Introduction

The elliptic sine-Gordon equation

1. is a semilinear elliptic PDE with a special double well potential.
2. originated from the classical (hyperbolic) sine-Gordon equation.
3. is an integrable PDE so we can use the method of inverse scattering transform [4] to analyze its solutions.
4. has solutions with a nice explicit formula, and the nodal set of these solutions behaves like multiple straight-half lines at infinity away from the origin, and we call these solutions the unique multi-end solutions.

A Family of Multi-end Solutions to the

 Elliptic sine-Gordon EquationOur goal is to write down a family of explicit, real-valued, nonsingular solutions of the elliptic sine-Gordon equation:

$$
\begin{equation*}
-\partial_{x}^{2} u-\partial_{y}^{2} u=\sin u \tag{1}
\end{equation*}
$$

Following Liu and Wei's work [1], we take the bi-logarithmic transformation:

$$
\begin{equation*}
u=2 i \ln \frac{\bar{F}}{F} . \tag{2}
\end{equation*}
$$

Then, using the bilinear derivative operator $D[3]$, we find the bilinear form of the elliptic sine-Gordon equation:

$$
\begin{equation*}
\left(D_{x}^{2}+D_{y}^{2}\right)(F \cdot F)+\frac{1}{2}\left(\bar{F}^{2}-F^{2}\right)=\lambda F^{2} . \tag{3}
\end{equation*}
$$

Now, the key idea is to seek solutions with formal expansion of powers of ε :

$$
F=1+\varepsilon F_{1}+\varepsilon^{2} F_{2}+.
$$

Comparing the $O\left(\varepsilon^{k}\right)$ terms, we can solve F_{k} inductively and give the explicit expression for the function F.

Denote the real and imaginary part of F by f_{n}, g_{n}, we get a family of solutions to the elliptic sine-Gordon equation by equation (2):

$$
\begin{equation*}
U_{n}:=2 i \ln \frac{\bar{F}}{F}=4 \arctan \frac{g_{n}}{f_{n}} . \tag{5}
\end{equation*}
$$

Moreover, we can analyze the asymptotic behavior of these solutions by directly investigating the explicit expression. And it turns out that

$$
\lim _{j \rightarrow+\infty} U_{n}\left(x_{j}, y_{j}\right)=\left\{\begin{array}{l}
4 \arctan \left(\exp \left(\eta_{k}+\beta_{k}\right)\right)-\pi, \text { kodd, } \\
4 \arctan \left(\exp \left(-\eta_{k}-\beta_{k}\right)\right)-\pi, \text { k even }
\end{array}\right.
$$

Here β_{k} is a constant, and $\eta_{j}=p_{j} x+q_{j} y+\eta_{j}^{0}$ for some real constant $p_{j}, q_{j}, \eta_{j}^{0}, j=1,2, \cdots, n$. So, we can see that the nodal set of U_{n} is indeed $2 n$ straight-half lines.

In the special case $n=2$, if we choose $p_{1}=p_{2}=q_{1}=-q_{2}=\frac{\sqrt{2}}{2}$, then the solution is the classical saddle solution:

$$
\begin{equation*}
4 \arctan \left(\frac{\cosh \left(\frac{y}{\sqrt{2}}\right)}{\cosh \left(\frac{x}{\sqrt{2}}\right)}\right) \tag{6}
\end{equation*}
$$

Figure 1: Nodal set of the "saddle solution" to the elliptic sine-Gordon equation.

Inverse Scattering Transform and The Classification of Multiple-End Solutions

Recall the correspondence $\varphi+\pi \longleftrightarrow u$, the multi-end solutions to $\Delta u=\sin u$ corresponds to solutions to $-\Delta \varphi=\sin \varphi$ whose π level sets are asymptotic to $2 n$ half-straight sponds to solutions to $-\Delta \varphi=\sin \varphi$ whose π level sets are asymptotic to $2 n$ half-straight
lines. We prove a classification theorem of the solutions to the elliptic sine-Gordon equation (1) by using the inverse scattering transform developed in [4]. The main result is given by the following theorem:

Theorem 1. Suppose φ is an $2 n$-ended solution of the equation $-\Delta \varphi=\sin \varphi$. Then there exist parameters $p_{j}, q_{j}, \eta_{j}^{0}, j=1, \cdots, n$, such that $\varphi=U_{n}$, where U_{n} is defined in equation (5).
Now, we give the sketch of the proof:

- The equation (1) have a Lax pair:

$$
\left\{\begin{array}{l}
\Phi_{x}=A \Phi, \tag{7}\\
\Phi_{y}=B \Phi .
\end{array}\right.
$$

- The compatibility of equations in (7) gives

$$
A_{y}+A B=B_{x}+B A .
$$

This is equivalent to equation (1).
Using Picard iteration and certain assumptions on parameters, we derive the Jost solutions $\Phi_{ \pm}$
For each fixed $y \in, \Phi_{+}, \Phi_{-}$are solutions to the same ODE system. Hence, they are related by

$$
\Phi_{+}(x, y, \lambda)=\Phi_{-}(x, y, \lambda)\left[\begin{array}{ll}
a(\lambda, y) & b(\lambda, y) \tag{9}\\
b^{*}(\lambda, y) & a^{*}(\lambda, y)
\end{array}\right]
$$

for some functions a, a^{*}, b, b^{*} independent of x.
Similarly define the a, b functions for U_{n}, and denote them by \hat{a}, \hat{b}. We prove that the scattering data for φ and U_{n} are the same, i.e. $a=\hat{a}$ and $b=b$.

- Assuming that a only has simple zeroes, we use the inverse scattering transform to derive the same Hirota form in the equation (5) for φ as that of U_{n}.
- Finally, we compute the explicit formula for the scattering data a to show that the zeroes are indeed simple. In fact,

$$
\hat{a}(\lambda)=\prod_{j=1}^{n} \frac{\lambda-\lambda_{j}}{\lambda+\lambda_{j}} .
$$

Graphs of the Solutions

- For $n=1$, we have the most simple Heteroclinic solution given by

$$
U_{1}=4 \arctan \left(e^{x}\right)-\pi .
$$

Figure 2: The Heteroclinic solution to the elliptic sine-Gordon equation in one dimension.
We can see that the nodal set behaves like 2 half-straight lines away from the origin, i.e. it is a 2 -end solution.

- For $n=2$, we use numerical methods to give approximate solutions to the elliptic sine-Gordon equations by considering the system of second-order ODEs(Lax Pair). Depending on the choices of parameters, the solutions can vary largely in shape. But their nodal sets all behave like 4 half-straight lines at infinity.

Figure 3: Graphs of different 4 -end solutions to the elliptic sine-Gordon equation in the plane.

Future Work

I mainly investigate section 2 and section 5 of Liu and Wei's paper on the elliptic sine-Gordon equation. But, there are still sections 3, 4, and 6 remain to be studied. - Section 3: The Bäcklund transformation is used in the study of the hyperbolic sine-Gordon equation, where we can derive the multi-soliton solutions in an algebraic way.

- Section 4: Besides the uniqueness of the multi-end solutions, it turns out that these solutions U_{n} are L^{∞} nondegenerate.
- Section 6: Another important fact about the solutions U_{n} is that they have a finite Morse index
- Future goal: It is a natural question to ask whether we can obtain these beautiful results of the elliptic sine-Gordon equation in high dimensions. My goal is to generalize some results using Liu and Wei's method.

Acknowledgements

I would like to extend my utmost appreciation to my mentor Professor Otis Chodos for his effort and input which made this project happen. I would additionally like to thank Lernik Asserian, and everyone who made SURIM 2023 possible.

References

[1] Yong Liu and Juncheng Wei. Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane. Rev. Mat. Iberoam., 38(2):355-432, 2022.

2] R. Hirota, Exact solution of the sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Japan 33(1972), 1459-1463.
3] R. Hirota, The direct method in soliton theory. Translated from the 1992 Japanese original and edited by Atsushi Nagai, Jon Nimmo and Claire Gilson. With a foreword by Jarmo Hietarinta and Nimmo. Cambridge Tracts in Mathematics, 155 Cambridge University Press, Cambridge, 2004
[4] E. S. Gutshabash; V. D. LipovskiI, A boundary value problem for a two dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect.

