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Abstract

For a word S over an alphabet Σ, we define f(S) as the largest integer m such that there are
two disjoint identical subwords, called twins, of length m in S. Let f(n, Σ) = min{f(S) : S ∈
Σn}. Axenovich, Person, and Puzynina (2012) showed that 2f(n, {0, 1}) = n − o(n); that is,
nearly perfect twins exist in all binary words. In this paper, we describe a greedy algorithm
for constructing large twins that results in a tighter lower bound on f(n). We also enumerate
related objects called shuffle squares, which is are words S for which f(S) = |S|/2.
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1 Introduction

An alphabet Σ of size k is a set of k letters, which are conventionally 0, 1, . . . , k − 1. A word
S = s1s2 · · · sn over the alphabet Σ is a sequence s1, s2, . . . , sn where si ∈ Σ for all 1 ≤ i ≤ n. A
subword of S is a word T = si1si2 · · · sit , where 1 ≤ i1 < i2 < · · · < it ≤ n that can be found
entirely in S. The sequence (i1, i2, . . . , it) is called the support of T and denoted supp(T ). Given a
word S = s1s2 · · · sn ∈ Σn, its reverse SR is equal to the word snsn−1 · · · s1.

The syntactical (structural) properties of words and their associated subwords have been inves-
tigated in the combinatorics of words and formal language theory. Some characteristic problems
include reconstructing a word from its subwords, mapping words to matrices, and counting sub-
word occurrences [8, 12, 14]. One of the most studied concepts, however, is the longest common
subsequence (LCS) between a pair of words, with attention given to bounding LCS length and
computing the LCS for any word pair [2, 3, 6, 10]. LCS has applications in many fields such as
computational biology, since DNA is edited via insertions and deletions of base pairs [16].

Building on the idea of common subsequences, this paper examines the prevalence of identical
disjoint subwords in words, called twins, over a given alphabet. In particular, we study a closely
related object called shuffle squares.

Definition 1.1 (Twins). Let S ∈ Σn be a word of length n over the alphabet Σ. Let T1, T2 ⊂ S
be subwords such that T1 ∩ T2 = ∅ and T1 = T2; that is, T1 and T2 are identical and disjoint. We
call such subwords twins.

Definition 1.2 (Shuffle Square). Let S ∈ Σ2n be a word of length 2n over the alphabet Σ. If there
exist twins T1, T2 ⊂ S such that T1 ∪ T2 = S, then T1 and T2 are perfect twins, and we call S a
shuffle square.

Definition 1.3 (Reverse Shuffle Square). Let S ∈ Σ2n be a word of length 2n over the alphabet
Σ. If there exist twins T1, T2 ⊂ S such that T2 = TR1 , then we call S a reverse shuffle square.

The first occurrence of twins in the literature is a novel result by Axenovich, Puzynina, and
Person [1] on the length of maximal twins in binary words. On the other hand, shuffle squares form
the basis of a 2012 expository paper by Henshall, Rampersad, and Shallit [9], who listed several
open problems regarding their complexity and enumeration.

The relevant theorems will be formally introduced in the next section, but it is worth outlining
the general structure of the paper here. In Section 3, we provide the proof of the main theorem
in [1]. In Section 4, we move on to shuffle squares and devise a greedy algorithm for constructing
large twins. This immediately gives a lower bound on the number of binary shuffle squares, which
we also prove in Section 4. In Sections 5 and 6, we finish up our examination by proving two
novel asymptotic formulas on the number of shuffle squares and reverse shuffle squares over large
alphabets.

The final section (7) is devoted to a conjecture on the complete enumeration of binary shuffle
squares that we believe to be true based on numerical evidence.
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2 Preliminaries

This section is divided into three parts, treating twins, shuffle squares, and useful combinatorial
identities separately. The first part introduces the primary The third part is especially instrumental
in proving the theorems in Sections 4, 5, and 6.

2.1 Twins

For a word S ∈ Σn, let f(S) be the largest integer m such that there are twins of length m in S.
Let

f(n,Σ) = min{f(S) : S ∈ Σn}.

It is easy to see that f(n,Σ) ≤ bn/2c for all positive integers n since no word can have twins of
length greater than bn/2c. A slightly more non-trivial observation for f(n, {0, 1} is the following.

Lemma 2.1. For all positive integers n, f(n, {0, 1}) ≥ bn/3c.

Proof. Consider any S ∈ {0, 1}n and split it into consecutive triples. Each triple has either two
zeros or two ones, so we can build a subword S1 by choosing one repeated element from each triple
and a subword S2 by choosing the other repeated element. This results in two twins each of length
bn/3c.

For example, if S = 100110001, then we can find twins of length 9/3 = 3 equal to 010 by
choosing the repeated element in each consecutive triple: S = 101110001. Here, one twin is colored
blue and the other red.

In 2012, Axenovich, Person, and Puzynina [1] proved that 2f(n) = n − o(n); that is, nearly
perfect twins exist in all binary words.

Theorem 2.2 (Axenovich, Person, and Puzynina, 2012). There exists an absolute constant C such
that (

1− C
(

logn
log logn

)−1/4
)
n ≤ 2f(n, {0, 1}) ≤ n− logn.

The proof of Theorem 2.2 employs a regularity lemma to show that all words can be partitioned
into blocks that look random in a weak sense. The lemma is analagous to Szemeredi’s regularity
lemma for graphs and is proved in a similar manner, by a classical density increment argument [11].
For its beauty and simplicity, we present the proof in its full form in Section ??.

The most important implication of this result is that all binary words contain almost perfect
twins. Our work extends this idea by considering words that can, in fact, be decomposed into two
disjoint identical subwords. These objects are formally called shuffle squares, as described in the
previous section.

2.2 Shuffle Squares

We first devise a greedy algorithm for constructing large twins that provides valuable insight into
the ubiquity of binary shuffle squares. Although Rizzi and Vialette [13] recently determined that
verifying binary shuffle squares is NP-complete, their exact quantity remains a mystery. However,
our greedy algorithm locates a definitive portion of binary shuffle squares, thus providing a lower
bound on their exact number.
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Theorem 2.3. For all positive integers n, |SS2(n)| ≥
(

2n
n

)
.

The proof of Theorem 2.3 employs a bijection from binary shuffle squares found by the greedy
algorithm to lattice paths from (0, 0) to (2n, 0), where each step is of size (1,±1). It will be
elaborated in Section 4.

In the final part of this paper, we generalize our bijective methods to larger alphabets. In
particular, we prove an asymptotic formula for the number of shuffle squares of length 2n over an
alphabet of k letters (for large k), which was conjectured by Henshall, Rampersad, and Shallit [9]
based on numerical evidence.

Theorem 2.4. For large k (k >> 2) and all positive integers n,

|SSk(n)| = 1
n+ 1

(
2n
n

)
kn −

(
2n− 1
n+ 1

)
kn−1 +On(kn−2).

By adjusting the machinery, we obtain a similar asymptotic formula for reverse shuffle squares.

Theorem 2.5. For large k (k >> 2) and all positive integers n,

|RSSk(n)| = 1
n+ 1

(
2n
n

)
kn − 2n3 + 9n2 − 35n+ 30

n3 + 3n2 + 2n

(
2n− 2
n− 1

)
+On(kn−2).

The proofs of Theorems 2.4 and 2.5 are presented in Sections 5 and 6, respectively.

2.3 Some Useful Identities

The proofs of Theorems 2.3 and 2.4 rely on several self-contained combinatorial identities on the
Catalan numbers. For completeness, we review the Catalan numbers and list the relevant identities
here.

Definition 2.6 (Catalan numbers). The Catalan numbers {Cn} are defined as C0 = 1, and for all
n ≥ 1,

Cn =
n−1∑
k=0

CkCn−1−k.

It is well-known that Cn = 1
n+1

(2n
n

)
for all nonnegative integers n.

Catalan numbers enumerate a variety of objects. The proofs in this paper invoke Dyck paths
and 123-avoiding permutations, so we define them here.

Definition 2.7 (Dyck path). A Dyck path of semilength n is a lattice path from (0, 0) to (2n, 0),
where each step is of size (1,±1), that never crosses below the x-axis. The number of Dyck paths
of semilength n is Cn.

Definition 2.8 (123-avoiding permutation). Let Sn be the set of permutations on [n]. A permuta-
tion π ∈ Sn is called 123-avoiding if there do not exist i1 < i2 < i3 such that π(i1) < π(i2) < π(i3).
The number of 123-avoiding permutations on [n] is Cn.

There are two identities that will be pertinent in the later part of this paper. The first is a
simple Catalan convolution, which be instrumental in the proof of Theorem 4.4.
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Proposition 2.9. For i = 0, 1, 2, . . . , let Ci be the ith Catalan number. Then

n−1∑
k=0

(k + 1)CkCn−k−1 = 1
2

(
2n
n

)
.

Proof. Define the sequence {an} as follows: a0 = 1
2 , and for all k ≥ 1, an =

∑n−1
k=0(k+1)CkCn−k−1.

We want to show that an = 1
2
(2n
n

)
. The proof is by generating functions.

Denote by a(x) the generating function for {an}; that is,

a(x) = a0 + a1x+ a2x
2 + · · · .

Also, denote by c(x) the generating function for the Catalan numbers, so that

c(x) = 1 + x+ 2x2 + 5x3 + · · · .

It is well known that c(x) = 1−
√

1−4x
2x . Note that

1√
1− 4x

= (xc(x))′ =
∞∑
k=0

(k + 1)Ckxk,

and so

x · 1√
1− 4x

· 1−
√

1− 4x
2x + 1

2 = x(xc(x))′c(x)

=
∞∑
n=0

(
n−1∑
k=0

(k + 1)CkCn−k−1

)
xn + 1

2

=
∞∑
n=0

anx
n

= a(x).

Thus,

a(x) = 1−
√

1− 4x
2
√

1− 4x
+ 1

2 = 1
2
√

1− 4x
.

Now, it is a simple exercise (see [15], p. 53, 2.5.11, or apply the extended Binomial Theorem) to
find that

1√
1− 4x

=
∞∑
n=0

(
2n
n

)
xn,

so
a(x) = 1

2
∑
n=0

(
2n
n

)
xn,

and an = 1
2
(2n
n

)
, as desired.
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A valley in a Dyck path is an instance of an up-step (size of (1, 1)) followed by a down-step
(size of (1,−1)). We will require the enumeration of valleys across all Dyck paths of semilength
n for our proof of Theorem 2.4. The enumeration itself is certainly not novel (see [7] nad OEIS
A002054), but the proof presented here is simpler and arguably more intuitive than those in the
current literature.
Proposition 2.10. The number of valleys across all Dyck paths of semilength n is

(2n−1
n+1

)
.

Proof. For n ≥ 0, let Vn be the number of valleys across all Dyck paths of semilength n. We will
derive a recursive formula for Vn that can be solved explicitly via generating functions.

For 1 ≤ k ≤ n, let Dn,k be the set of Dyck paths of semilength n that return to the x-axis for
the first time at the point (2k, 0). Furthermore, let Vn,k be the number of valleys across all such
paths.

Each path P ∈ Dn,k looks like uAdB, where A is a Dyck path of semliength k − 1 and B is a
Dyck path of semilength n − k. Each of the valleys across all A ∈ Dk−1 is counted Cn−k times,
while each of the valleys across all β ∈ Dn−k is counted Ck−1 times. Moreover, since B = u · · · ,
there is another valley between the end of A and the start of B. This is counted Ck−1Cn−k times.
However, we must be careful to note that this valley only occurs for k ≤ n− 1, as the sub-path B
is empty in Dn,n.

Thus, we have the recursion

Vn =
n−1∑
k=1

(Vk−1Cn−k + Vn−kCk−1 + Ck−1Cn−k) + (Vn−1C0 + V0Cn−1)

= 2
n−1∑
k=0

VkCn−1−k + Cn − Cn−1.

Let v(x) =
∑∞
n=0 Vnx

n be the generating function of the sequence {Vn}. Applying the “Snake
Oil” method described in [15], we multiply both sides of the above recursion by xn and sum over
all n ≥ 1 to obtain

v(x) = 2xv(x)c(x) + (1− x)c(x)− 1,
where c(x) is the generating function of the Catalan numbers. Hence,

v(x) = c(x)(1− x)− 1
1− 2xc(x) .

Plugging in the closed form of c(x) gives

v(x) = 1√
1− 4x

(
1−
√

1− 4x
2x

)
(1− x)− 1√

1− 4x
.

It is known that 1√
1− 4x

(
1−
√

1−4x
2x

)
=
∑∞
n=0

(2n+1
n

)
xn and 1√

1− 4x
=
∑∞
n=0

(
2n
n

)
xn ([15], p.

53-54, 2.5.11 and 2.5.15), so

Vn =
(

2n+ 1
n

)
−
(

2n− 1
n− 1

)
−
(

2n
n

)
=
(

2n− 1
n+ 1

)
,

as desired.
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We will refer back to these identities in Sections 4 and 5. For now, we return to the terminology
of twins to prove Theorem 2.2, which is the primary literature background for our new results.

3 Maximal Twins in Binary Words

The main idea behind the proof of Theorem 2.2 is a regularity lemma for words, analagous to
Szemeredi’s regularity lemma for graphs. Before stating this lemma, we require some further
definitions about word structure.

Definition 3.1 (Factor). A factor of a word S ∈ Σn is a subword of S consisting of consecutive
elements of S, i.e., sisi+1 . . . si+m for some 1 ≤ i ≤ n and 0 ≤ m ≤ n− i. We denote such a subword
S[i, i+m], indicating that we are extracting the interval of elements [si, si+m] from S.

Definition 3.2 (Density). If S is a word over the alphabet Σ and q ∈ Σ, then we denote |S|q
the number of elements in S equal to q. The density dq(S) of q in S is defined to be |S|q/|S|, the
fraction of elements in S equal to q.

For two subwords S′ and S′′ of S , we say that S′ is contained in S′′ if supp(S′) ⊆ supp(S′′).
Finally, if S = s1s2 . . . sn, S[1, i] = A, and S[i + 1, n] = B, then we write S = AB and call S a
concatenation of A and B.

3.1 Regularity Lemma for Words

Density provides a natural way of defining regularity for words.

Definition 3.3 (ε-regular word). Call a word S ∈ Σn ε-regular if for every i, εn+1 ≤ i ≤ n−2εn+1
and every q ∈ Σ it holds that

|dq(S)− dq(S[i, i+ εn− 1])| < ε. (1)

Notice that in the case Σ = {0, 1}, d0(S) = 1− d1(S), so

|d0(S)− d0(S[i, i+ εn− 1)]| < ε⇐⇒ |(1− d1(S))− (1− d1(S[i, i+ εn− 1]))| < ε

⇐⇒ |d1(S)− d1(S[i, i+ εn− 1)]| < ε.

Thus, when Σ = {0, 1}, we shall let d(S) = d1(S).
Informally, regularity means that we can select any window of letters in S and be confident that

the frequencies of letters in the window will not deviate too much from their frequencies in the
entire word.

Definition 3.4 (ε-regular partition). We call S := (S1, S2, . . . , Sn) a partition of S if S = S1S2 · · ·Sn
(S is a concatenation of consecutive Si’s). A partition S is an ε-regular partition of a word S ∈ Σn
if ∑

i∈[t],
Si is not ε regular

|Si| ≤ εn,

i.e., the total length of ε-irregular subwords is at most εn.
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The regularity lemma proper states that, given a certain number of parts, all reasonably large
words can be decomposed into an ε-regular partition.

Theorem 3.5 (Regularity Lemma for Words). For every ε > 0 and t0 there is an n0 and T0 such
that any word S ∈ Σn, for any n ≥ n0, admits an ε-regular partition of S into S1, S2, . . . , St with
t0 ≤ t ≤ T0. In fact, T0 ≤ t031/ε4 and n0 = t0ε

−ε−4 .

The proof of the regularity lemma for words employs a similar idea to that of Szemerédi’s
regularity lemma for graphs, that of an energy increment argument.

The “energy” function Axenovich, et al. manufacture is a quantity called the index, which they
associate with a specific partition of a word S. The idea is that if we repeatedly partition S into
smaller and smaller parts, then at some level, the constraints on the partition index will necessitate
the existence of an ε-regular partition.

Definition 3.6 (Index of a Partition). Let S := (S1, S2, . . . , St) be a partition of S ∈ Σn into
consecutive factors. We define

ind(S) =
∑
q∈Σ

∑
i∈[t]

dq(Si)2 |Si|
n
.

Further, for convenience we set indq(S) =
∑
i∈[t] dq(Si)2 |Si|

n .

We can see that indq(S) is a kind of weighted mean square of the q-densities of the factors in
the partition, so ind(S) is the sum of the weighted mean squares of each letter density.

Since the proof of the regularity lemma involves repeated partitioning, we need to formally
define the concept of partitioning a partition.

Definition 3.7 (Refinement of a Partition). Let S = (S1, S2, . . . , St) and

S ′ =
(
S′1,1, S

′
1,2, . . . , S

′
1,s1

, S′2,1, S
′
2,2, . . . , S

′
2,s2

, . . . , S′t,1, S
′
t,2, . . . , S

′
t,st

)
be partitions of S ∈ Σn. We say that S ′ refines S and write S ′ � S if, for every i = 1, 2, . . . , t,
Si = S′i,1S

′
i,2 . . . S

′
i,s1

.

The most important observation about the index (energy) of a partition is that it is nondecreasing
across refinements.

Lemma 3.8. Let S and S ′ be partitions of S ∈ Σn, and suppose S ′ � S. Then

ind(S ′) ≥ ind(S).

Proof. Let S = (S1, S2, . . . , St) and

S ′ =
(
S′1,1, S

′
1,2, . . . , S

′
1,s1

, S′2,1, S
′
2,2, . . . , S

′
2,s2

, . . . , S′t,1, S
′
t,2, . . . , S

′
t,st

)
,

with Si = S′i,1S
′
i,2 · · ·S′i,si for all 1 ≤ i ≤ t.

Take any q ∈ Σ. Then,

indq(S ′) =
t∑
i=1

si∑
j=1

dq(S ′i,j)2 |S
′
i,j |
n

=
t∑
i=1

|Si|
n

si∑
j=1

dq(S ′i,j)2 |S
′
i,j |
|Si|

,
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where in the second step we multiplied the sum by |Si|/|Si| = 1. Now, let g(x) = x2, and let Xi be
a random variable taking on the value dq(S′i,j) with probability |S′i,j |/|Si|, for each j = 1, 2, . . . , si.
Then, by Jensen’s inequality,

indq(S ′) =
t∑
i=1

|Si|
n

si∑
j=1

dq(S ′i,j)2 |S
′
i,j |
|Si|

=
t∑
i=1

|Si|
n

E[g(Xi)]

≥
t∑
i=1

|Si|
n
g (E[Xi])

=
t∑
i=1

|Si|
n

 si∑
j=1

dq(S′i,j)
|S′i,j |
|Si|

2

=
t∑
i=1

|Si|
n

 si∑
j=1

|S′i,j |q
|S′i,j |

·
|S′i,j |
|Si|

2

=
t∑
i=1

|Si|
n

 si∑
j=1

|S′i,j |q
|Si|

2

=
t∑
i=1

|Si|
n
dq (Si)2

= indq(S).

Hence,
ind(S ′) =

∑
q∈Σ

indq(S ′) ≥
∑
q∈Σ

indq(S) = ind(S),

as desired.

Our main idea for the proof of the regularity lemma is repeatedly refining a given partition of a
word S. We will show that at some stage of these successive refinements, there must be an ε-regular
partition.

We start with a lemma that shows that if S is not ε-regular, then we can find a refinement (in
this case, a first-level partition) of S = (S) whose index exceeds the index of (S) by at least ε3.

Lemma 3.9. Let S ∈ Σm be an ε-irregular word. Then there is a partition (A,B,C) of S such
that |A|, |B|, |C| ≥ εm and

ind((A,B,C)) ≥ ind((S)) + ε3 =

∑
q∈Σ

dq(S)2

+ ε3. (2)

Proof. Since S is not ε-regular, there exists an element q ∈ Σ and an i with εm+1 ≤ i ≤ m−2εm+1
such that |d− d(S[i, i+ εm− 1]| ≥ ε, where d := dq(S) and d(T ) := dq(T ) for any subword T of S.

9



SURIM 2021 Twins in Words and Shuffle Squares

Assume, without loss of generality, that d−d(S[i, i+εm−1] ≥ ε, and set γ := d−d(S[i, i+εm−1],
A := S[1, i − 1], B := S[i, i + εm − 1], and C := S[i + εm,m]. Furthermore, let a := |A| = i − 1,
b := |B| = εm, and c := |C| = m− εm− i+ 1. Observe that

|S|q = d(A)a+ d(B)b+ d(C)c = dm, d((A,C)) = dm− (d− γ)b
a+ c

, d(B) = d− γ.

It is also easy to see that a+ c = m− b and indq((A,B,C)) = indq((A,C,B)). Note further that

indq((A,B,C)) = d(A)2 a

m
+ +d(C)2 c

m
+ d(B)2 b

m

=
|A|2q
am

+
|C|2q
cm

+ d(B)2 b

m

= 1
m(a+ c)

(
|A|2q
a

+
|C|2q
c

)
(a+ c) + d(B)2 b

m

Cauchy-Schwarz
≥ 1

m(a+ c) (|A|q + |C|q)2 + d(B)2 b

m

= 1
m(a+ c) |AC|

2
q + d(B)2 b

m

= d((A,C))2 a+ c

m
+ d(B)2 b

m
.

Now,

indq((A,B,C)) ≥ d((A,C))2 a+ c

m
+ d(B)2 b

m

=
(
dm− (d− γ)b

a+ c

)2
a+ c

m
+ (d− γ)2 b

m

= (dm− (d− γ)b)2

(m− b)m + (d− γ)2 b

m

= 1
(m− b)m

[
d2m2 − 2dm(d− γ)b+ (d− γ)2b2 + (d− γ)2b(m− b)

]
= 1

(m− b)m
[
d2m2 − 2dm(d− γ)b+ (d− γ)2mb

]
= 1

(m− b)m
[
d2m2 − 2d2mb+ 2dγmb+ d2mb− 2dγmb+ γ2mb

]
= 1

(m− b)m
[
d2(m2 −mb) + γ2mb

]
= d2 + γ2b

m− b

≥ d2 + ε3m

(1− ε)m ≥ d
2 + ε3.

The case when d− d(S[i, i+ εm− 1]) ≤ −ε works out similarly. Indeed, set γ := d− d(S[i, i+
εm− 1]) as before and notice that |γ| ≥ ε, and all the computations above are exactly the same.

10
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So, indq((A,B,C)) ≥ d2
q + ε3. For all other q′ ∈ Σ, Lemma 3.8 gives that indq′((A,B,C)) ≥

indq′((S)) = dq′)2(S). Thus,

ind((A,B,C)) = indq((A,B,C)) +
∑

q′∈Σ−{q}

indq′((A,B,C)) ≥
∑
q′∈Σ

dq′(S)2 + ε3.

Having shown that it is possible to refine an ε-irregular word to have a much larger index, we
are in a position to finish the argument.

Proof of the Regularity Lemma for Words. Take ε > 0 and t0 as given. We will give a bound on
n0 later. Suppose that we have word S ∈ Σn. Split it into t0 consecutive factors S1, S2, . . . , St0 of
the same length n

t0
. If S := (S1, S2, . . . , Sto) is not an ε-regular partition, then let I ⊆ [t0] be the set

of all indices such that, for every i ∈ I, Si is not ε-regular. Then
∑
i∈I Si ≥ εn. By Lemma 3.9, we

can refine each Si, i ∈ I, into factors Ai, Bi, and Ci, such that ind((Ai, Bi, Ci)) ≥
∑
q∈Σ dq(Si)2+ε3

(in the case that (1) is violated for several values of q, choose an arbitrary such q). We perform
such refinement for each Si, i ∈ I, obtaining a partition S ′ � S, noticing that

ind(S ′) =
∑
q∈Σ

∑
j∈[t0]\I

dq(Sj)2 |Sj |
n

+

∑
q∈Σ

∑
i∈I

(
dq(Ai)2 |Ai|

n
+ dq(Bi)2 |Bi|

n
+ dq(Ci)2 |Ci|

n

)

=
∑
q∈Σ

∑
j∈[t0]\I

dq(Sj)2 |Sj |
n

+
∑
i∈I

ind((Ai, Bi, Ci))
|Si|
n

(2)
≥
∑
q∈Σ

∑
j∈[t0]\I

dq(Sj)2 |Sj |
n

+
∑
i∈I

(
ind(Si) + ε3) |Si|

n

= ind(S) + ε3
∑
i∈I |Si|
n

≥ ind(S) + ε4.

Thus, S ′ refines S and has a higher index. If S ′ is not an ε-regular partition of S, then we can
repeat the procedure above to obtain a refinement S ′′ � S ′, etc. But the index of any partition is
bounded above by 1. Since the increment of the index that we get at each step is at least ε4 and
each word in the partition decreases in length by a factor of at most ε at each step, it follows that
we can perform at most ε−4 steps so that the resulting factors are non-trivial, and therefore we will
eventually find an ε-regular partition of S.

Such a partition consists of at most 31/ε4
t0 words, since at each iteration each of the words is

partitioned into at most 3 new ones. Therefore, T0 ≤ 31/ε4
t0 and each factor in the partition has

length at least t−1
0 ε1/ε4

n.

3.2 Proof of Theorem 2.2

We are now ready to finish the proof of the main theorem. Before we do so, we show a useful claim
about twins in ε-regular words.

11
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Proposition 3.10. If S is an ε-regular word, then 2f(S) ≥ |S| − 5ε|S|.

Proof. Let |S| = m. We partition S into t = 1/ε consecutive factors S1, . . . , S1/ε, each of length
εm. Since S is ε-regular, |d(S)− d(Si)| < ε for every i ∈ {2, . . . , 1/ε}. Thus each Si has at least
(d(S) − ε)εm occurrences of 1s and at least (1 − d(S) − ε)εm occurrences of 0s. Let Si(1) be a
subword of Si consisting of exactly (d(S) − ε)εm 1s and Si(0) be a subword of Si consisting of
exactly (1 − d(S) − ε)εm 0s. Consider the following two identical disjoint subwords of S: A =
S2(1)S3(0)S4(1) · · ·St−2(1) and B = S3(1)S4(0)S5(1) · · ·St−1(1). When t is odd, A and B are
constructed similarly, as a kind of “delayed matching,” with B always behind A by a length of
Si(1).

We can find that A and B together have at least m− 2ε2(1/ε− 3)− 3εm elements. To see why,
note that we “threw away” at most

εm− (εm− 2ε2m) = 2ε2m

elements in each factor Si, i ∈ {3, . . . , t− 2} as well as the factors S2 and St−1 combined to obtain
exactly (d(S)−ε)εm 1s and (1−d(S)−ε)εm 0s. Thus, in total, we discarded at most 2ε2m (1/ε− 3)
elements to form the twins. Next, there are exactly 2εm elements in S1 and St combined, and at
most εm elements in the unused subwords S2(0) and St−1(0). Hence, in total, we failed to include
at most

2ε2(1/ε− 3) + 2εm+ εm = 2ε2(1/ε− 3) + 3εm

elements, so
2f(S) ≥ |A|+ |B| ≥ m− 2ε2(1/ε− 3)− 3εm ≥ m− 5εm,

as desired.

Axenovich, Person, and Puzynina remark that we can slightly improve on 5εm by finding twins
of size εm/3 each in S1 and St using Lemma 2.1, but this does not give great improvement.

Proof of Theorem 2.2. Let n be at least n0, which is as asserted by the Regularity Lemma for
Words. for given ε > 0 and t0 := d1

ε
e. Let S ∈ {0, 1}n. Again, Theorem 3.5 asserts an ε-regular

partition of S into S1, S2, . . . , St with 1/ε ≤ t ≤ T0. We apply Proposition 3.10 to every ε-regular
factor Si of S. Furthermore, since Sis appear consecutively in S, we can put the twins from each
of Sis together obtaining twins for the whole word S. This way we see:

2f(S) ≥
∑
i∈[t],

Si is ε-regular

(|Si| − 5ε|Si|) ≥ n− 5εn− εn = n− 6εn,

here εn corresponds to the maximum length of all ε-irregular factors. Choosing ε = C

(
logn

log logn

)−1/4

and an appropriate C, we see that n ≥ ε−ε
−4 . Therefore, by Theorem 3.5, 2f(n, {0, 1}) ≥(

1− C(logn)−1/4)n.
To prove the upper bound on f(n, {0, 1}), we construct a binary word S such that 2f(S) ≤

|S| − log|S|. Let S = SkSk−1 · · ·S0, where |Si| = 3i, Si consists only of 1s for even i and only of 0s
for odd i. In other words, S is built of iterated 0- or 1-blocks exponentially decreasing in size. Let
A and B be twins in S. Assume first that A and B have the same number of elements in Sk. Since

12
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Sk has an odd number of elements, and A, B restricted to S′ = Sk−1 · · ·S0 are twins, by induction
we have |A| + |B| ≤ (|Sk| − 1) + (|S′| − log(|S′|)) = |S| − 1 − log(|S′|) ≤ |S| − log|S|. This last
inequality is true since |S′| = (3k − 1)/2, |S| = (3k+1 − 1)/2, so that

log|S| − log (|S′|) = log
(
|S|
|S′|

)
= log

(
3k+1 − 1
3k − 1

)
≤ 1,

and 1 + log(|S′|) ≥ log|S|.
Now assume, without loss of generality, that A has more elements in Sk than B does in Sk.

Then B cannot have any element in Sk+1, since Sk+1 consists of all bits different from those in Sk.
Suppose, for the sake of contradiction, that |A|+ |B| > |S|− log|S|. Then we have that |A∩Sk−1| ≥
|Sk−1|/2, otherwise |A|+|B| ≤ |S|−|Sk−1|/2 ≤ |S|−log|S|. So, s = |A∩Sk−1| ≥ |Sk−1|/2 = 3k−1/2,
and s elements of B must collectively be in Sk−3 ∪ Sk−5 ∪ · · · . But |Sk−3|+ |Sk−5|+ · · · ≤ 3k−1/2,
a contradiction, proving Theorem 2.2.

3.3 Improving the Bound

The authors also improve the power of the fraction C
(

logn
log logn

)
in the lower bound for 2f(n) by

tightening the regularity lemma.
The argument proceeds as follows: In the proof of Theorem 2.2 we set up an index (energy

function) that increased by at least ε4 at each refinement. This increment was found rather roughly,
so to improve it, let us consider the jth refinement step in the procedure, starting from the initial
partition S = (S1, S2, . . . , St0). Recall that I is in the interval consisting of all indices i such that
Si is not ε-regular. Let αj be such that ∑

i∈I
|Si| = αjn.

Thus, rather than taking the obvious bound
∑
i∈I |Si| ≥ εn, we assign a specific constant αj to the

fraction of the total length of the word S consisting of ε-irregular parts.
In the proof in the previous section, we iterate as long as αj ≥ ε holds. And by performing an

iteration step we merely use the fact that αj ≥ ε to get that the index increases by at least ε4.
Recall that

ind(S) =
∑
q∈Σ

∑
j∈[|S|]

dq(Sj)2 |Sj |
n
,

and for each further refinement S ′ � S it holds that

ind(S) ≤ ind(S ′) (3)

= (1− αj)n
n

ind(S1) + αjn

n
ind(S1)

≤
∑
q∈Σ

∑
j∈[|S|]\I

dq(Sj)2 |Sj |
n

+ αj ,

13
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where S1 consists of ε-regular words from S (these are not refined/partitioned anymore) and S2
consists of ε-irregular words from S (and their lengths add up to αjn).

Let ` be the total number of steps until we arrive at an ε-regular partition. Let α1, α2, . . . , α`
be the numbers, where αjn is the sum of the lengths of all ε-irregular words in the partition at step
j, j ∈ [`].

By our discussion above we have

1 ≥ α1 ≥ α2 ≥ · · · ≥ α` ≥ ε.

Next, we partition (ε, 1] into log2
1
ε consecutive intervals (yi+1, yi] where y1 = 1 and yi+1 = yi/2.

We claim that each interval (yi+1, yi] contains at most 2
ε3 αjs. Indeed, the increase of the index

during step j where αj ∈ (yi+1, yi] is at least

αjε
3 > yi+1ε

3.

Further, let j′ be the smallest index such that αj′ ≤ yi and j′′ be the largest index such that
αj′′ ≥ yi+1. Let indj be the index before the jth refinement step. Then by (3) the following holds
for j′ + 1 ≤ j ≤ j′′:

indj′+1 ≤ indj ≤ indj′′ ≤ indj′+1 +yi.
This implies that the number of αjs in the interval (yi+1, yi] cannot be bigger than

yi
yi+1ε3 = 2

ε3 .

Thus, we obtain the following upper bound on `:

` ≤
2 log2

1
ε

ε3 ,

which leads to T0 ≤ t03(−2 log ε)/ε3 , n0 = t0ε
−(2 log 1/ε)/ε3 , and thus we can regularize with ε =(

(log logn)2

logn

)1/3
.

4 The Greedy Algorithm

Axenovich, Person, and Puzynina demonstrated that all binary words have large twins. A natural
question to ask, then, is if many binary words have perfect twins. In other words, how ubiquitous
are binary shuffle squares? While we do not have a definitive answer to this question, our methods
give interesting insight for further research.

We enumerate binary shuffle squares through a greedy algorithm that attempts to construct
perfect twins. The algorithm traverses through a binary word and attempts to allocate each bit
into either one twin or another, except possibly some bits at the end. It proceeds as follows:

1. Place the current (first) bit into A. Let A0 and B0 be the states of the twins A and B after
this step.

2. Let Ai and Bi be the twins we have constructed after iteration i of the algorithm. While
|Ai| > |Bi|, let m = |Ai| − |Bi|. By construction, the last m bits in A will all be the same,
so let each bit be b ∈ {0, 1}. Continue traversing the string, placing each instance of b into B
until m b’s have been placed. Each time the opposite bit, b, is encountered, place it into A.

14
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3. If, at any point, |A| = |B|, restart the algorithm by returning to step 1.

4. Once all bits have been allocated, remove any extraneous bits from A to ensure that A = B.

We call a single iteration of the greedy algorithm an epoch. For example, it is easy to check that
on the word S = 10010110, the greedy algorithm finds the twins 100 and 100, with the bits s6 and
s7 unused. We can see that unused bits occur at the final step of the algorithm; these are, in fact,
the extraneous bits in A that must be removed. There is only one epoch in this implementation,
as the greedy algorithm does not restart at any point.

The main benefit of the greedy algorithm is that it is easy to find the exact number of words
on which the algorithm does produce perfect twins. This enables us to prove Theorem 2.3.

4.1 Proof of Theorem 2.3

The proof is twofold. We first find the number of words on which the algorithm produces perfect
twins only at the final step, which we call prefix-free shuffle squares.

Definition 4.1 (Prefix). For 1 ≤ i ≤ n, the ith prefix of a word S ∈ Σn is the subword S[1, i].

Definition 4.2 (Prefix-free shuffle square). A prefix-free shuffle square is a shuffle square for which
the greedy algorithm produces perfect twins, but no perfect twins in any prefix.

It turns out that there is a bijection between prefix-free shuffle squares and Dyck paths, as
evidenced by the following integral lemma.

Lemma 4.3. The number of words in {0, 1}2n for n = 1, 2, . . . on which the greedy algorithm
produces perfect twins but no perfect twins for any prefix is 2Cn−1, the (n− 1)st Catalan number.

Proof. Let Wn be the family of binary words of length 2n on which the greedy algorithm produces
perfect twins but no perfect twins for any prefix. We exhibit a two-to-one correspondence between
Wn and Dn−1, the family of Dyck paths of semilength n− 1.

Let S = s1s2 · · · s2n ∈ Wn be a word of length 2n on which the greedy algorithm gives perfect
twins but no perfect twins for any of its prefixes; that is, the last Rk decays to 0, but no previous
Rk equals 0. First, apply the greedy algorithm on S to produce twins A = si1si2 · · · sin and
B = sj1sj2 · · · sjn , where A ∪B = S.

By construction, s1 ∈ A and s2n ∈ B. Thus, we can identify S = s1s2 · · · s2n with a path
P = p1p2 · · · p2n−2 ∈ Dn−1 as follows: For each 2 ≤ i ≤ 2n− 1,

pi−1 =
{

(1, 1) if si ∈ A,
(1,−1) if si ∈ B.

Observe that p1 = (1, 1), since otherwise s1 ∈ A, s2 ∈ B and we would have perfect twins within
the prefix S[1, 2]. Moreover, P can never cross below the x-axis, since that would mean that S
contained a prefix with perfect twins. Finally, since |A∩S[2, 2n−1]| = n−1 and |B∩S[2, 2n−1]| =
n− 1, P ends at the point (2n− 2, 0), so it is indeed a valid Dyck path of semilength n− 1.

Now, the final bit s2n ∈ S is fixed since s2n = sjn = sin , and in < 2n. Thus, choosing s1 = 0 or
s1 = 1 leads to words that correspond to the same path P .
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At the same time, for every path P ∈ Dn−1, we can construct a word S ∈ Wn by identifying a
step of size (1, 1) with an element in twin A and a step of size (1,−1) with an element in twin B.
The values of the twins are then determined as follows:

Let supp(A) = (i1, i2, . . . , in) and supp(B) = (j1, j2, . . . , jn). By construction, ik < jk for all
1 ≤ k ≤ n (if not, then the path P must have crossed above the main diagonal). Now, apply the
greedy algorithm in reverse to fill in the bits:

1. Without loss of generality, let si1 = 1 (we multiply by 2 at the end to account for the string’s
complement). Now, set a counter ` to 2.

2. For k = 1, 2, . . . , n, while i` < jk, let si` = 0 if k is odd and 1 if k is even.

3. Since sj1sj2 · · · sjn = si1si2 · · · sin , once we have filled in the values of si1si2 · · · sin , we are
done.

It is easy to verify that the greedy algorithm, which is deterministic, produces the twins obtained
from the inverse procedure above. Since we were free to choose the value of si1 as 0 or 1, each path
P corresponds to two distinct words in Wn.

We have thus shown that Wn ↔ Dn−1 is indeed a two-to-one correspondence. Since |Dn−1| =
Cn−1, the total number of binary words on which the greedy algorithm produces perfect twins, but
not perfect twins for any prefix, is 2Cn−1.

Lemma 4.3 immediately implies Theorem 2.3.

Lemma 4.4. The number of words in {0, 1}2n for n = 1, 2, . . . on which the greedy algorithm
produces perfect twins, but which may contain more than one epoch, is

(2n
n

)
.

To prove Lemma 4.4, we need the Catalan identity in Proposition 2.9.

Proof of Lemma 4.4. For each n = 1, 2, . . . , let Wn be the number of words in {0, 1}2n on which
the greedy algorithm produces perfect twins, but not necessarily only at the last bit.

Let 2k be the size of the first epoch; that is, the prefix S[1, 2k] contains perfect twins for the first
time. There are 2Ck−1 choices for the value of S[1, k], after which S[2k+ 1, 2n] can be constructed
in Wn−k ways. Thus, we have the recursion

Wn = 2
n∑
k=1

Ck−1Wn−k.

It is easy to check that W1 = 2 and W2 = 6. Using the above recursion, we prove by induction that
Wn =

(2n
n

)
for all positive integers n.
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Suppose Wk =
(2k
k

)
for all k < n. Then

Wn = 2
n∑
k=1

Ck−1Wn−k

= 2
n∑
k=1

(n− k + 1)Ck−1Cn−k

= 2(n+ 1)
n∑
k=1

Ck−1Cn−k − 2
n∑
k=1

kCk−1Cn−k

= 2(n+ 1)Cn − 2
n∑
k=0

(k + 1)CkCn−k−1

= 2
(

2n
n

)
− 2 · 1

2

(
2n
n

)
(by Proposition 2.9)

= 2
(

2n
n

)
−
(

2n
n

)
=
(

2n
n

)
,

completing the induction and proving the lemma.

Since the greedy algorithm finds
(2n
n

)
binary shuffle squares, Theorem 2.3 follows easily.

Remark. Given that the number of binary shuffle squares found by the greedy algorithm is
(2n
n

)
,

a bijection between these words and all lattice paths from (0, 0) to (2n, 0). The idea is that each
epoch can begin with a 1 or 0, and we can equate this to a sub-path starting with an up-step or
down-step. No matter what the first step is, the sub-path will stay on the same side of the x-axis.
Thus, binary shuffle squares found by the greedy algorithm correspond to a path from (0, 0) to
(2n, 0) with no restriction, and there are

(2n
n

)
of these.

Lemma 4.4 shows that the number of binary shuffle squares is at least
(2n
n

)
. There may be more

binary shuffle squares than
(2n
n

)
because the greedy algorithm obviously does not find all of them;

for example, in the shuffle square S = 001001, the greedy algorithm only locates twins T1 = s1s3
and T2 = s2s6 with value 01. We state a conjecture on the total number of binary shuffle squares
in Section 7.

Next, we will extend this result by considering shuffle squares over larger alphabets.

5 Shuffle Squares Over Large Alphabets

In this section, we prove Theorem 2.4, which states that

|SSk(n)| = 1
n+ 1

(
2n
n

)
kn −

(
2n− 1
n+ 1

)
kn−1 +On(kn−2).

The top coefficient is easily recognizable as the Catalan number Cn = 1
n+1

(2n
n

)
enumerating the

number of Dyck paths of semilength n. The second coefficient is also seen to be the total number
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of valleys summed over Dyck paths of semilength n by Proposition 2.10. As mentioned before, this
will be important for the proof.

We start with a simple lemma (which is certainly not new, see e.g. Bukh and Zhou, Lemma
17 [4]) that explains the first-order term. If s ∈ [k]` and I ⊆ [`], write sI for the subsequence of
s indexed by I. Thus s ∈ [k]2n is a shuffle square if and only if there exists I ∈

([2n]
n

)
such that

sI = s[2n]\I .

Lemma 5.1. If s ∈ [k]2n is a shuffle square, then there exists I = {i1, . . . , in} such that sI = s[2n]\I ,
and furthermore if J = [2n]\I consists of the indices {j1, . . . , jn}, then ir < jr for all r.

Proof. The first part is just the definition of a shuffle square. For the second part, suppose I is a set
of indices such that sI = s[2n]\I , and J = [2n]\I. If ir > jr for some smallest r, then we may modify
I by replacing ir with jr, so that I ′ = I ∪ {jr}\{ir} and sI′ = s[2n]\I′ still holds. Continuing in
this way we can swap out all the out-of-order elements of I with those of J , proving the claim.

We say that a partition [2n] = I t J is a monotone pair if |I| = |J | = n and the r-th smallest
element of I is smaller than the r-th smallest element of J . The number of monotone pairs in [2n]
is exactly the Catalan number Cn; form (I, J) from a Dyck path by taking I to be the set of indices
on which the path moves upwards by (+1,+1). Let MP(n) denote the set of all monotone pairs in
[2n].

If s ∈ [k]2n is a shuffle square, we say that (I, J) is a monotone pair for s if I t J = [2n],
they satisfy the properties sI = sJ , and the corresponding indices in I are smaller than those
in J . Lemma 5.1 implies the existence of monotone pairs for all shuffle squares. It follows that
|SSk(n)| ≤ |MP(n)| · kn = Cn · kn, since this latter expression counts the number of ways to choose
a monotone pair (I, J) and then the value of sI , which together determine s completely. Now this
is an overcount because a single word s may have many different monotone pairs. For example,
constant words have Cn monotone pairs. We must correct for this.

5.1 Proof of Theorem 2.4

In order to determine the second-order term, we must compute how much this bound is overcounting
via inclusion-exclusion. This would then complete the proof.

Proof of Theorem 2.4. First, we identify MP(n) with the family of non-nesting perfect matchings
on [2n] (this notion is defined in [13]). A perfect matching on V is a graph whose vertex set is
V and where each vertex lies in exactly one edge. We say that a perfect matching on [2n] it is
non-nesting if there do not exist two edges (i, j) and (i′, j′) satisfying i < i′ < j′ < j. Thus, a
perfect matching m on [2n] is non-nesting if and only if there exists (I, J) ∈ MP(n) such that the
edges in m are exactly the pairs (ir, jr) where ir (resp. jr) is the r-th smallest element of I. To
avoid introducing too much notation, we slightly abuse notation and write m ∈ MP(n) to mean
that m is an non-nesting perfect matching corresponding to some monotone pair in MP(n).

Let comp(G) denote the number of connected components of a graph G. We claim that

|SSk(n)| =
∑
m1

kcomp(m1) −
∑

m1 6=m2

kcomp(m1∪m2) + · · ·+ (−1)r
∑

m1,...,mr

kcomp(m1∪···∪mr) + · · · (4)

by inclusion-exclusion, where the r-th sum is over all choices of an unordered r-tuple of distinct non-
nesting perfect matchings mi ∈ MP(n). Formula (4) holds because the number of shuffle squares
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s which have m1, . . . ,mr simultaneously as its monotone pairs is kcomp(m1∪···∪mr), since the value
of s on every vertex of a given connected component must be the same. But the total number of
terms in this inclusion-exclusion is On(1), and so for the purposes of proving Theorem 2.4 it suffices
to select only the terms from (4) with comp(m1 ∪ · · · ∪mr) ≥ n − 1, as all other terms summed
together will be On(kn−2).

It is not hard to see that the only terms in (4) with comp(m1 ∪ · · · ∪mr) = n are exactly the
terms of the first summation r = 1, which adds up to Cn · kn, the desired leading term. As for
comp(m1 ∪ · · · ∪mr) = n− 1, one can check that r = 2 is the only possibility. It remains to count
the number of pairs m1 6= m2 in MP(n) such that comp(m1 ∪ m2) = n − 1. Since m1 and m2
themselves each have n components (i.e. edges) of size 2, for comp(m1 ∪m2) = n− 1 to hold, m1
must share all but two of its edges with m2, and the two remaining edges must form a four-cycle
with the two corresponding edges of m2. If the vertices of this four-cycle are a < b < c < d, then
since m1 and m2 are both non-nesting they cannot contain the edges (a, d) and (b, c). We may thus
assume without loss of generality that (a, b), (c, d) ∈ m1 and (a, c), (b, d) ∈ m2.

We claim that in order for comp(m1 ∪m2) = n− 1, the four indices must satisfy the additional
property c = b + 1. If not, there exists some x between b and c, and x is matched to the same
vertex y in both m1 and m2 since m1 and m2 are identical outside {a, b, c, d}. If y < a or y > d,
then m1 is not non-nesting, while if a < y < d then m2 is not non-nesting. This is a contradiction
in all cases, so no such x can exist and c = b+ 1.

We are now ready to prove that the pairs {m1,m2} satisfying comp(m1 ∪m2) = n − 1 are in
bijection with pairs (P, v) of a Dyck path of semilength n and a valley in the path. Using the
bijection between Dyck paths and monotone pairs, the path P is in bijection with monotone pairs
(I, J) by writing down the indices of the up and down paths. Thus, (P, v) is in bijection with a
choice of a monotone pair (I, J) and an element b ∈ J such that b+1 ∈ I, since such a b corresponds
exactly to going down, then up, to form a valley in P .

Let m2 be the non-nesting perfect matching corresponding to (I, J), and let m1 be the matching
corresponding to (I ∪ {b}\{b+ 1}, J ∪ {b+ 1}\{b}). It is easy to see that comp(m1 ∪m2) = n− 1,
and this gives a bijection between pairs ((I, J), b) and pairs (m1,m2) with comp(m1 ∪m2) = n− 1
as desired.

Proposition 2.10 tells us that the number of valleys across all Dyck paths of semilength n is(2n−1
n+1

)
. Thus, this is also the number of terms in (4) equal to −kn−1. By (4), we find that

|SSk(n)| = Cnk
n −

(
2n− 1
n+ 1

)
kn−1 +O(kn−2),

completing the proof.

6 Reverse Shuffle Squares

Here, we tackle a second, and closely related, conjecture from [9] on reverse shuffle squares and
prove Theorem 2.5. A reverse shuffle square is a word s ∈ [k]2n which can be decomposed into two
subsequences of length n which are reverses of each other. Let RSSk(n) denote the family of all
reverse shuffle squares in [k]2n. The conjecture is as follows.

Conjecture 6.1. The number of reverse shuffle squares in [k]2n satisfies

|RSSk(n)| = 1
n+ 1

(
2n
n

)
kn −

((2n− 1
n− 1

)
− 2n−1

)
kn−1 +On(kn−2).
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Again, the top coefficient is the Catalan number Cn = 1
n+1

(2n
n

)
. However, we will show that the

conjecture is actually false, and the correct second-order term is slightly different. It is equal to Bn,
which counts the number of unordered pairs of 123-avoiding permutations of length n that differ
by a single transposition and satisfies B1 = 0, Bn = 2

(2n−2
n−2

)
+ 2Cn+1 − 8Cn + 5Cn−1 for n ≥ 2. It

is easy to check that the right-hand side is equal to the second-order coefficient in Theorem 2.5.
Note that the first four terms (n = 2, 3, 4, 5) of

(2n−1
n−1

)
−2n−1 and Bn are both 1, 6, 27, 110, which

explains why the incorrect expression was guessed by [9] based on numerical evidence. However,
for n = 6,

(2n−1
n−1

)
− 2n−1 = 430 while B6 = 432.

This time, instead of interpreting the Catalan numbers in terms of Dyck paths, we will interpret
it in terms of 123-avoiding permutations.

Recall that a permutation π ∈ Sn is 123-avoiding if there do not exist i1 < i2 < i3 for which
π(i1) < π(i2) < π(i3), and that the total number of 123-avoiding permutations of length n is exactly
Cn. It will also be helpful to note that π is 123-avoiding if and only if it can be partitioned into two
decreasing subsequences. [Remark: this is closely related to the “partition into two towers” notion
in [13]].

6.1 Proof of Theorem 2.5

We begin, as before, with a characterization of reverse shuffle squares that explains the first-order
term. Given a permutation π ∈ Sn and a word s ∈ [k]n, we write π(s) for the word obtained by
shuffling the letters according to π, i.e. π(s)i := sπ(i). We also write sI for the subword of s indexed
by a set I of indices, and sR for the reverse of s.

Lemma 6.2. Suppose s ∈ [k]2n and we split s = s′s′′ into two equal halves, so that s′, s′′ are both
words in [k]n. Then, s is a reverse shuffle square if and only if s′′ = π(s′) for some 123-avoiding
permutation π.

Proof. We first prove the only-if direction in the special case that k ≥ n and every letter in s
appears exactly twice.

It was shown by [9] that if s is a reverse shuffle square, then s is an abelian square, which is a
word where the second half is a permutation of the first. Thus, s′′ = π(s′) for some permutation
π. Since every letter in s appears exactly twice, this π is unique. We show that it is 123-avoiding.
If not, there are three indices i1 < i2 < i3 for which π(i1) < π(i2) < π(i3). Thus, s′i1 , s

′
i2
, s′i3

appear in the same relative order in s′ as they do in s′′. These six letters appear at positions
i1 < i2 < i3 < n+ π(i1) < n+ π(i2) < n+ π(i3) in the original word s.

Since s is a reverse shuffle square, so must its restriction to the six positions above, as the three
letters there do not appear elsewhere in s. But the restriction to these six positions of s is a word
of the form abcabc, which cannot be a reverse shuffle square. This proves the special case.

For the general case, suppose t ∈ [k]2n is any reverse shuffle square, which means that there
exists two index subsets I, J ∈

([2n]
n

)
partitioning [2n] such that the restrictions tI and tJ are

reverses of each other. Then, t is a homomorphic image of the word s ∈ [n]2n defined so that
sI = 1...n and sJ = n...1, and s is a reverse shuffle square where every letter appears exactly twice.
Applying the special case above to s, we obtain a 123-avoiding permutation π such that the second
half of s is π applied to the first half. As t is a homomorphic image of s, this holds for t as well, so
this proves the only-if direction.

To prove the if direction, note that a permutation π is 123-avoiding if and only if it can be
partitioned into two decreasing subsequences. Suppose s satisfies s′′ = π(s′) for such a π, and let
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[n] = IπtJπ be a partition of the index set of π for which π|Iπ and π|Jπ are both decreasing. Define
I := Iπ ∪ (n + π(Jπ)) and J := Jπ ∪ (n + π(Iπ)), we see that I and J partition [2n]. Because π is
decreasing when restricted to both Iπ and Jπ, it follows that the part of sI in s′′ is the reverse of
the part of sJ in s′, and similarly the part of sJ in s′′ is the reverse of the part of sI in s′. This
means that sI = sRJ , completing the proof that s is a reverse shuffle square.

Let Avn(123) denote the family of all 123-avoiding permutations of length n. We obtain an
upper bound |RSSk(n)| ≤ Cnk

n by sending each reverse shuffle square s to an ordered pair (π, s′)
of a 123-avoiding permutation π corresponding to s and the first half s′ of s. The full word s can
be reconstructed from this data by taking s′′ = π(s′). It remains to understand the overcounting
to get at the second-order term.

To each π ∈ Avn(123), associate the matching m(π) on [2n] whose edges are (i, n + π(i)). We
define Sπ to be the set of kn words of the form s = s′π(s′) in [k]2n. We obtain that s ∈ Sπ exactly if
si = sj whenever i ∼ j in m(π). As a result, for multiple permutations π1, · · · , πr, the intersection
Sπ1∩· · ·∩Sπr is exactly the set of words s ∈ [k]2n which are constant on every connected component
of m(π1) ∪m(π2) ∪ · · · ∪m(πr). By inclusion-exclusion, we obtain

|RSSk(n)| =
∑
π

kn −
∑
π1,π2

kcomp(m(π1)∪m(π2)) + · · ·+ (−1)r
∑

π1,...,πr

kcomp(m(π1)∪···∪m(πr)) + · · · ,

where the r-th sum is a sum over unordered r-tuples of distinct πi ∈ Avn(123). We find that all kn
terms appear in the first sum, and that all kn−1 terms appear in the second (this latter fact follows
from the observation that m(π) is precedence-free (doesn’t include two edges (i1, j1), (i2, j2) with
i1 < j1 < i2 < j2). Thus, we have

|RSSk(n)| = Cnk
n −Bnkn−1 +On(kn−2),

where Bn is the number of unordered pairs π1, π2 ∈ Avn(123) satisfying comp(m(π1) ∪m(π2)) =
n − 1. The only way for comp(m(π1) ∪m(π2)) = n − 1 to occur is if π1 and π2 differ by exactly
one transposition (i.e. π1 = (ij) ◦ π2 in cycle notation for some i, j ∈ [n]), so that m(π1) ∪m(π2)
has exactly one component of size 4. Thus Bn enumerates the pairs claimed in the theorem, and it
remains to show

Bn = 2
(

2n− 2
n− 2

)
+ 2Cn+1 − 8Cn + 5Cn−1 (5)

for n ≥ 2. This is attempted in the next section.

6.2 A Closed Form for Bn

In this section, we prove the following formula for Bn, which is defined for n ≥ 1 as the number of
unordered pairs of elements of Avn(123) which differ by a single transposition, which is almost all
the way towards (5). Define the Catalan convolutions

Cn,k := k

2n− k

(
2n− k
n

)
,

which enumerate (see [5]) the number of 123-avoiding permutations π of length n with π(k) = n.
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Lemma 6.3. For all n ≥ 2,

Bn = 2An + 2Cn+1 − 8Cn + 5Cn−1,

where
An =

∑
a+b+c+d=n−2

(
a+ c

a

)
Ca+b+1,a+1Cc+d+1,c+1, (6)

the sum over all 4-compositions a+ b+ c+ d = n− 2.

This formula will appear from another application of inclusion-exclusion, which will depend on
the following diagrams.

Recall that every permutation π can be represented in the plane by plotting all the points
(i, π(i)), and π is 123-avoiding if and only if the plot doesn’t contain three points in increasing
order. Suppose π ∈ Avn(123) and there is a transposition (ij) for which (ij)◦π ∈ Avn(123) as well.
By swapping π with (ij) ◦ π if necessary, we may assume π(i) < π(j) as in the diagram. Then, the
four vertical and horizontal lines through the two points (i, π(i)) and (j, π(j)) divide the plane into
nine rectangular sectors, as shown. We say that the pair (π, (ij)) is of type t (for t ∈ [4]) if all the
remaining points in the plot of π fall into only the shaded regions in the picture labelled “Type t.”
For example, (π, (ij)) is of type 1 if and only if for all i′ 6∈ {i, j}, either i′ < i and π(i′) > i, or
i′ > i and π(i′) < i. Note that it’s possible for a pair to be of more than one type.
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Lemma 6.4. If π ∈ Avn(123), 1 ≤ i < j ≤ n, and π(i) < π(j), and (ij) ◦ π ∈ Avn(123), then
(π, (ij)) is in (at least) one of the four types.

Proof. Label the nine sectors as sx,y in the middle diagram in the figure, so that x = 0 if the sector
is left of i, x = 1 if it is between i and j, and x = 2 if it is to the right of y, and similarly for y.
Since π ∈ Avn(123), s0,0, s1,1 and s2,2 must be empty, since any point in any of them would form
a 123-pattern with π(i) and π(j). Thus these three sectors are always empty, as in the diagram.

Next, note that s0,1 and s1,2 cannot both be nonempty, since a point in s0,1 and a point in s1,2
would form a 123-pattern with (i, π(j)) in (ij) ◦ π. Similarly, at least one of s1,0 and s2,1 may be
nonempty if (j, π(i)) appears in the diagram for (ij) ◦ π. This completes the proof.

Let Pn,t denote the collection of pairs (π, (ij)) of π ∈ Avn(123) and 1 ≤ i < j ≤ n for which
1 ≤ i < j ≤ n of type t for t = 1, 2, 3, 4. Clearly, ∪4

t=1Pn,t is in bijection with the set of pairs
{π1, π2} ∈

(Avn(123)
2

)
differing by a transposition, so it suffices to enumerate this union. We proceed

by inclusion-exclusion.

Lemma 6.5. For n ≥ 2, collections Pn,t satisfy

|Pn,1| = |Pn,2| = Cn+1 − 2Cn, (7)
|Pn,3| = |Pn,4| = An, (8)

|Pn,1 ∩ Pn,2| = |Pn,3 ∩ Pn,4| = Cn−1, (9)
|Pn,1 ∩ Pn,3| = |Pn,1 ∩ Pn,4| = |Pn,2 ∩ Pn,3| = |Pn,2 ∩ Pn,4| = Cn − Cn−1, (10)

|Pn,1 ∩ Pn,2 ∩ Pn,3| = |Pn,1 ∩ Pn,2 ∩ Pn,4|
= |Pn,1 ∩ Pn,3 ∩ Pn,4| = |Pn,2 ∩ Pn,3 ∩ Pn,4| = Cn−1, (11)

|Pn,1 ∩ Pn,2 ∩ Pn,3 ∩ Pn,4| = Cn−1, (12)

where An is defined by (6).

Before we prove the lemma, note that it implies Lemma 6.3 by inclusion-exclusion. Indeed, we
have

Bn =
∣∣∣ 4⋃
t=1

Pn,t| = [2(Cn+1 − 2Cn) + 2An]− [2Cn−1 + 4(Cn − Cn−1)] + [4Cn−1]− [Cn−1]

by inclusion-exclusion and reading off the values in Lemma 6.5.

Proof of Lemma 6.5. The system of equations can really be reduced to four distinct cases: Pn,1,
Pn,4, Pn,1 ∩Pn,2 (with only three allowed regions), and Pn,1 ∩Pn,3 (with only two allowed regions).
Any other set of shaded regions can be reflected to obtain one of these four.

We save Pn,4 to the end, and handle the other three that are immediately representable in terms
of Catalan numbers. We start by proving (7), which will follow from

|Pn,1| =
n−1∑
i=1

CiCn−i. (13)

The proof is by bijection: take two nonempty 123-avoiding permutations σ and τ with |σ|+ |τ | = n.
Let i = |σ|, and π(i) = n− i = |τ |. Given (σ, τ), we obtain (π, (ij)) of type 1 as follows.
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Place a copy of σ in the upper-left i×i square of the n×n grid, and a copy of τ in the lower-right
(n − i) × (n − i) square, and insert the point (i, n − i). As there are n + 1 points in total now,
this is not a valid permutation. The offending points are those in σ and τ which get placed on the
horizontal and vertical lines through (i, π(i)). Define (j, π(j)) such that j is the x-coordinate of
the offending point in τ , and π(j) is the y-coordinate of the offending point in σ. Remove the two
offending points and insert (j, π(j)) to obtain an honest permutation π ∈ Avn(123).

This exhibits a bijection between Pn,1 and ordered pairs (σ, τ) of nonempty 123-avoiding per-
mutations whose lengths sum to n, thus proving the convolution formula (13). This implies (7) by
the standard convolution identity Cn+1 =

∑n
i=0 CiCn−i.

The remaining identities |Pn,1 ∩ Pn,2| = Cn−1 and |Pn,1 ∩ Pn,3| = Cn − Cn−1 are obtained via
very similar arguments and left as an exercise. This proves equations (9) through (12), leaving only
(8), which expands as

|Pn,4| =
∑

a+b+c+d=n−2

(
a+ c

a

)
Ca+b+1,a+1Cc+d+1,c+1.

This is again a bijection argument, illustrated by the below diagram.
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Let σ and τ be two 123-avoiding permutations with sizes |σ| = a+b+1 and |τ | = c+d+1, such
that σ(b+1) = 1 and τ(c+1) = c+d+1. The number of such pairs is exactly Ca+b+1,a+1Cc+d+1,c+1
by [5]. Place σ to the top left of τ as before, but notice that σ ends in a decreasing sequence of
length a, and τ begins with a decreasing sequence of length c. Thus, these two parts may be
horizontally interleaved arbitrarily in the middle in

(
a+c
a

)
ways. This completes the proof.

The only thing left to prove Theorem 2.5 is to prove the identity(
2n− 2
n− 2

)
=

∑
a+b+c+d=n−2

(
a+ c

a

)
Ca+b+1,a+1Cc+d+1,c+1 (14)

for all n ≥ 2. Recall from above that Cn,k := k
2n−k

(2n−k
n

)
is a Catalan convolution, thus named

because Cn,k satisfies the identity

Cn,k =
∑

a1+···+ak=n−k

k∏
i=1

Cai . (15)

In both equations above, the sum is over all nonnegative compositions, i.e. choices of the
summands from nonnegative integers.

We first note that Cn,k is exactly the number of Dyck paths from (0, 0) to (2n, 0) which touch
the x-axis exactly k − 1 times internally; this is because such a path breaks down into k subpaths
of lengths a1 + 1, . . . , ak + 1 which each stay on or above the line y = 1 internally, hence (15).

Lemma 6.6. The Catalan convolutions satisfy (14) for all n ≥ 2.

Proof. The proof is by double-counting. We claim that both sides enumerate the family F of paths
between (0, 0) and (2n, 0) where each step is a U = (+1,+1) or D = (+1,−1), such that the path
starts and ends with a U (note that such paths are certainly not Dyck paths, as the second-to-last
point on the path is (2n − 1,−1)). The left side clearly enumerates such paths, because there are(2n−2
n−2

)
strings over the binary alphabet {U,D} of length 2n with n U ’s and n D’s which start and

end with U . As for the right side, take any p ∈ F and suppose it touches the line x = 0 a total
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of t ≥ 1 times internally. These t points break p up into t+ 1 ≥ 2 segments, which are themselves
either strict Dyck paths (strict meaning staying entirely above the diagonal internally) or else the
reflections of strict Dyck paths over the x-axis. Let there be a + 1 of the positive segments and
b + 1 of the negative segments. Then, we map p to the pair (p+, p−) of Dyck paths where p+
is obtained by concatenating all the positive segments together, and p− by concatenating all the
negative segments.

It is easy to check that this is a surjective map from F to the union ∪a+b+c+dDa+b+1,a+1 ×
Dc+d+1,c+1, where Dn,k is the family of Dyck paths of semi-length n with exactly k − 1 internal
points, so |Dn,k| = Cn,k. Furthermore, the preimage of (p+, p−) has size exactly

(
a+c
a

)
, because

this is the number of ways to interleave the a + 1 segments of p+ and the c + 1 segments of p−,
excepting the first segment of p+ which must go at the beginning of p ∈ F ,and the last segment of
p− which must go at the end. This completes the proof of (14).

7 Future Work

Previously, we examined the problem of just how many words with perfect twins, or shuffle squares,
there are. We know that there are at least

(2n
n

)
binary shuffle squares of length 2n. However,

numerical evidence suggests that the actual number is significantly larger.

Conjecture 7.1.

|SS2(n)| =
(

1
2 − o(1)

)
4n

While the previous approaches have found a closed formula for the number of shuffle squares,
Conjecture 7.1 states that almost half of all binary word have perfect twins, and that as the length
of the word approaches infinity (the length of the string grows asymptotically), half of all binary
word have perfect twins.

Recall that the original twins in words problem proposed by Axenovich, Person and Puzynina
(2012) [1] stated that nearly perfect twins exist in all binary words. While the original twins in
words problem and Conjecture 7.1 are similar but different results, Conjecture 7.1 can help us
better understand the behavior of twins, especially twins of maximal length, in words.

In a similar way to how we approached the earlier formulas for the number of binary shuffle
squares, the greedy algorithm may be a promising starting point for understanding Conjecture 7.1.
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