coefficients. For instance,

V2 = {ax2 + bxy + cy2 | a, b, c ∈ Z}

Then, for a field K, the linear groups SLD(K) and GLD(K) have a group
action on VD such that, for M in the linear group and f(x, y) a binary form,

M · f(x, y) = f(Mx,My)

Different aspects of the literature choose different linear groups to define the
notion of equivalence of forms according to convenience and context; the
sections in this paper that refer to equivalence will make it explicit which
linear group is under consideration. Two forms f and g are equivalent if
there exists M in the chosen linear group such that M · f = g. We can
interpret M as an invertible change of variables. This relationship divides
binary forms into a number of equivalence classes.

Invariants are quantities that are unchanged through such changes of vari-
ables; notably, they are the same regardless of which linear group is used to
define equivalence. Formally, we define ID as the set of all polynomials P
in the coefficients of a degree D form f ∈ VD such that P (M · f) = P (f)
for all f ∈ VD. ID admits a ring structure with polynomial addition and
multiplication.

Theorem 3.1. In the binary quadratic case, for f(x, y) = ax2 + bxy + cy2,
the discriminant ∆ = b2 − 4ac is an invariant.

Proof We prove this in the case of equivalence under SL2(Z); the other
cases are morally similar.

A polynomial is invariant under SL2(Z) if and only if it is invariant under

the actions of the generators of SL2(Z), S :=

[
0 −1
1 0

]
and T :=

[
1 1
0 1

]
. S

transforms ax2+bxy+cy2 into cx2−bxy+ay2 and T transforms ax2+bxy+cy2

into ax2 + (2a+ b)xy + (a+ b+ c)y2; thus, it must be that if f(a, b, c) is an
invariant,

f(a, b, c) = f(c,−b, a)

f(a, b, c) = f(a, 2a+ b, a+ b+ c)

Indeed, b2 − 4ac = (−b)2 − 4ca = (2a+ b)2 − 4a(a+ b+ c). �

https://www.github.com/AgentChicken/Article294
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Remark 3.2. In fact, Hilbert shows using differential equations that the
discriminant is the unique invariant in the sense that I2 = Q[∆] ⊂ Q[a, b, c]
[8].

In the binary cubic case, for f(x, y) = ax3 + bx2y + cxy2 + dy3, with
a, b, c, d ∈ Z, the discriminant ∆ = b2c2 + 18abcd − 4ac3 − 4b3d − 27a2d2 is
again the unique invariant.

The binary quartic case is more complicated because the ring of invariants
is generated by two independent invariants. For f(x, y) = ax4 + bx3y +
cx2y2 + dxy3 + ey4, they are:

I = 12ae− 3bd+ c2

J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3

That is,
I4 = Q[I, J ] ⊂ Q[a, b, c, d, e]

[1]

4. Binary Forms with Bounded Discriminant

In this section, we discuss Dirichlet’s class number formula. This gives
an explicit count of the number of classes of binary quadratic forms of a
given discriminant up to SL2Z equivalence. The formula is a striking result
in elementary number theory that relates the class number, an algebraic
object, to an L-function, an analytic one.

Remark 4.1. The analogous statement to Dirichlet’s formula in the context
of elliptic curves is the Birch and Swinnerton-Dyer conjecture.

We follow the exposition in Harold Davenport’s Multiplicative Number
Theory, Chapter 6, “Dirichlet’s Class Number Formula” [2]. As does Daven-
port, we quote a few results regarding quadratic forms. The terms “binary
quadratic form,” “quadratic form,” and “form” will be used interchangeably
in this section.

Given a binary quadratic form Q(x, y) = ax2 + bxy+ cy2, its discriminant
d is fundamental if and only if d ≡ 1 mod 4 and is square-free, or d =
4m where m ≡ 2 or 3 mod 4 and m is square-free. Hereafter, the term
“discriminant” implies “fundamental discriminant” unless otherwise specified.

Two quadratic forms ax2 + bxy + cx2 and a′(x′)2 + b′x′y′ + c′(y′)2 of a
given fundamental discriminant d are equivalent up to the SL2(Z) action if
there exists a unimodular substitution

x = αx′ + βy′

y = γx′ + δy′

with α, β, γ, δ ∈ Z such that αδ−βγ = 1. The number of equivalence classes
under this relation for a given discriminant d can be shown to be finite.

A form Q(x, y) = ax2 + bxy + cy2 with discriminant d < 0 is definite,
meaning that Q(x, y) always has the same sign for (x, y) 6= (0, 0). Given a
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positive definite Q(x, y), the form −Q(x, y) is negative definite; thus, half
of forms with discriminant d < 0 are positive definite and half are negative
definite, and it suffices to consider the positive definite ones (with a > 0).

A form Q(x, y) = ax2 + bxy+ cy2 with discriminant d > 0 is indefinite. It
can be shown to be equivalent to some form with a > 0, which will be the
representative of its class.
h(d) denotes the number of classes of forms up to SL2(Z) equivalence

with discriminant d; we assume the forms to be positive definite if d < 0.
h(d) ∈ Z>0 since the principal form of discriminant d,{

x2 − 1
4dy

2 if d ≡ 0 mod 4
x2 + xy − 1

4(d− 1)y2 if d ≡ 1 mod 4

always exists.

Definition 4.2. The Kronecker symbol
(
a
n

)
for integer a, n is defined as

follows:
For odd pi,

(
a
pi

)
is the Legendre symbol

(
a

pi

)
=

 0 if a ≡ 0 mod pi
1 if a 6≡ 0 mod pi and a is a quadratic residue mod pi
−1 if a is a quadratic non-residue mod pi

For n = upe11 · · · p
ek
k 6= 0, where u = ±1 and pi prime,

(a
n

)
=
(a
u

) k∏
i=1

(
a

pi

)ei
(a

0

)
=

{
1 if a = ±1
0 if otherwise(a
1

)
= 1(

a

−1

)
=

{
1 if a ≥ 0
−1 if otherwise

(a
2

)
=

 0 if 2 | a
1 if a ≡ ±1 mod 8
−1 if a ≡ ±3 mod 8

Dirichlet’s class number formula (1839) gives the class number h(d). The
first step in Dirichlet’s proof describes h(d) in terms of

L(1, χ) =
∞∑
n=1

1

n

(
d

n

)
The second step, whose proof will be omitted, gives L(1, χ) as a finite sum.
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Remark 4.3. L(1, χ) is one of the first examples of an L-function, which
are central to the study of number theory. Such functions allow application
of analytic methods to study arithmetic objects and also associate different
objects such as elliptic curves and modular forms to each other. They are
strongly tied to current research areas such as the Riemann Hypothesis.

Theorem 4.4. (Dirichlet’s Class Number Formula)

h(d) =
w|d|1/2

2π
L(1, χ)if d < 0 where w =

 2 if d < −4
4 if d = −4
6 if d = −3

h(d) =
d1/2

log ε
L(1, χ)if d > 0

L(1, χ) = − π

|d|3/2

|d|∑
m=1

m

(
d

m

)
if d < 0

L(1, χ) = − 1

d1/2

d∑
m=1

(
d

m

)
log sin

mπ

d
if d > 0

Proof of Dirichlet’s class number formula (Step 1)
We will only discuss the case when d < 0; for a treatment of d > 0, refer

to Davenport.
To set up the proof, we first consider automorphs of forms, or the uni-

modular substitutions that bring a form to itself, the number of which we
denote by w when d < 0. There are always two obvious automorphs:

x = x′, y = y′

x = −x′, y = −y′

If d < −4, these are the only automorphs, so w = 2.
If d = −4, there is only 1 class, represented by the principal form x2 + y2,

which also has the automorph

x = y′, y = −x′

and its negative, so w = 4.
If d = −3, there is also only 1 class, represented by the principal form

x2 + xy + y2, which also has the automorphs

x = −y′, y = x′ + y′

x = x′ + y′, y = −x′

and their negatives, so w = 6.
Next, we will consider the total number of representations of n ∈ Z>0 by

forms in a representative set of given discriminant d. When d < 0, forms are
positive definite, so n can be represented in only a finite number of ways; we
denote this number by R(n).

We state without proof the following important result in the classical
theory of quadratic forms, developed by Lagrange and Gauss:
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Theorem 4.5. For n > 0 and (n, d) = 1

R(n) = w
∑
m|n

(
d

m

)
where

w =


2 if d < −4
4 if d = −4
6 if d = −3
1 if d > 0

In Step 1, Dirichlet essentially uses this expression to find the average
value of R(n) as n varies; it suffices to consider n such that (n, d) = 1.

w−1
N∑
n=1

(n,d)=1

R(n) =

N∑
n=1

(n,d)=1

∑
m|n

(
d

m

)

=
N∑
n=1

(n,d)=1

∑
m1m2=n

(
d

m1

)

=
∑

m1m2≤N
(m1m2,d)=1

(
d

m1

)

=
∑

m1≤
√
N

(
d

m1

) ∑
m2≤N/m1

(m2,d)=1

1 +
∑

m2<
√
N

(m2,d)=1

∑
√
N<m1≤N/m2

(
d

m1

)

The last equality follows from the fact that the first double sum considers
(m1,m2) such that m1 ≤

√
N and the second considers (m1,m2) such that

m1 >
√
N . ∑

m2≤N/m1

(m2,d)=1

1 =
N

m1

ϕ(|d|)
|d|

+O[ϕ(|d|)]

Intuitively, there are N
m1

possible candidates for m2 and ϕ(|d|)
|d| is the approx-

imate proportion of those that are coprime to d. Thus,∑
m1≤

√
N

(
d

m1

) ∑
m2≤N/m1

(m2,d)=1

1 =
∑

m1≤
√
N

(
d

m1

)(
N

m1

ϕ(|d|)
|d|

+O[ϕ(|d|)]
)

= N
ϕ(|d|)
|d|

∑
m1≤

√
N

(
d

m1

)
1

m1
+

∑
m1≤

√
N

(
d

m1

)
O[ϕ(|d|)]

= N
ϕ(|d|)
|d|

∑
m1≤

√
N

(
d

m1

)
1

m1
+O(

√
N)
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for fixed d and arbitrarily large N .∑√
N<m1≤N/m2

(
d
m1

)
is bounded, orO(1), because

(
d
m1

)
is a non-principal

character to the modulus |d|, meaning it produces some +1 and −1 that can-
cel out in the sum. Thus∑

m2<
√
N

(m2,d)=1

∑
√
N<m1≤N/m2

(
d

m1

)
= O(

√
N)

w−1
N∑
n=1

(n,d)=1

R(n) = N
ϕ(|d|)
|d|

∑
m≤
√
N

(
d

m

)
1

m
+O(

√
N)

Thus,

lim
N→∞

1

N

N∑
n=1

(n,d)=1

R(n) = w
ϕ(|d|)
|d|

∞∑
m=1

(
d

m

)
1

m

= w
ϕ(|d|)
|d|

L(1, χ)(?)

Noting that ϕ(|d|)
|d| is the proportion of n such that (n, d) = 1, this states

that the average value of R(n) as n varies is wL(1, χ).
Now we find a different expression for the average value of R(n) by using

the definition of R(n), the total number of representations of n by the set of
representative forms of discriminant d.

Define R(n, f) as the number of representations of n by a particular form
f with discriminant d.

R(n) =
∑
f

R(n, f)

where f runs over a representative set of forms with discriminant d, meaning
there are h(d) such f . When d < 0,

N∑
n=1

(n,d)=1

R(n, f) = |S|

where

S = {(x, y) ∈ Z2 | 0 < ax2 + bxy + cy2 ≤ N and (ax2 + bxy + cy2, d) = 1}

The second condition restricts (x, y) to certain pairs (x0, y0) of residue classes
to the modulus |d|; it can be shown that there are |d|ϕ(|d|) such pairs. Thus

S = {(x, y) ∈ Z2 | 0 < ax2 + bxy + cy2 ≤ N and x ≡ x0, y ≡ y0 mod |d|}
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The first condition restricts (x, y) to an ellipse centered at (0, 0) which ex-
pands uniformly as N →∞. The area of the ellipse is

2π√
4ac− b2

N =
2π

|d|1/2
N

and the number of lattice points within it is asymptotic to
1

|d|2
2π

|d|1/2
N

as N →∞. Accounting for the |d|ϕ(|d|) possible (x0, y0),

lim
N→∞

1

N

∑
n=1

(n,d)=1

R(n, f) =
1

|d|2
2π

|d|1/2
|d|ϕ(|d|)

=
ϕ(|d|)
|d|

2π

|d|1/2

Finally, we examine this equation along with ?.

h(d) =
∑
f

1

=

∑
f

∑
n=1

(n,d)=1
R(n, f)∑

n=1
(n,d)=1

R(n, f)

=

∑
n=1

(n,d)=1
R(n)∑

n=1
(n,d)=1

R(n, f)

=

limN→∞
1
N

∑
n=1

(n,d)=1
R(n)

limN→∞
1
N

∑
n=1

(n,d)=1
R(n, f)

=
wϕ(|d|)
|d| L(1, χ)

ϕ(|d|)
|d|

2π
|d|1/2

=
w|d|1/2

2π
L(1, χ) for d < 0 �

5. An Overview of Elliptic Curves

This section is a brief introduction to fundamental concepts in the study of
elliptic curves. For interested readers, Silverman’s The Arithmetic of Elliptic
Curves gives a more detailed treatment of the subject [17].

Definition 5.1. An elliptic curve defined over Q, E/Q, is a curve

E = {(x, y) | y2 = f(x)} ∪ {O}
with f(x) a cubic with Q coefficients and distinct roots in C, and O the base
point at infinity (to be explained later).
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(a) Node: By Jakob.scholbach
at English Wikipedia,
CC BY- SA 3.0,
https://commons.wikimedia.org/
w/index.php?curid=52468603

(b) Cusp: Public Domain,
https://commons.wikimedia.org/w/
index.php?curid=2267324

Figure 5.1. Node and cusp

With a suitable change of variables, an elliptic curve defined over Q can
be written in the Weierstrass form

E : y2 = x3 +Ax+B with A,B ∈ Q

Definition 5.2. Given the Weierstrass form, the discriminant is the quan-
tity

∆ = −16(4A3 + 27B2)

associated to the elliptic curve.

f(x) = x3 + Ax + B has distinct roots and y2 = f(x) is non-singular, if
and only if ∆ 6= 0; else it has a node or a cusp (Figure 5.1) where the tangent
is undefined and is not an elliptic curve.

Definition 5.3. The j-invariant is the quantity

j = −1728
(4A)3

∆

Two elliptic curves are isomorphic over Q if and only if they have the same
j-invariant. That is, if two elliptic curves have the same j-invariant, we can
do a change of variables involving coefficients in Q which turns one into the
other.

Definition 5.4. The set of rational points E(Q) is the set of points on
the elliptic curve E with x and y coordinates in Q.
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Figure 5.2. By SuperManu - Own work based on Im-
age:ECClines.png by en:User:Chas zzz brown, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2970559

E(Q) has an abelian group structure based on the addition law depicted
in the diagrams, where O is the identity element (Figure 5.2). Since the
curve is symmetric about the x-axis, the inverse of a point is its reflection
across the x-axis. mE(Q) is the subgroup of E(Q) consisting of points that
are m-multiples of points in E(Q). For instance, in the second subfigure,
P + Q + Q = O. This implies that 2Q = −P so, assuming Q ∈ E(Q),
−P ∈ 2E(Q).

6. Finite Generation of Elliptic Curve Groups

The structure of the elliptic curve group has been a focus point within the
study of elliptic curves. Central to this theory is the Mordell-Weil Theorem,
which was proven in 1929 and shows that the elliptic curve group for an
elliptic curve defined over any number field is finitely generated: specifically,
that it takes the form Zr ⊕ T for some finite abelian group T , called the
torsion group and r is called the rank. Much of the behavior of torsion and
rank remains unknown. Recent results on rank shall be addressed in sections
9 and 10 of this paper; the rest of this section will focus on an illustration
of the Mordell-Weil Theorem for Q, then discuss some of the more recent
results in torsion.

6.1. Mordell’s Theorem.

Theorem 6.1. (Mordell-Weil Theorem) For an elliptic curve E/Q, the
group E(Q) is finitely generated.

The proof of this fact relies on two main parts: the Weak Mordell-Weil
Theorem and the Descent Theorem.

6.1.1. Weak Mordell-Weil Theorem.

Theorem 6.2. (Weak Mordell-Weil Theorem) Let m ≥ 2 be an integer.
Then E(Q)/mE(Q) is a finite group.
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To give an idea of how this result is proven we’ll first write our elliptic
curve in the form y2 = x(x−1)(x−λ), which is called Legendre form. Define
the function Φ: E(Q) → Q×/(Q×)2 ⊕ Q×/(Q×)2 which satisfies Φ(x, y) =
([x], [x− 1]) for x 6= 1, 0 and maps 1 and 0 to ([1], [1]). Notice that this is a
group homomorphism, with kernel 2E(Q) (this can be verified with simple
calculations). On E/2E(Q), Φ is injective.

Proposition 6.3. The image of Φ is finite.

Sketch: Let (x, y) ∈ E(Q) such that x = m·e2, x−1 = n·f2 for squarefree
integersm,n and rational e, f . Then the image of (x, y) under Φ is ([m], [n]).
We observe y

ef
2 = mn(x − λ). The only way the righthand side can be a

square is if all the prime factors of m divide λ and all the prime factors of
n divide λ − 1. There are only a finite number of prime factors for λ and
λ− 1 and since m, n are square-free, this makes there only a finite number
of possibilities for m,n, so the image is finite.

Since Φ is injective, the finiteness of the image implies that E(Q)/2E(Q)
is finite.

6.1.2. Descent Theorem.

Definition 6.4. For a group G we call any function h : G→ R where h(g)
represents the complexity of g a height function.

Example 6.5. The naive height function on the rationals can be described
as follows: let a = p

q where p and q are relatively prime. Then H(a) =

max{|p|, |q|}. We can refine this further to make it function multiplicatively
by defining h(a) = log(H(a)). This latter h can also be used on E(Q), acting
on the x-coordinate of a given point.

Example 6.6. The height of an elliptic curve can also be defined. Let E be
in Weierstrass form, that is, it can be written as y2 = x3 +Ax+B. We then
say h(E) = max{|4A2|, |27B3|}.

The descent theorem takes an abelian group, like E(Q), that admits a
height function and shows from the height function that the group is finitely
generated. For that to hold true, though, the height function must satisfy a
few requirements.

Theorem 6.7. (Descent Theorem) Suppose A is an abelian group admit-
ting a height function h : A→ R satisfying the following properties:

(1) Let Q ∈ A. ∃C1 ∈ R dependent on A and Q such that

(6.1) h(P +Q) ≤ 2h(P ) + C1 ∀P ∈ A

(2) There exist integer m ≥ 2 and constant C2 such that

(6.2) h(mP ) ≥ m2h(P )− C2 ∀P ∈ A
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(3) For every constant C3 the set

(6.3) {P ∈ A : h(P ) ≤ C3}
is finite.

Additionally, suppose for the m in (2.) A/mA is finite. Then A is finitely
generated.

Proof of Theorem 7.4. We choose Q1, Q2, Q3, ..., Qr ∈ A as represen-
tatives for the separate cosets defined by A/mA, with r being the number
of cosets. We choose any P ∈ A. We construct P1 such that P = mP1 +Qi1
and Pk such that Pk−1 = mPk + Qik , with ik ∈ {1, 2, ..., r} based on P
(Aside: we see this construction because Pk−1 −Qik ∈ mA if we choose the
right ik). We define the Pk up to k = n for some sufficiently large n. For
any index j we have

(6.4) h(Pj) ≤ 1
m2 (h(mPj) + C2)

≤ 1
m2 (2h(Pj−1) + C ′1 + C2)

Where C ′1 is defined by using property 1. on −Q1,−Q2, ...,−Qr and taking
the largest resulting C1, and C2 is defined as it is in property 2.. We apply
this inequality repeatedly and get

(6.5) h(Pn) <

(
2

m2

)n
h(P ) +

1

m2

(
1 +

2

m2
+ ...+

(
2

m2

)n)
(C ′1 + C2)

use the formula for infinite geometric series and the fact that m ≥ 2 we get
the following inequality:

(6.6) h(Pn) <

(
2

m2

)n
h(P ) +

C ′1 + C2

m2 − 2
≤ 1

2n
h(P ) +

1

2
(C ′1 + C2)

If we make n sufficiently large, we can make this first term in the righthand
side drop to less than 1, so every P is a linear combination of the Qr and
some Pn, with Pn less than a finite height independent of P . There are only
finitely many points with height less than that fixed amount, so the group
is generated by those points and the Qi, so it is finitely generated. �

6.2. Torsion. The torsion group of an elliptic curve is well-understood over
Q, due to the following theorem of Mazur:

Theorem 6.8 (Mazur,[12]). The torsion group for an elliptic curve over Q
is isomorphic to one of the following fifteen groups:

Z/mZ for m = 1, 2, ..., 10, 12(6.7)
Z/2Z⊕ Z/2mZ for m = 1, 2, 3, 4(6.8)

More recent results have generalized Mazur’s original theorem to higher
degree extensions of Q. Kamienny’s work [10], combined with the earlier
work of Kenku and Momose [11], proved the case for quadratic field exten-
sions. Recent work by Derickx and others [4] has given a similar level of
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understanding for cubic field extensions. Which torsion groups occur infin-
itely often is known for extensions of degree up to six [9][5]. However, the
question of what torsion groups are possible over higher degree extensions
remains open.

For a long time, it was unknown whether or not the number of possible
torsion groups could be bounded by a function of the degree. Finally, in 1992
Merel proved the following theorem, which had been known as the Uniform
Boundedness Conjecture:

Theorem 6.9 (Merel,[13]). Let E be an elliptic curve defined over a number
field K with degree d. Then E cannot possess a point with a prime order
higher than d3d2.

This was improved to an exponential bound by Oesterle, and recent work
by Derickx et al. has found tight bounds for d ≤ 6[3]. There is an expectation
that the true bound is polynomial, and perhaps even linear, but the question
of the true growth rate of the largest possible prime remains open.

7. An Overview of Group Cohomology

It is exceedingly difficult to study the rank of elliptic curves “directly”; that
is, much of the progress which has been made towards understanding the
rank of elliptic curves arises not from the study of explicit points of infinite
order on elliptic curves, but from the study of maps between components of
the Mordell-Weil group and simpler adjacent structures.

An indespensible tool in this regard is group cohomology, which allows
one to associate to some fixed G-module A a sequence of meaningful groups
whose underlying sets are equivalence classes maps from G into A. In this
section, we give an axiomatic definition of group cohomology and introduce
the concepts needed in the following sections. Our exposition mainly follows
[15], [6], and [14].

7.1. Definition. A topological group is a topological space equipped with
a group structure such that multiplication and the taking of inverses are both
continuous. Topological groups are homogeneous in the sense that it if one
knows a base of open sets around 1, called a filter base, one may determine
a base open sets around every point g by translating open sets around 1 by
g. Every group may be viewed as a topological group when equipped with
the discrete topology.

A topological G-module A is a topological abelian group A which ad-
mits an additional G-set structure, for G a topological group, such that
the group action is continuous and for all g ∈ G and a, b ∈ A, we have
g · (a + b) = g · a + g · b. Group cohomology was first developed for topo-
logical G-modules A for which both G and A are equipped with the discrete
topology. It turns out, however, that the theory extends well to topological
G-modules A for which A is discrete and G is profinite. To say that G
is profinite is to say that it is compact, Hausdorff, and totally disconnected
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as a topological space or, equivalently, it is the inverse limit of a system
of discrete finite groups. From now on, we shall assume that G is always
profinite and A is always discrete, unless otherwise specified. We refer to the
category of such objects, with morphisms being continuous maps which are
G-set morphisms and abelian group homomorphisms, as ModG.

An exact sequence of topological G-modules is a sequence of topological
G-modules Ai and morphisms ϕi : Ai → Ai+1

· · · → Ai
ϕi−→ Ai+1

ϕi+1−−−→ Ai+2 → · · ·
such that imϕi = kerϕi+1.1 A short exact sequence of topological G-
modules is an exact sequence of the form

0→ A→ B → C → 0.

That is, a short exact sequence is a sequence of three topological G-modules
A,B,C such that A ↪→ B � C such that the image of the injection coincides
exactly with the kernel of the surjection.

Suppose we apply to the exact sequence 0 → A
ϕ−→ B

ψ−→ C → 0 the
functor sending a topological G-module to its group of G-fixpoints. The
application of this functor yields an exact sequence

0→ AG
ϕ|

AG−−−→ BG ψ|
BG−−−→ CG

Indeed, it is clear that ϕ|AG is injective and that ker(ψ|BG) = (ker(ψ))G.
Further, we have that im(ϕ|AG) = (imϕ)G: if b = ϕ|AG(a) ∈ im(ϕ|AG), then
b is contained in imϕ and for any g ∈ G we have that g · b = g · ϕAG(a) =
ϕ|AG(g · a) = ϕ|AG(a) = b; on the other hand, if b = ϕ(a) ∈ (imϕ)G, then
for any g ∈ G we have ϕ(a) = g ·ϕ(a) = ϕ(g · a), and since ϕ is injective, we
have that g ·a = a. Thus, we have that im(ϕ|AG) = (im(ϕ))G = (ker(ψ))G =
ker(ψ|BG), verifying exactness.

However, this exact sequence is not, in general, short exact sequence. That
is, while the resulting sequence is still exact, BG fails in general to surject
onto CG.2 For example, for p a prime, we may take G to be the subgroup
of GL2(Fp)3 generated by

M =

(
1 1
0 1

)
.

We takeB = F2
p, equipped with the naturalG-action, andA to be span{(1, 0)},

also equipped with the natural G-action, which injects into B via the map
A → B : (n, 0) 7→ (0, n). Finally, we take C = cokerϕ = span{(1, 0)},
equipped with the natural G-action. Since M has the unique eigenvector
(1, 0), we have that A = B = C = span{(1, 0)}. Thus, in the induced exact

1Note that exact sequences in fact make sense over any category with kernels and
cokernels.

2Functors of this sort are called left exact.
3We use Fp rather than, say R, so that G is finite, and thus profinite. The example

works just as well if we use a field like R except that G would not be profinite, since it
would be countable, and we would like to focus on profinite groups for this exposition.
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sequence, the injection 0 → AG → BG is an isomorphism and the image of
BG → CG must therefore be 0 ( CG, i.e. our sequence fails to be a short
exact sequence.

Since it is in many cases desireable for our exact sequences to end in 0,
i.e. with the second-to-last nonzero object surjecting onto the last nonzero
object, we ask if there is a way to salvage the situation by continuing the
exact sequence past CG in a natural manner—one of the key reasons group
cohomology is useful is that it gives us a way to do exactly that.

In particular, we have the following universal property:

Theorem 7.1. There exists an unique (up to isomorphism) sequence of func-
tors H i(G, •) : ModG → Ab such that the following properties hold:

(1) H0(G, •) is the functor sending a topological G-module to its group
of G-fixpoints.4

(2) Given an exact sequence 0 → A → B → C → 0 of topological G-
modules, there exists a long exact sequence

0 H0(G,A) H0(G,B) H0(G,C)

H1(G,A) H1(G,B) H1(G,C)→ · · ·

The maps taking H i(G,C) → H i+1(G,A) are called connecting
morphisms.

(3) A morphism of short exact sequences

0 A B C 0

0 A′ B′ C ′ 0

induces a morphism of long exact sequences

0 H0(G,A) H0(G,B) H0(G,C) H1(G,A) · · ·

0 H0(G,A′) H0(G,B′) H0(G,C ′) H1(G,A′) · · ·

(4) Suppose A is an injective topological G-module. That is, if M and
N are two other topological G-modules with an injective morphism
ι : M ↪→ N and morphism ϕ : M → A, then there exists a (not
necessarily unique) morphism Φ : N → A such that the following

4Letting H0(G, •) be some left exact functor other than the one sending a topological
G-module to its group of G-fixpoints leads to the theory of right derived functors.
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diagram commutes:

N

M

A

Φ

ι

ϕ

Then, H i(G,A) = 0 whenever i > 0.

And, indeed, we have the following theorem.

Theorem 7.2. For any topological groups G and A, the group H i(G,A) is
always trivial once i is sufficiently large.

The group Hn(G,A) is often called the nth cohomology group of G with
coefficients in A. It turns out that these groups aren’t just significant for
their sitting in an exact sequence to the right of fixpoint groups. They often
have meaningful interpretations in their own right and, in fact, much of the
machinery we build in later sections will rely on an important interpretation
of the first cohomology groups of elliptic curves qua Galois modules. In
this case, the long exact sequence becomes an extremely important tool for
reasoning about maps to and from important structures. Thus, we have the
following slogan:

“Galois cohomology is a tool for extracting long exact se-
quences from short exact sequences.”

While we will not give a full proof of the above theorem, it is not difficult
and often very useful to describe the cohomology groups explicitly; we do so,
following Chapter 17 of [6]. Suppose we would like to construct the cohomol-
ogy groups of a topological G-module A. We start by considering Cn(G,A),
the set of all continuous maps (not necessarily morphisms, just continuous
maps) taking Gn → A. The set Cn(G,A) admits a group structure under
pointwise addition and elements of Cn(G,A) are often called n-cochains of
G with values in A.

Now, we define the nth coboundary homomorphisms dn : Cn(G,A)→
Cn+1(G,A) by

dnf(g1, . . . , gn+1) = g1 · f(g2, . . . , gn+1)

+

n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn).

One can show that dn ◦ dn−1 = 0 for n ≥ 1, i.e. the (not necessarily
exact) sequence C1(G,A)

d1−→ C2(G,A)
d2−→ · · · is a cochain complex. In

particular, we have that ker dn ⊇ im dn−1 for n ≥ 1. We define the group
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of n-cocycles Zn(G,A) = ker dn for n ≥ 0; we also define the group of
n-coboundaries Bn(G,A) as im dn−1 when n ≥ 1 and in the case n = 0,
we let B0(G,A) = 0. Now, the nth cohomology group Hn(G,A) may be
defined as Zn(G,A)/Bn(G,A).

7.2. Restriction and Galois modules. LetG a profinite topological group
and H ≤ G a closed subgroup (we require H to be closed so that it is also
profinite). Then, any G-module A admits an induced H-module structure.
Given any n-cocycle f : Gn → A in Cn(G,A), we may consider its restriction
f |Hn : Hn → A, and since restrictions of continuous maps are continuous,
this restricted map will be an element of Cn(H,A). This induces a restric-
tion morphism

Res : H i(G,A)→ H i(H,A).

Note that this morphism isn’t necessarily surjective; indeed, continuous
functions on closed subsets do not extend to continuous maps on the ambient
space in general.

Let E be an elliptic curve defined over some perfect field F . Then, E
admits the structure of a GF -module, where here and in the future, we use
the notation GF for Gal(F/F ). We consider GF to be endowed with the
Krull topology, a filter base of which is given by normal subgroups of
finite index (note that these are in bijection with normal extensions of K of
finite degree).

We will frequently consider H i(GF , E(F )) and thus we will refer to this
group by the shorthand H i(F,E).

Let K/Q be a number field. Where Kv is the completion of K at a (not
necessarily finite) place v, we have a morphism

GKv ↪→ GK : σ 7→ σ|K .

which is an injection by Krasner’s lemma. Then, if E is an elliptic curve
defined over K, we have the map

Resv : H1(K,E)→ H1(GKv , E(K))→ H1(Kv, E)

where the mapH1(K,E)→ H1(GKv , E(K)) is restriction andH1(GKv , E(K))→
H1(Kv, E) is the natural map arising from the inclusion of cochains Cn(GKv , E(K))
into Cn(GKv , E(Kv)).

8. Geometric Machinery

Before returning to the study of elliptic curves properly, we will need a
few tools which will help us make sense of the more geometric aspects of
the theory of elliptic curves. In particular, we will define curves in general,
develop the machinery which allows us to make rigorous sense of “points at
infinity”, and define divisors on curves. We then develop twists and torsors,
along with their relationships to cohomology.
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8.1. Projective Curves and Their Divisors. An affine curve is a set
{(x, y) ∈ F 2 : f(x, y) = 0} for some field F that we will often require to be
algebraically closed and some polynomial f which is nonconstant and has
infinitely many zeroes. The degree of an affine curve is the degree of f .
If F ′ is a subfield of F and f ∈ F ′[x, y], then the curve in question is said to
be an affine curve defined over F ′. For example, the set

C = {(x, y) ∈ Q2
: y2 = x(x− 1)(x− 2)}

yields a degree 3 affine curve in the plane of algebraic numbers defined over
Q. We say that a map ψ between two affine curves C1 = {f1(x, y) = 0} and
C2 = {f2(x, y) = 0} is amorphism of affine curves if it is the restriction of
a polynomial g between their respective ambient affine spaces; equivalently,
f2 = f1 ◦ g. Suppose that F ′ is a subfield of F ; we say that ψ is an F ′-
morphism if g ∈ F ′[x, y]2. We say that two affine curves are F ′-isomorphic
if there exists an F ′-morphism between them which has a two-sided inverse
that is also an F ′-morphism.

The equation which yields the degree 3 curve C given as an example in the
previous paragraph may look familiar—it is a Weierstrass equation that may
be associated to an elliptic curve. However, C is not an elliptic curve since
it does not have a point at infinity. Indeed, elliptic curves are never affine
curves due to the presence of this abstract additional point. Instead, elliptic
curves may be considered to be projective curves which live in projective
space rather than affine space.

For F a field, the projective space FPn is the quotient of the space of
nonzero elements in Fn+1 under the equivalence relation [x1, . . . , xn+1] ∼
[λx1, . . . , λxn+1] with 0 6= λ ∈ F ; we may refer simply to Pn when the field
is understood. Note that elements of FPn may thus be identified with lines
in Fn+1 which yields the following important interpretation. In Fn+1, we
may consider an affine copy of Fn away from the origin. Then, almost all
lines intersect this copy of Fn at a unique point; these lines may be identified
with Fn. All other lines do not intersect the copy at any point and these
lines are the “points at infinity”. For example, all lines with nonzero slope
R2 intersect the affine copy {(x,−1), x ∈ R} of R1 at a unique point, while
the line {y = 0} does not intersect this copy at all. However, the sequence of
points {[n,−1]}n∈N corresponding to the sequence of points {(n,−1)}n∈N in
our affine copy, can be seen to approach, in the quotient topology, the point
[1, 0] which corresponds to the line {y = 0}; the same is true for the sequence
{[−n,−1]}n∈N. Thus, we may interpret RP1 as the real line together with a
single additional “point at infinity”, which in some sense plays a dual role as
positive and negative infinity. More formally, RP1 is topologically equivalent
to the one-point compactification of the real line, namely S1.

A projective curve is a set {(x, y, z) ∈ FP2 : f(x, y, z) = 0} for f a homo-
geneous polynomial. The degree of a projective curve is the degree of f
and if f ∈ F ′[x, y, z] for F ′ a subfield of F , then the curve in question is said
to be a projective curve defined over F ′. We say that a map ψ between
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two projective curves C1 = {f1(x, y, z) = 0} and C2 = {f2(x, y, z) = 0} is
a morphism of projective curves if it is the restriction of a polynomial
g between their respective projective affine spaces; equivalently, f2 = f1 ◦ g.
Suppose that F ′ is a subfield of F ; we say that ψ is an F ′-morphism if
g ∈ F ′[x, y, z]3. We say that two projective curves are F ′-isomorphic if there
exists an F ′-morphism between them which has a two-sided inverse that is
also an F ′-morphism.

The relationship between elliptic curves as defined earlier in this paper
and elliptic curves considered as projective curves works as follows. Suppose
we have a Weierstrass equation y2 = x3 + Ax + B with A,B ∈ Q (or more
generally any field L, in which case we say that E is defined over L) such
that the cubic on the RHS has distinct roots in Q (or L). Then, instead of
defining an elliptic curve E as {y2 = x3+Ax+B}∪{O} it is possible to define
E as the projective plane curve cut out by the homogeneous polynomial
y2z = x3 +Axz2 +Bz3. Note that this has a rational point [0, 1, 0], allowing
us to equip this curve a group law, and this point is not on the affine curve
cut out by y2 = x3 + Ax+ B. Indeed, we recover our original curve by the
substitution x 7→ x/z and y 7→ y/z only when z is nonzero, and hence if we
would like to work with the affine curve cut out by y2 = x3+Ax+B, we must
replace the point [0, 1, 0] with O the abstract point at infinity. Thankfully,
the point [0, 1, 0] is the only data that we lose; it is easy to see that any point
of the form [r, 1, 0] on y2z = x3 + Axz2 + Bz3 must have r = 0. Thus, the
data of the projective curve {y2z = x3 + Axz2 + Bz3} and the affine curve
{y2 = x3 + Ax + B} along with the point O at infinity are essentially the
same, at least so far as the group law is concerned.

It turns out that this generalizes to all plane curves. That is, given a
plane curve C = {f(x, y) = 0} with f of degree d, we may “projectivize” C by
homogenizing f , i.e. we lift C to the projective curve Ĉ = {zdf(x/z, y/z)}.
The curve Ĉ is called the projective closure of C. Given Ĉ, we may return
to C by dehomogenizing, i.e. taking z = 1, during which we may lose
information about “points at infinity” where z = 0 in Ĉ.

Remark 8.1. One reason why projective curves are convenient to work with
is Bezout’s Theorem: let C1 and C2 are projective curves in KP2, with K an
algebraically closed field, given by f1 and f2, respectively; if C1 and C2 do not
intersect at infinitely many points (equivalently, the greatest common divisor
of f1 and f2 is constant), then the number of intersection points of C1 and
C2 in KP2 is exactly deg(f1) deg(f2) when counted with multiplicity. This
fails in the affine setting, where the number of intersection points is at most
deg(f1) deg(f2) when counted with multiplicity. For example, the curves cut
out by f1(x, y) = y − x and f2(x, y) = y − x− 1 in C2 have no intersection
points, but the corresponding curves in CP2 cut out by zf1(x/z, y/z) = y−x
and zf2(x/z, y/z) in CP2 can easily be seen to intersect at exactly one point,
namely [1, 1, 0].
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From now on, unless otherwise specified, by “curve” we will refer to pro-
jective curves in Q defined over Q. If we specify a curve by an equation in
two variables, we refer to the projective closure of the affine curve cut out
by the equation in question; if we refer to points (x, y), we implicitly mean
[x, y, 1].

To a curve C, we may associate divisors, which are formal linear combi-
nations of finite collections of points on C. That is, a divisor is

∑
P∈C nPP

where all but finitely many nP are zero. For example, if C is given by
4x2 − x3 − 2 = 0, then D = 2(− 3

√
2, 0) + 3(0,

√
1/2) is a divisor on C.

Remark 8.2. Divisors are formal linear combinations; one should not con-
fuse + in this case with addition on a group law which may be defined on the
curve in question.

Given a divisor D, we may define its degree degD as follows. For
a point P of C, define ϕ(P ) = minK3P,[K:Q]<∞[K : Q]. Then, define
deg(

∑
P∈C nPP ) =

∑
P∈C nPϕ(P ). In other words, we define the degree

of a single point P to be the degree of the minimal number field K such that
K2 3 P and we extend linearly.

For example, the degree of the divisor D = 2(− 3
√

2, 0) − 3(0,
√

1/2) on
the curve cut out by y2 − x3 − 2 = 0 is 0 since the splitting field of x3 + 2
is of degree 3 over Q and the splitting field of x2 − 1

2 is of degree 2; thus,
extending linearly yields:

0︷ ︸︸ ︷
6︷ ︸︸ ︷

2

3︷ ︸︸ ︷
(− 3
√

2, 0)−

−6︷ ︸︸ ︷
3

2︷ ︸︸ ︷
(
√

1/2, 0) .

Let C be a curve. Consider the field of rational functions f(x, y) in two
variables on C which are ratios of homogeneous polynomials of the same
degree. These may be written locally as f(t) a rational function in one
variable. For any point P ∈ C, we have that if f(x, y) may be represented
as f(t) around P , then f(t) may be written as (t − P )ν f̂ for some nonzero
rational function f̂ such that neither the numerator nor denominator of f̂
contains a factor (t − P ). The integer ν is called the order ordP (f) of f
at P . For a given f , there are only finitely many points P ∈ C at which
ordP (f) 6= 0, and thus div : f 7→

∑
P∈C ordP (f)P is a map taking rational

functions on C to divisors on C. A divisor D is said to be principal if
there is a rational function f on C with div(f) = D. It turns out that the
degree of any principal divisor is zero. Two divisors are said to be linearly
equivalent if their difference is principal; note that this partitions divisors
into equivalence classes over which degree is well-defined.

8.2. Twists and Torsors. In our overview of group cohomology, we promised
that cohomology groups would often have meaningful interpretations; the
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time has come for us to make due on that promise. Our exposition in this
subsection follows [15].

We begin with a rather imprecise premise which we will not attempt to
make completely rigorous. Suppose we have a category C of objects which
are “defined over” a perfect field K, in some well-specified sense. Further,
suppose that for every extension K ′/K, there exists a category of objects
CK′ which are defined “defined over” K ′ and that for every object V of C,
there exists a corresponding object of VK′ in CK′ , i.e. given an object V
defined over K, we can “base change” to obtain an object VK′ over K ′. We
say two objects V and W in C are twists of one another if there exists an
isomorphism between VK and WK in CK . We will often identify twists in C
if they are isomorphic to one another in C.

For example, the category of elliptic curves defined over Q along with Q-
morphisms satisfies the properties we require of C (although the machinery
we are currently developing will not be applied directly to this category in
this and the following sections). It can be shown that the elliptic curves given
by y2 = x3 +1 and 2y2 = x3 +1 are not Q-isomorphic, but we may transform
the former into the latter via the change of variables (x, y) 7→ (x, y

√
2) in

Q(
√

2); thus, the two elliptic curves are twists of one another. Note that
elliptic curves are twists of one another if and only if they have the same
j-invariant.

For some object V in our category C of objects over K satisfying the
vaguely set forth principles above, let Aut(VK) be the set of automorphisms
of VK equipped with an action of GK . If Aut(VK) is abelian, then it admits
the structure of a topological GK-module and thus we may speak of its
cohomology groups; if not, we can still make sense of its cohomology via
pointed sets rather than groups (we will not elaborate on this point since
Aut(VK) will be abelian in all the situations we consider in this exposition).
In either case, we have an injection

{twists of V }/ ∼=K ↪→ H1(GK ,Aut(VK)),

which will in many situations be a bijection, given as follows. If W is a twist
of V in C, then we choose an isomorphism ϕ : WK → VK . Then the map
G → Aut(VK) : g 7→ (g · ϕ) ◦ ϕ−1 is a 1-cocycle and yields an element of
H1(GK ,Aut(VK)).

Thus, we have the following imprecise slogan:

“The group or pointed set H1(GK ,Aut(VK)) classifies twists
of V .”

This principle will turn out to be essential to our understanding of elliptic
curves via its application to torsors, which we now define.

Let E be an elliptic curve defined over a perfect field K; then, we have a
group action E × E → E which is (1) free and (2) transitive. Furthermore,
this map is (3) always the restriction of a homogeneous polynomial map
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in Q[x, y, z, w, v]3 taking KP4 → KP2.5 More generally, we may consider
curves C which admit a group action E × E → E satisfying these three
properties. Such curves C along with such group actions E × C → C are
known as K-torsors of E. A morphism of K-torsors C1 and C2 of E is a
K-morphism ϕ of curves which is also E-invariant, i.e. for any P ∈ E and
Q ∈ C1, we have ϕ(P +Q) = P + ϕ(Q).

We note that if K ′/K is a field extension of K, any K-torsor of E may be
considered as a K ′-torsor, and thus we can make sense of twists of K ′-torsors
of E. We would like to use cohomology to classify twists of E considered as
a Q-torsor of E.

In this specific instance, we are especially fortunate. Our method of using
H1 to classify twists of E as a K-torsor of E is particularly powerful for the
following reasons:

(1) It is nontrivial, but nonetheless true, that the K-torsors of E are
exactly the twists of E as a K-torsor, i.e. all K-torsors of E become
isomorphic to E as a K-torsor of E over K. Thus, using H1 to
classify twists of E as a K-torsor of E yields a classification of all
K-torsors of E.

(2) The automorphisms of E as a K-torsor of E are the maps +Q :
P 7→ P + Q. In particular, the automorphism group is abelian and
isomorphic to E as a group, so H1(GK ,Aut(EK)) ∼= H1(K,E).

(3) We noted earlier that the injection of twists into H1 would often be
a bijection. In this case, it is indeed a bijection.

Thus, we have

{K-torsors of E}/ ∼=K←→ H1(K,E).

Furthermore, we have the following theorem.

Theorem 8.3. Let C be a K-torsor of E. The following are equivalent:
(1) C is a trivial K-torsor of E, i.e. C ∼= E as K-torsors of E.
(2) C(K) 6= {}, i.e. C has a K-rational point.
(3) C corresponds to 0 under the above bijection.

That is, nontrivial elements of H1 correspond to K-torsors of E (up to K-
isomorphism) which do not have K-points. Thus, using this correspondence,
we may apply the Galois cohomological tools developed in the previous sec-
tion to understand K-torsors of E. We do so in the following section.

9. The Shafarevich-Tate and Selmer Groups

Using the machinery developed in the previous sections, we define impor-
tant groups, X(E) and Seln(E), associated to an elliptic curve E, which,
in addition to being interesting for a number of reasons in their own rights,

5For readers who have experience with varieties, this is to say that this map is a K-
morphism from the product variety E × E to the elliptic curve E.
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sit in an exact sequence with a quotient group of E(Q), allowing us to ob-
tain a bound on rank indirectly by studying these adjacent structures. Our
exposition in this section partially follows [15].

We have for an elliptic curve E defined over Q that H1(Q, E) classifies
Q-torsors of E and that the nontrivial elements of this group correspond to
Q-torsors of E with no Q-points. Under this interpretation, the map Resv
lifts a torsor into Qv in the natural way. We define the Tate-Shafarevich
group X by

X(E) =
⋂
v≤∞

ker
[
H1(Q, E)

Resv−−−→ H1(Qv, E)
]

Note that v ranges over all places of Q, finite or infinite. That is, elements
of the Tate-Shafarevich group are nontrivial Q-torsors of E which become
trivial Qv for all places v.

Note the connection with the Hasse-Minkowski theorem here: if X(E)
were always trivial, the Hasse-Minkowski theorem would hold for elliptic
curves. However, the group X(E) is often not trivial; indeed, it is not even
known that X(E) is always finite, although this is conjectured to be true,
and there is no known method to compute X(E) in general.

The group of n-torsion points of X(E), denoted X(E)[n] sit in an ex-
act sequence with the group Seln(E), which we now define. Note that the
formal definition is somewhat abstract, but Seln(E) does have a geometric
interpretation which we will state later.

Let E[n] denote the n-torsion points E. Where [n] is the multiplication-
by-n map, we have the following exact sequence:

0 E[n] E E 0.
[n]

Using cohomology, we extract from this short exact sequence the long exact
sequence

0 H0(GQ, E[n]) H0(Q, E) H0(Q, E)

H1(GQ, E[n]) H1(Q, E) H1(Q, E)→ · · ·

[n]

[n]

or, remembering that H0(G, •) is the fixpoint functor,

0 E(Q)[n] E(Q) E(Q)

H1(GQ, E[n]) H1(Q, E) H1(Q, E)→ · · · .

[n]

[n]

We may shorten the subsequence of the first seven terms (including 0) to
the top row of the following diagram; we may repeat this process with Q
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replaced by Qv for any place v, which yields the bottom row:
(9.1)
0 E(Q)/nE(Q) H1(GQ, E[n]) H1(Q, E)[n] 0

0
∏
v≤∞

E(Qv)/nE(Qv)
∏
v≤∞

H1(GQv , E[n])
∏
v≤∞

H1(Qv, E)[n] 0

∏
v≤∞

incl
∏

v≤∞
Resv τ

∏
v≤∞

Resv

We now define the n-Selmer group Seln(E) by ker(τ). From 9.1, we have
the following diagram:

0 E(Q)/nE(Q) H1(GQ, E[n]) H1(Q, E)[n] 0

0 0
∏
v≤∞

H1(Qv, E)[n]
∏
v≤∞

H1(Qv, E)[n] 0.

τ
∏

v≤∞ Resv

From here, the Ker-Coker Sequence yields the exact sequence

(9.2) 0→ E(Q)/nE(Q)→ Seln(E)→X(E)[n]→ 0,

i.e. Seln(E) surjects onto X(E)[n] with kernel E(Q)/nE(Q).
The group Seln(E) has the following geometric interpretation: nontrivial

elements of Seln(E) are pairs ([C], [D]) where [C] is an isomorphism class
of nontrivial Q-torsors of E, trivial in Qv for every v, and [D] is the linear
equivalence class of the degree n divisor D on C. It is nonobvious, but
nonetheless true, that any element C of X(E)[n] must gain a point P in
some number field L/Q with [L : Q] = n and thus we may lift C to the
element ([C], [P ]) in Seln(E). Thus, Seln(E) surjects onto X(E)[n], but
the kernel of this surjection is not (necessarily) trivial, but instead equal to
E(Q)/nE(Q) as in 9.2.

The exact sequence 9.2 is extremely useful since it turns out that Seln(E),
unlike X(E), is always finite and, in general, much more is known about
Seln(E) than X(E). Thus, we may obtain information on the size of
E(Q)/nE(Q) andthus the rank of E(Q) by studying Seln(E), one method
of which we will elaborate upon in the next section.

10. Quartic Forms and the Average Rank of Elliptic Curves

In their celebrated 2015 paper [1], Manjul Bhargava and Arul Shankar
give a bound on the limit superior of the average rank of elliptic curves
via a count of binary quadratic forms. In this section, we give a very brief
summary of their strategy and state their results.

Let E be an elliptic curve defined over Q. Mordell’s Theorem implies
that E(Q) ∼=Ab Zr × T for T a torsion group; the integer r is called the
rank of E. We would like to understand the average rank of elliptic curves.
Since the number of elliptic curves is infinite, we must specify how elliptic
curves are ordered in order to understand the average value of rank. All
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elliptic curves over Q are Q-isomorphic to a unique curve EA,B cut out by
y2 = x3 + Ax + B such that A and B are integers and p4 | A ⇒ p6 - B.
We define the height h of EA,B as h(EA,B) = max{|A|3, B2}. This yields
an ordering on elliptic curves allowing us to make sense of average rank.
It is still not known whether the average rank of elliptic curves exists, but
Bhargava and Shankar obtain a bound on the limit superior of the average
rank of elliptic curves. In particular, they show:

Theorem 10.1. The limit superior of the average rank of elliptic curves
ordered by height is not greater than 1.5.

Since any elliptic curve E over Q is isomorphic as an abelian group to
Zr × T , we have that E(Q)/2E(Q) is isomorphic to (Z/2)r × (T/2). Thus,
using 9.2, we have that 2r ≤ |Sel2(E)|, i.e. if we can calculate the average
size of Sel2(E), we have a bound on the limit superior of the average rank
of elliptic curves over Q.

How do we reason about the average size of Sel2(E)? It turns out that
elements of Sel2(E) admit another geometric interpretation in terms of lo-
cally soluble 2-coverings. A locally soluble 2-covering of E is a curve C
whose C-points are homeomorphic to a 2-torus, along with a C-isomorphism
ϕ : C → E and a Q-morphism ψ : C → E such that

C

E E

ϕ
ψ

P 7→P+P

commutes and C has a point in Qv for every place v. Two locally soluble
2-coverings C1 and C2 with respective isomorphisms ϕ1 and ϕ2 are said to
be isomorphic if there exists a Q-isomorphism of curves Φ : C1 → C2 along
with a point Q ∈ E[2] such that the following diagram commutes:

E E

C1 C2

P 7→P+Q

ϕ1

Φ

ϕ2

Then, we may view elements of Sel2(E) as being isomorphism classes of
locally soluble 2-coverings of E. If a locally soluble 2-covering has a rational
point, it is said to be a soluble 2-covering. Isomorphism classes of soluble
2-coverings correspond exactly to elements of E(Q)/2E(Q) inside Sel2(E).

Now, a result by Birch and Swinnerton-Dyer [18] states that any locally
soluble 2-covering is isomorphic to one cut out by

y2 = ax4 + bx3 + cx2 + dx+ e

for a, b, c, d, e ∈ Q. Thus, we obtain a binary quartic form

ax4 + bx3y + cx2y2 + dxy3 + ey4
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by taking the homogenization of the RHS.
Recall that binary quartic forms have two invariants I and J . It turns

out that the binary quartic forms f obtained by the above process when our
elliptic curve E is given by y2 = x3 +Ax+B have I(f) = A and J(f) = B.
More specifically, we have an injection

Sel2(E) ↪→ {binary quartic forms f |I(f) = A, J(f) = B}/SL2(Q) ·Q×

(For various technical reasons, Bhargava and Shankar count forms up to
projective linear equivalence, hence the appearence of Q×). Furthermore, if
we require that f satisfy additional minor technical conditions, the injection
becomes a bijection.

Bhargava and Shankar employ a highly technical geometry of numbers
argument, in the spirit of those of Minkowski but significantly more involved,
to deduce that the average size of the appropriate set of forms is 3, when
we order by height. Thus, we have that the average size of Sel2(E) is 3,
which immediately yields an upper bound of 1.5 on the limit superior of the
average rank of elliptic curves.
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