
The Courant Nodal Domain Theorem
Armaun Sanayei

Adviser: Professor Eugenia Mallinikova

August 27, 2021

Stanford Undergraduate Research Institute in Mathematics

Abstract

This report will discuss the Courant Nodal Domain Theorem. We will build results and
terminology leading up to the theorem. We will investigate a careful proof of the theorem,
taking into account the generality of the nodal domains. We will then discuss the application
of the Courant Nodal Domain Theorem to various domain geometries and to graphs.
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1 Introduction

In a 1923 paper and subsequent book in 1924 [3], Courant proved a result regarding the zeros of
Laplacian eigenfunctions. This result is now referred to as the �Courant Nodal Domain Theorem�
and will be the main focus of this report.

Theorem 1. (Courant Nodal Domain Theorem) The Dirichlet eigenfunction  k has at most
k nodal domains.

The terminology in this theorem will be discussed later; however, a remarkable part of the theorem
is its generality, which is reflected by the relatively simple statement. It can apply to a wide variety
of elliptic eigenvalue problems and even has extensions in graph theory. This generality not only
makes this theorem very powerful but also makes it slightly difficult to prove, in that one must be
careful of one's assumptions.

The main goal of this report is to take into account this generality and provide a thorough proof
of the Courant nodal domain theorem without making any implicit assumptions on the space and
nodal domains.

This report starts off with discussing the Dirichlet Laplacian eigenvalue problem. We will define
the problem, the spaces we will be working in, and prove some basic facts about the eigenvalue
problem. We will then introduce the powerful Rayleigh quotient and min-max theorem.

The main theorem we will attempt to provide a proof of is Courant's Nodal Domain Theorem. After
the basic facts, we will start off with the build-up to the theorem by proving lemmas on domain
monotonicity and the resulting corollaries. We will then present and prove Courant's nodal domain
theorem, taking into account the generality of the nodal domains. The first proof will be a specific
version of the theorem (specified to normal nodal domains). The second proof will consider the
general case.

After the proof of Courant's nodal domain theorem, we discuss how often the number of nodal
domains reach equality with the upper bound. Pleijel's theorem will show us that the bound in
Courant's theorem is only achieved a finite number of times.

After Pleijel's theorem, we will have a few sections exploring the applications of Courant's theorem.
We will first explore the square case as a case study and show how we can use bounds on the
eigenvalue number to apply the Courant nodal domain theorem and do a quick check to see if we
get reasonable results. Then, we will also discuss the torus, sphere, and the quantum harmonic
oscillator.

Finally, we will see that the results we proved in the continuous case have analogs in the discrete
case. We will see that the eigenvalue problem on graphs has analogous properties. We will prove
some of these results and investigate their connections to the continuous case.

The last section is the appendix that covers important definitions and theorems we use in this
report.

2 Preliminaries

Before we prove the Courant Nodal Domain Theorem, we will begin with a quick discussion of
relevant facts and definitions that will be useful for building the context of our problem and the
tools we will use to solve it.

We start off by defining the type of domain we will be using. We will be working with a domainM
that is bounded and open in Rn with a smooth boundary @M . The boundedness and boundary
conditions will be incredibly useful when applying Green's identity. We will be working in the space
L2(M). We let L2(M) be the space of measurable functions f on M for which

R
M
jf j2 dV<+1.

On L2(M) we have the usual inner product. With the inner product, L2(M) is a Hilbert space.
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2.1 The Laplacian

In this report, the primary operator of interest is the Laplacian. The Laplacian is defined as

�f =
X
i

@2f
@xi

:

The Laplacian also has a discrete, matrix form for graphs (discussed in later sections). We will
now focus on the continuous case. We are interested in the eigenvalue problem

� f =¡�f:

The eigenvalue problem in its current form is very general. We must further specify the type
of functions we will work with, boundary conditions, and more, which we will do in the coming
sections.

2.2 Sobolev Spaces

The first step in specifying our eigenvalue problem is to define the space of functions we wish to
work with. Sobolev spaces provide a perfect balance of manageable function properties while also
being general enough to encompass functions of interest (dense in the set of functions of interest).

Definition. (Sobolev Space) The Sobolev spaces on an open setM�Rn are defined for m2N by

Hm(M) := fu2L2(M):D�u2L2(M) for j�j �mg:

Moreover, the Sobolev spaces have their own inner products

hu; viHm :=
X
j�j�m

hD�u;D�vi;

and norms

kukHm :=
 X
j�j�m

kD�uk2
!
1/2

:

We are interested specifically in the space H1(M). This space consists of functions such that
the first derivative of functions are in L2. The Sobolev spaces are just another way of imposing
regularity on the set of functions we are working on. Sobolev spaces are commonly used in cases
where we must take a derivative of a function we are dealing with and want the output function
to be manageable.

To define the viable functions for the Dirichlet case, H1(M) is not enough, we must impose a few
more restrictions to ensure Dirichlet boundary conditions. For example, there exists f 2H1([0; 1])
such that f(0)=/ 0=/ f(1). This is an issue. Instead we want functions such that f 2H1([0; 1]) and
f(0)= f(1)= 0. It turns out such a space can be defined nicely, and it is denoted as H0

1(
). The
0 subscript is a reference to zero boundary values.

More formally, one can define H0
1(M) :=C01(M)�H1(M) where the closure is taken with respect

to the H1 norm. All such functions in H0
1(M) weakly fulfill the Dirichlet boundary conditions on

@M . This H0
1 domain will be used to define the Dirichlet Laplacian below. The functions in H0

1

vanish on @
 in some weak sense.

Remark. The motivation for weak derivatives is to eventually use them in Green's identities
without over-restricting our function space. One can define the weak derivative in many ways
(depending on desired generality), but since we are dealing with the Dirichlet case and smooth
boundary, it is the standard multivariable definition of a function that matches the inner product
of divergence with the desired function and an arbitrary vector field.

4



2.3 The Dirichlet Laplacian

As discussed earlier, the Laplacian is defined as �f =
P

i
@2f

@xi
2 . We are interested in the eigenvalue

problem � f =¡�f . On M , the Dirichlet Laplacian is on the domain D(¡�) := fu 2H0
1(M):

¡�u2L2(M) in the weak sense} [1]. From now on, we will assume that the Laplacian is defined
on this domain. We will now investigate some important preliminary facts about the Dirichlet
Laplacian eigenvalue problem.

Theorem 2. For the Dirichlet eigenvalue problem, the problem has a discrete spectrum. The
eigenvalues are positive and have finite multiplicity. Moreover, there exists an orthonormal basis
for L2(M) consisting of eigenfunctions.

For the Dirichlet case, the first eigenvalue is simple. The first eigenfunction can be chosen positive
on M . It is usual to enumerate the eigenvalues in increasing order, counting multiplicities.

�1(M)<�2(M)��3(M): : :

To show the orthogonality of the eigenfunctions, we will need Green's identity. Recall that Green's
identity gives us that Z

M

(u�v¡�u v d)dV=
Z
@M

�
u
@v
@�
¡v@u

@�

�
dS;

for functions on a domain M with sufficiently smooth boundary @M , which is the case with our
domain M .

Since we assume that the boundary is smooth, orthogonality comes very easily since we can apply
Green's formula assuming that � =¡� and ��=¡��. For proving orthogonality, we start off
by writing the simple identity by definition of eigenfunctions

¡(�¡ �)
Z
M

� dV=
Z
M

(�� ¡  ��)dV;

where �¡ � is non-zero since we choose �; � to be distinct eigenvalues. By Green's identity, we
have that Z

M

�� dV=
Z
M

 ��dx+
Z
@M

�
@ 
@�

dS¡
Z
@M

 
@�
@�

dS;

recall however that the the boundary terms are 0 because of the Dirichlet conditions, �;  2H0
1(M);

therefore �;  =0 on @M in a weak sense and the last two terms vanish. Thus, we have thatZ
M

�� dV=
Z
M

 ��dx;

plugging this in, we get that

¡(�¡ �)
Z
M

� dV=
Z
M

(�� ¡  ��)dV=0:

Since �¡ � is non-zero, we are left with
R
M
� dV=0. Thus, we have shown orthogonality of the

Dirichlet eigenfunctions corresponding to distinct eigenvalues.

Finally, one last observation (from the assertion of completeness in the theorem) is that Parseval's
identities apply. Considering some f 2L2(M) we have that

f =
X
j=1

1

(f ; �j) �j ;
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in L2(M) and

kf k2=
X
j=1

1

(f ; �j)2:

The completeness argument will turn out to be very useful in future proofs and is quite a remarkable
property given the restraints we put on our domain.

2.4 Rayleigh Quotient

When investigating eigenvalue problems in the discrete case with finite matrices on graphs, a very
useful theorem commonly used in discrete mathematics is Rayleigh quotients and Courant's Min-
Max Theorem (see the appendix for a discussion on these linear algebraic theorems) . It turns out
that such theorems have almost exact analogs in the continuous case, and they will prove very
useful in helping us decompose this eigenvalue problem.

Theorem 3. (Max-Min Theorem - as given by Chavel [2]) Given v1; : : : vk¡12L2(M), let

�= inf
krf k2
kf k2 ;

where f varies over the subspace of functions in H0
1(M) orthogonal to v1; : : :vk¡1 in L2(M). Then,

for ordered Dirichlet Laplace eigenvalues �k we have that

���k:

If v1; : : : vk¡1 are eigenfunctions corresponding �1; : : : ; �k¡1, then �=�k.

Note that this version is equivalent to the more standard form [1] below:

Theorem 4. (Max-Min Theorem - Borthwick [1] - Alternative Statement) Let f�kg be
the Dirichlet eigenvalues of a bounded open set M �Rn, written in increasing order and repeated
according to multiplicity. Define �k as the set of subspaces of H0

1(M) of dimension k. Then:

�k= min
W2�k

�
max

f2W /f0g

krf k2
kf k2

�
;

for each k2N

The quotient kruk
2

kuk2 is also called Rayleigh's quotient. These theorems are useful tools that will give

us a chance to compare eigenvalues to each other over various domains and to connect functions
to their eigenvalues.

2.5 Weyl's Asymptotic Formula

A problem of principle concern that we will see more of later is determining the respective ranking
of an eigenvalue based on its value. The ranking of an eigenvalue will be incredibly important
in helping us determine properties of the eigenfunctions and help us make theorems about the
eigenfunctions.

It is slightly difficult to determine such a ranking straight from the magnitude of an eigenvalue;
however, we can come up with bounds and asymptotics that can help us approximate a ranking.
In this section, we present Weyl's asymptotic formula which gives us the limiting behavior of the
ranking of an eigenvalue in terms of its value as well as the geometry of the domain. Apart from
the fact that Weyl's asymptotic formula gives this very important relationship and helps us define
the ranking of eigenvalues, the formula also illustrates an important relationship between the
geometry of the domain and the eigenvalues. We will use this later in the proof of Pleijel's theorem.

6



Let N(�) be the number of eigenvalues �� (counted with multiplicity). Then Weyl's asymptotic
formula gives us that:

N(�)�!n(volM)�n/2/(2 �)n;

where !n is the volume of the unit disk in Rn and vol M is the volume of M , which exists since
M is bounded [2] . Substituting in N(�k) = k and �= �k and rearranging the equation, we get
that as k!1 that:

(�k)n/2�
�
(2�)n

!n

�
k

volM
:

We will use both asymptotic expressions for future proofs. Before we proceed, we will give a simple
one dimensional example, in which many of the terms simplify and the asymptotic behavior turns
out to exactly predict the growth of the eigenvalues.

2.6 Example in Dimension One

We consider the Dirichlet Laplacian on M =(0; L) we get:

�k(x)=
2
L

r
sin
�
� kx
L

�
;

and

�k=
�
� k
L

�
2

:

We see that this is exactly what Weyl's formula predicts since !n=2 and volM =L and n=1. We

have that Weyl's formula gives us that �k�
�
�k

L

�
2
, which is the exact value of the eigenvalue.

Here are a few eigenfunctions to pictorially illustrate what the eigenfunctions look like on our
domain :

Figure 1. One Dimensional Eigenfunctions of Dirichlet Laplacian

In higher dimensions, Weyl's formula gives the asymptotic behavior as �!1. It is not always
exact as in the one-dimensional case.

3 The Nodal Domain Theorem

3.1 Domain Monotonicity of Eigenvalues

The first eigenvalue of the Dirichlet Laplacian is sometimes called the fundamental tone of the

domain 
, we have that �1(
)=��(
)= inf krf k
2

kf k2 where f ranges over non-zero functions inH0
1(
).

In some papers [2], the first eigenvalue is referred to as ��(
), we will refer to it simply as �1(
).

Let 
1; : : : ;
m be pairwise disjoint domains with smooth boundaries in M , whose boundaries
intersect transversally with @M when they do intersect. We will now consider an eigenvalue problem
on M and consider what it means for 
k.
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Given an eigenvalue problem on M consider the same eigenvalue problem on 
r be requiring
vanishing Dirichlet data on @
r\M and by leaving @
r\@M with Dirichlet boundary conditions
(i.e. 0).


2


3

M


1

. . .


m

Figure 2. Subdomains on M

Arrange all the eigenvalues of 
1; : : : ;
m in an increasing sequence:

0� v1� v2� : : :

with each eigenvalue repeated according to its multiplicity and let the eigenvalues of M be �k in
sorted order. Then, we have for all k that

�k� vk:

Proof. We will use the max-min theorem. Pick functions in L2, �1; : : : �k¡1. For j=1; : : :k let  j:
M� !R be an eigenfunction of vj when restricted to the appropriate sub-domain, and identically
zero everywhere else. Then we have that  j 2H0

1(M) (i.e. the set of interest) and  1; : : :  k may
be chosen orthonormal in L2(M).

There exists �1; : : : �k, not equal to zero, satisfying

X
j=1

k

�j( j ; �l)= 0;

for l=1; : : : ; k¡ 1. Therefore, the function

f =
X
j=1

k

�j j

is orthogonal to �1; : : : �k¡1 in L2(M) which implies that

�k kf k2�krf k2=
X
j=1

k

vj�j
2� vk kf k2:

Thus, showing that �k� vk. �

Corollary 5. If 
�M, then for the Dirichlet eigenvalue problem on 
 and on M we have

�k(M)��k(
):

If M ¡
� is not empty set, then the inequality is strict.
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M

Figure 3. Subsets of the Domain

Note. The Neumann case is when the derivative on the boundary is zero. The same progression
of theorems can also be accomplished with the Neumann case even though all the results above
were for Dirichlet eigenvalue problems. The Neumann case, however, is slightly more difficult to
prove; in the proof, we must deal with more complicated nodal domains that cover our domain of
interest. Look at the appendix for the proof of the domain monotonicity of the Neumann case. The
proof is a good example of the important nuances that must be considered with the Neumann case.

3.2 Courant's Nodal Domain Theorem

The focus of this section will be on nodal domains:

Definition 6. (Nodal Domains) The nodal domain of a continuous function f : 
!R is a
connected component of the set ff =0g�


For example, on one dimension, we have:


2
1

-+

Figure 4. (A) One Dimensional Example of Nodal Domains

where we split up the set ff=/ 0g for some function into two domains 
1 and 
2. In two dimensions,
we have:

¡¡¡!

Figure 4. (B) Two Dimensional Example of Nodal Domains

We can first start off with a special case of the Courant Nodal Domain Theorem when the nodal sets
are normal. The Courant Nodal Domain Theorem is more general than this and will be presented
after this theorem; however, this more-specific theorem has a very intuitive proof that helps build
the conceptual foundation for the proof of Courant's Nodal Domain Theorem in full generality.
This argument also goes back to the original work of Courant.
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Theorem 7. Given that the nodal sets are normal (i.e. Green's identity can be applied on to each
boundary of the nodal domains), then the Dirichlet eigenfunction  k has at most k nodal domains.

Proof. Suppose that  k has at least k nodal domains. We label these as V1; : : : Vk and define the
restrictions

 k
(j)(x) :=

�
 k(x) x2Vj
0 x2/ Vj

for j=1; : : : ; k. Note that each  k
(j)2H0

1(M). We can see this is true by splitting  into a positive
and negative component  +(x) :=maxf (x);0g and similarly for  ¡(x). Now, one can check that
these components lie in H0

1(M).

V3 M

V1

V2

Figure 5. Nodal Domains on Domain M

Counting dimensions shows that there exists an nonzero element u2 span
�
 k
(1)
;:::;  k

(k)	 such that
u is orthogonal to each  i for i= 1; : : : ; k ¡ 1. The eigenfunction basis decomposition for u thus
has the form

u =
X
i=k

1

h i; ui i:

This implies that

kruk2=
X
i=k

1

�ijh i; uij2:

We can see this via:

kruk2 = ¡
X
i=1

k Z
r(h i; ui i)r(h i; ui i)dx

= ¡
X
i=1

k Z
h i; ui i�(h i; ui i)dx

=
X
i=k

1

�ijh i; uij2:

On the other hand, since u is a linear combination of disjoint components of  k we have that

u=
X
i=1

k

h k
(i)
; ui k

(i)
:

We have that using Green's formulaZ
U

rv �rudx=¡
Z
U

u�v dx+
Z
@U

u(� �rv) dS;

10



that

kruk2 =
Z



rurudx

= ¡
Z



u�u dx+
Z
@


u(� �ru) dS

= ¡
Z



u�u dx:

We were able to remove the boundary term due to the Dirichlet boundary conditions. Now, we
can plug in u=

P
i=1
k h k

(i)
; ui k

(i) and moreover, we know that for each  k
(i) that  k

(i) and � k
(i)

are non-zero on Vj: Thus, we can split up the integral to

kruk2 = ¡
X
i=1

k Z
Vi

h k
(i)
; ui k

(i)�
¡
h k

(i)
; ui k

(i)�dx:
Note that ¡� k

(i) on Vi is �k k
(i) by definition. Therefore, we get that

kruk2 = ¡
X
i=1

k Z
Vi

h k
(i)
; ui k

(i)�
¡
h k

(i)
; ui k

(i)�dx
=
X
i=1

k

�k
����h k(i); ui����2Z

Vi

���� k(i)����2dx
= �k

X
i=1

k ����h k(i); ui����2Z
Vi

���� k(i)����2dx
= �kkuk2:

Written out, we get

kruk2=�kkuk2=
X
i=k

1

�ijh i; uij2:

Thus, it must be the case that h i; ui=0 unless �i=�k implying that u is itself an eigenfunction
with eigenvalue �k.

By construction, u vanishes outside V1[V2:::[Vk, but unique continuation property (see appendix
for discussion on the unique continuation principle) implies that u cannot vanish on an open set.
It follows that  k cannot have more than k nodal domains. �

As discussed, the more general case, with the possibility of �non-normal� nodal domains is a little
bit trickier to prove, and is proven in Courant's general theorem below.

Theorem. (Courant Nodal Domain Theorem) The Dirichlet eigenfunction  k has at most
k nodal domains.

To prove this, we again suppose that  k has at least k nodal domains. We label these as V1; : : : Vk
and define the restrictions

 k
(j)(x) :=

�
 k(x) x2Vj
0 x2/ Vj

;

for j =1; : : : ; k. Note that each  k
(j)2H0

1(M). If we were proceeding as in our last proof, at this
point we would have used Green's identity on the nodal domains; however, since we make no
assumption about the form of the nodal domains, we cannot use Green's identity.
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At the same time, we must make the same important step we made before to show that �k=�1(Vj).
Thus, we come up with the following lemma to prove exactly this without explicitly using Green's
identity on the nodal domains.

Lemma 8. Let  k be an eigenfunction with eigenvalue �k and let Vj be a nodal domain of  k.
Then  k2H0

1(Vj) and

�k=�1(Vj):

Proof. Assume  k> 0 on Vj and for each �> 0, set

Vj;�=
�
x2Vj:  k

(j)(x)>�
	
;

and

 k;�
(j)=

(
 k
(j)¡ � Vj;�

0 M /Vj;�
:

M

Vj

Vj;�

Figure 6. Vj;� on Domain M

By Sard's theorem [9] there exists a sequence �i of regular values of u, decreasing to 0 as i!1,
and define

Vj;i=Vj;�i;

and

 k;i
(j)=  k;�i

(j)
:

Now, since @Vj;i is C1 we now know that Green's formula can be applied to get

�k

Z Z
Vj;i

 k;i
(j)
 k
(j) dV = ¡

Z Z
Vj;i

 k;i
(j)� k;i

(j) dV

=
Z Z

Vj;i

����r k;i(j)���� 2dV
� �1(Vj)

Z Z
Vj;i

���� k;i(j)���� 2dV:
By letting i!1, we get that

�k

Z Z
Vj;i

 k
(j)2dV��1(Vj)

Z Z



 k
(j)2dV:

Therefore, we have that:

�k��1(Vj):
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Now, we will show the opposite inequality, let � > 0 be a regular value of  k
(j), and let v�> 0 be

the eigenfunction of the Dirichlet eigenvalue �1(Vj;�)=��(Vj;�). Then

�k

Z Z
Vj;�

v� k
(j) dV = ¡

Z Z
Vj;�

v�
¡
� k

(j)�dV
= ¡

Z Z
Vj;�

(�v�) k
(j) dV+

Z Z
@Vj;�

 k
(j)

�
@v�
@v

�
dA

� ¡
Z Z

Vj;�

(�v�) k
(j) dV

= �1(Vj)
Z Z

Vj;�

v� k
(j) dV;

which implies that

�k��1(Vj;�);

for all regular values � > 0. We now show that

lim
�!0

�1(Vj;�)=�1(Vj):

Given any � > 0, there exists f 2C1(Vj) compactly supported on Vj, such that

D[f ; f ]/kf k2��1(Vj)+ �:

But there certainly exists �> 0 for which:

supp f �Vj ;

so we have that

�1(Vj)�D[f ; f ]/kf k2:

We therefore have , for given � > 0, the existence of � > 0 for which

�1(Vj)��1(Vj;�)��1(Vj)+ �:

Since ��(Vj) is increasing with respect to �, we get that lim�!0�1(Vj;�)=�1(Vj). �

Now, from this lemma we know that �k= �1(Vj) where �k is the eigenvalue corresponding to  k
and Vj is a nodal domain.

Now, for each nodal domain Vj, consider the first eigenfunction fj in H0
1(Vj), we know by definition

of eigenfunction that: Z
Vj

krfjk2dx=�k
Z
Vj

kfjk2dx:

Then, using this function instead of  j, we find a linear combination of fj orthogonal to the first
k¡ 1 eigenfunctions  1; : : : ;  k¡1:

g=
X
j=1

k

�j fj:

13



For function g, we now have that the energy ratio is equal to the �k and that g is an eigenfunction
itself. But it is zero on one of the nodal domains. Therefore, we have a contradiction. This completes
the proof of the generalized Courant Nodal Domain Theorem.

We will now explore how often the upper bound in Courant's theorem is achieved. This will require
a little more machinery to be developed.

3.3 Pleijel's Theorem

Pleijel's theorem is an important result that tells us how often the upper bound in Courant's Nodal
Domain Theorem is achieved. This is an important indicator of how the number of nodal domains
actually behaves. In order to prove Pleijel's theorem, we will need to start off with a foundational
inequality, the Faber-Krahn inequality.

Theorem 9. (Faber-Krahn Inequality) Suppose that M is a bounded open set Rn, and let
B�Rn be a ball with vol(B)=vol(M): The lowest Dirichlet eigenvalues satisfy,

�1(M)��1(B)

with equality only if M is a ball.

The proof for this theorem can be seen in both Borthwick [2] and in the original paper [10]. Note

that we can further specify this inequality for our case specifically and show that �1� � j2

V
where

j is the smallest positive zero of the Bessel function J0 for dimension 2 and V is the area/volume
of the domain. A discussion of Bessel functions is given in the appendix.

The Faber-Kahn inequality is a consequence of the isoperimetric inequality on Rn. If we were
dealing with more complicated domains, we would need the isoperimetric inequality. There is also
a specific analog for Neumann eigenvalues (Szego-Weinberger Theorem), and we will see later a
version for quantum harmonic oscillators (discussed in future section).

Given the Faber-Krahn inequality, we can now state and prove Pleijel's theorem for the Dirichlet
case.

Theorem 10. (Pleijel's Theorem) In dimension 2 for the Dirichlet Laplacian eigenvalue problem
on M, we have that for the sequence of eigenvalues �n with corresponding eigenfunctions �n,
we have that:

limsup
n!1

�(�n)
n

� 4�
�(D1)

=
�
2
j

�
2

< 1;

where D1 is the disk of unit area and j is the least positive zero of J0, the Bessel function.

Remark. Chavel [2] gives a more general version of Pleijel's theorem, expanded to compact n-
dimensional manifolds with boundary (in which the isoperimetric inequality is assumed).

Proof. The proof of the two dimensional special case comes straight from upper bound indicated
in the theorem. We use Faber-Krahn inequality with respect to the first eigenvalues, hence the use
of Bessel's function. More specifically, if we let 
1;
2;:::
m be the nodal domains (which we know
that m�n of due to Courant's nodal domain theorem), we know that in each 
i, the function �
is non-zero and by Lemma 9 that �1(
i)=�n. By the Faber-Krahn inequality, we have that:

�1(
i)�
� j2

vol(
i)
:

14



Thus, putting it together we get that:

vol(
i)
� j2

� 1
�n
:

Thus, adding up these inequalities for all 
i, we get:

vol(M)
� j2

� m
�n
;

where m= �(�n) is the number of nodal domains of �n. Using Weyl's asymptotic law from section
2.5, we get that:

lim
n!1

�n
n
= 4�

vol(M)
:

Finally,

limsup
n!1

�(�n)
n

� limsup
n!1

�(�n)
�n

4�
vol(M)

� 4
j2
:

As discussed earlier, here j represents the the first zero of the Bessel function. The Bessel function
is further discussed in the appendix. Since j of J0 is strictly greater than 2, we have that

�
2

j

�
is

less than 1, thus giving us our limit inequality in the theorem. �

4 Square Case

M

The eigenfunctions of the the Laplacian with the Dirichlet boundary conditions on the square are

�n;m= sin(nx) sin(my);

with corresponding eigenvalue �n;m= n2+m2. By inspection, we see that �n;m has at least nm
nodal domains since the sine functions partitions the square into a grid. The Courant Nodal
Domain Theorem tells us that given that �nm is the kth smallest eigenvalue that the number of
nodal domains is bounded from above by k.

In this section, we will verify Courant's Nodal Domain Theorem on the square case. Through the
process of verifying the theorem, we will explore important concepts and patterns in nodal domains.
The first goal is to be able to order the eigenfunctions in order based on the magnitude of the
eigenvalue. This is a complicated problem, since even given that �n;m=n2+m2, it is difficult to
determine where this eigenvalue falls within the ranking of other eigenvalues. We will work in the
coming sections to develop an upper and lower bound for this ranking, and in the final section put
it together with Courant's theorem to complete the verification.

One of the reasons this problem is complicated is because there are multiple eigenfunctions per
eigenvalue. This forces us to consider linear combinations. Here are some examples:
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Rank Eigenvalue Eigenfunction CNDT
1 2 c1 �1;1 �1
3 5 c1 �2;1+c2 �1;2 �3
4 8 c1 �2;2 �4
6 10 c1 �3;1+c2 �1;3 �6

In the case that we have a single �n;m as our eigenfunction, the determination of the number of
nodal domains is simple. It is nm, as discussed above. Otherwise, it is difficult to determine since
it depends significantly on the constants c1;:::cn; however, we can give a limit based on the ranking
using Courant's Nodal Domain Theorem. For example, we know that from Courant's theorem that
the maximum number of nodal domains for eigenvalue 5 and 10 is 2 and 4 respectively.

We can try to generalize this by thinking about the number of lattice points in a disk. If we are
given that our eigenvalue is n2+m2, then we are interested in the number of eigenvalues below it.
We will first develop an overestimate, then we will make an underestimate.

�13= 10
p

Figure 7. Positive Lattice Points Within a Disk of Radius 10
p

4.1 Upper Bound

To develop the overestimate, we notice that all other eigenvalues �n0m0 live on lattice points such
that n02+m02� n2+m2. Therefore we are interested on all the lattice points within the disk of
radius n2+m2 from the origin. A first estimate would be the area of the disk divided by the size
of a unit square (since each unit square contains one unique lattice point).

We can designate the the outer corner as the unique lattice point for each square . Pictorially we
have that:

Figure 8. Upper-Diagonal Lattice Point Unique Identification
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By doing this, we also avoid counting the lattice points on the axes (which are not of interest to us,
since n=0 and m=0 do not fulfill the differential equation). Now, our goal is to count the number
of unique unit squares that are within the disk. Notice that since we chose the lattice points to
be the top corner, we have automatically turned the area of the disk into an overestimate (since
it also includes parts of unit squares that are not completely inside the disk). Thus, we have that
the overestimate is:

1
4

�
Area of Disk

Area of Unit Square

�
= (n2+m2)�

4
;

where we divide by 4 to indicate we care about the first quadrant (positive, n,m only).

4.2 Lower Bound

Next, we will try to work out a lower bound. We will try to purposely underestimate the number
of lattice points within the circle. In order to do this, we will again follow a similar procedure as
we did with the upper bound as choose a unique lattice point for each unit circle as follows:

Figure 9. Bottom-Diagonal Lattice Point Unique Identification

We know that any unit circle that is include is most definitely a lower bound since any unit circle
that is only partially covered by the disk will correspond to a lattice point that is truly inside the
disk.

The only thing we must account for is the axes points which must not be counted. Interestingly,
all the axes points are double counted and the origin is counted 4 times. Therefore, if we get an
overestimate of the number of the number of axes points, multiply it by 2 and add 4, that will give
us a good overall lower bound.

The number of axes points can be overestimated with (n2+m2)
p

. Therefore, we have the over-
estimate of all axes points as 8 n2+m2

p
+4 . Thus, our overall underestimate is

(n2+m2)�¡ 8 n2+m2
p

¡ 4
4

= (n2+m2)�
4

¡ 2 n2+m2
p

¡ 1:

4.3 Applying Courant's Nodal Domain Theorem

Putting the upper bound and lower bound together, we get that

(n2+m2)�
4

¡ 2 n2+m2
p

¡ 1�N(�nm)�
(n2+m2)�

4
:

We can make some quick observations about this bound. We know that the number of nodal
domains of �n;m=mn. Thus, to integrate this result with Courant's Nodal Domain Theorem, we
want to show that:

mn<
(n2+m2)�

4
¡ 2 n2+m2
p

¡ 1:
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In other words, that our lower bound on eigenvalue number is an upper bound for the number of

nodal domains. We do not expect it to be true for all n;m since (n2+m2)�

4
¡ 2 n2+m2
p

¡ 1 is a
lower bound, but we do expect that there exists some point such that after (n2+m2) is greater
than a certain number that the bound always holds.

To proceed, we already know via algebraic inequality that

mn� m2+n2

2
:

Thus, we want to check that:

m2+n2

2
� (n2+m2)�

4
¡ 2 n2+m2
p

¡ 1:

We can show this by introducing a new variable t= n2+m2
p

. Thus, in terms of t, we wish to
show that:

t2

2
� � t2

4
¡ 2t¡ 1:

If we rearrange the equation, we get that:

0�
�
�

4
¡ 1
2

�
t2¡ 2t¡ 1:

This is only true for some t � t0. We can find this t0 by solving for the roots of the quadratic
equation to get that

r�=
2

(�¡ 2)(�2+ 2+�
p

):

A quick testing of values shows that for [r+;1) the polynomial is positive, thus, we get that
t0=

2

(�¡ 2)(2 + 2+�
p

)� 7.47. Therefore for n; m that fulfill n2+m2
p

> 7.47, we get that the

Courant Nodal Domain Theorem holds. Therefore, we have reassurance that our lower bound is a
valid and a relatively tight lower bound. For the other values of n2+m2

p
<7.47, we can manually

check and confirm that the Courant Nodal Domain Theorem holds. Thus, we have verified the
Courant Nodal Domain Theorem for the square case.

Finally, it is important to note that our analysis here can be formed on many different geometry
types, such as torus and spheres. The torus case is remarkably similar to the square case since the
boundary conditions in the torus require that the �boundaries� have the same value. The more
difficult case is the sphere case in which one must consider a more complicated Laplacian and
eigenfunctions. These cases will be discussed in future sections.

4.4 Stern's Results on Nodal Domains

This section will give a summary of Antoine Stern's results. This section is based off the paper
by Berard and Helffer [6] where they summarize and expand Stern's work. They discuss the
important question of how �low� the number of nodal domains can get for eigenfunctions with large
eigenvalues. The Courant Nodal Domain Theorem tells us how large the number of nodal domains
can get but nothing about a possible lower bound. In general, the number of nodal domains can
be quite small (i.e. it can be 2 even for eigenvalues that are far from the first). The paper [6] goes
over many important findings from Stern about such sequences of eigenfunctions with small number
of nodal domains and expands on them.
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The main focus of the paper is the sparsely-published work of Antoine Stern (1924) in her PhD
thesis under R. Courant. Stern showed that in the square (Dirichlet) and 2-sphere that there
exists an infinite sequence of eigenvalues and corresponding eigenfunctions with exactly two nodal
domains. Stern even provided an exact sequence of eigenvalues. She showed that on the square,
the sequence of eigenfunctions with 2 nodal domains have eigenvalues �2m;1=1+4m2. Her proof
technique was via a checkerboard argument (based on the sign of the function +/- ) and analysis
of critical zeros of the eigenfunctions on the square. The case of �4;1 is discussed in-depth in the
paper [6].

The remarkable feature of Stern's results is that it can be applied to different geometries and
domains very easily. For example, even though Stern herself did not consider these geometries,
infinite sequences with as low as two nodal domains on the the torus and sphere can be discovered
and proved using her technique.

Stern's technique can be dramatically visualized by looking at eigenfunctions of the form u2r;1+
�u1;2r. As discussed above the key eigenvalue is �2r;1=1+4 r2 and the eigenfunctions are of the
form u2r;1+ �u1;2r where � is a real parameter close to 1. When �=1, there are a lot of nodal
domains, but right when � departs from 1, it �splits� up these nodal domains and connects all the
previously separate regions. This is nicely depicted for the case r=3.

Figure 10. Nodal Set of �37 (�6;1) [6] with Different Constants

5 Other Geometries and Extensions

5.1 Torus

M

The torus case shares great similarity to the square case. Given that we are working with Dirichlet
conditions, the eigenfunctions on the torus case can be simply identified by replacing the sine
functions with cosine functions in order to incorporate the �even� aspect of the torus boundaries.

Given that sine and cosine have similar periodic nodal points, the analysis of eigenvalue number
turns out to be very similar in torus case as the square case. The eigenfunctions correspond to
lattice points and we can develop similar bounds to determine in Ntorus(�).
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As with N(�), the similarity between the square and torus case also carries over with respect to the
possibility of having only two nodal domains even in eigenfunctions with large eigenvalues. In fact,
as shown in a paper by Jakobson and Nadirashvili [12], we see that it is easier to find such a sequence
of eigenfunctions with 2 nodal domains on the Torus case without using Stern's method [6].

5.2 Sphere
M

The sphere is a departure from the simpler cases of the square and the torus. The eigenfunctions
are no longer simple combinations of trigonometric functions but instead the spherical harmonics.
While working in the spherical case, we work with spherical coordinates and the spherical laplacian.
This allows us to nicely deal with the boundary conditions.

In the sphere case, we again get a �checkerboard� like pattern with the nodal curves in polar
coordinates. Although Stern did not discuss the the Sphere case, Berard and Helffer [6] show that
one can attain two nodal domains for a sequence of eigenfunctions on the 2-sphere. Specifically,
they showed that:

Theorem 11. (Berard and Helffer [6]) There exists an infinite sequence of eigenvalues of the
2-sphere, tending to infinity, and associated spherical harmonics with exactly 2 nodal domains.

Berard and Helffer have an even more general version of this theorem in which they show that
one can find a sequence of eigenfunctions with a specified number of integer domains greater than
three (albeit with some more restrictions on the integer of choice).

5.3 The Quantum Harmonic Oscillator
The two-dimensional isotropic quantum harmonic oscillator is defined as

Ĥ :=¡�+ jxj2;

acting on L2(R2;R).

Our analysis on the square, torus, and sphere of the lower bound of nodal domains is not limited
to the simple Laplacian. Similar results can be shown for the 2D quantum harmonic oscillator.
Moreover, the method of proof for the Schrodinger operator is very similar and heavily inspired
from the methods that Stern used in the Laplacian case on the square.

It is quite fortuitous that the quantum harmonic oscillator can be put under a similar analysis.
Although surpassing, many theorems, like the Faber-Krahn inequality, have almost exact analogs
in the quantum harmonic oscillator case as seen in Charron [15]. These analogous results provide
the foundation for the analysis of nodal domains on the quantum harmonics oscillator and allow
us to use the same methods in both cases.

Leydold [13] showed that given Hn as the nth eigenspace of the isotropic quantum harmonic
oscillator, with eigenvalue 2(n+1). If n=4 k for k � 1, there exists an eigenfunction in Hn with
exactly three nodal domains and that it is the best possible lower bound.

Moreover, Berard and Helffer in [14] have shown using a very similar perturbation argument as
Stern to identify such eigenfunctions discussed in Leydold and many other interesting sequences
in the quantum harmonic oscillator case. In the same paper, they have also shown the rigorous
existence of a sequence of eigenfunctions with �many� eigenfunctions.
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This analysis of the quantum harmonic oscillators shows another potential application of the
Courant Nodal Domain Theorem and how the theorems and methods built for analyzing the
Dirichlet Laplacian can be applied further to more general operators. Quantum harmonic oscil-
lators are an important are of research in mathematical physics and partial differential equations,
and these analyses can provide important insights into related problems.

6 The Discrete Laplacian on Graphs

6.1 Courant Nodal Domain on Graphs

The Courant Nodal Domain Theorem has significant applications to graphs. The famous results
of Fielder used for spectral partitioning are an example of its success and capabilities.

A discrete eigenvector on a graph is defined only on the vertex set V of a graph ¡. We assume
that the graph is simple, undirected, and loop-free. We assume that it's matrix representation is
A and that it's Laplacian is L with associated quadratic form

L=uTLu=
X
Pi�Pj

(ui¡uj)2:

The discrete Laplacian eigenvalue problem similarly has a discrete spectrum; the eigenvalues are
positive and have finite multiplicity. Additionally, the eigenvalues are orthogonal. Although we
will not prove these properties explicitly here, the results follow directly from well-known linear
algebra results on Hermitian matrices.

Since we want to make analogous results as in the continuous case in the discrete case, we need to
define corresponding concepts in the discrete case. Firstly, we will define the discrete counterpart
of nodal domains. Nodal domains are slightly more difficult in the discrete case since the nodes of
the graph need not be vertexes (for example, a vertex does not need to be 0 and instead the sign
of the vertexes can switch across one edge). This motivates the following definitions, which are
defined in terms of an eigenfunction ui defined on the graph ¡:

Definition 12. A strong positive (negative) sign graph S is a maximal, connected subgraph of ¡,
on vertexes Pi2V with ui> 0 (ui< 0)

Definition 13. A weak positive (negative) sign graph S is a maximal, connected subgraph of ¡,
on vertexes Pi2V with ui� 0 (ui� 0) and with at least one Pi2V having ui> 0 (ui< 0).

In the graph below, we have an example of what �nodal domains� will look in the discrete case. In
this case, they are both strong and weak sign graphs.

-2 -1

1 1

 i

-1 -2

¡

Figure 11. Nodal Domains on Graphs
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There are many interesting analogous theorems we can prove corresponding to our previous results
in the continuous case with the Courant nodal domain theorem. One with remarkable similarity
is the following:

Theorem 14. (Weak Graphs) If ¡ is connected, then any eigenvector corresponding to �n has
at most n weak sign graphs.

The theorem on weak graphs looks very similar to the Courant Nodal Domain Theorem. In order
to prove this theorem, we need to bring in some important definitions and lemmas.

Definition. (Adjacent Graphs) Two different strong or weak sign graphs S1, S2 are said to be
adjacent if there exist P12S1 and P22S2 such that P1�P2, where P1 and P2 are vertexes and �
represents sharing an edge.

Now, we will set up some notation and definitions for the rest of this section. Assume that u has
m strong sign graphs, Si for 1� i�m, we will define wi such that wi=u on Si but 0 everywhere
else. We then can see that by construction

u=
X
i=1

m

wi;

we now form the following function:

v=
X
i=1

m

ciwi;

where ci are the weights of v.

We can identify some basic facts about the zero vertexes of u.

Lemma 15. The zero vertex belongs to exactly one weak sign graph and exactly one weak negative
sign graph. Moreover, if two different weak sign graphs S1; S2 have a non-empty intersection, then
they must have opposite signs.

We will now use these facts to prove a lemma about adjacent weak sign graphs.

Lemma 16. Suppose S1; S2 are adjacent weak sign graphs. There is a pair of vertexes P1; P2 such
that P12S1, and P22S2/S1 and P1�P2

Proof. Assume that S1 is weak positive and S2 is weak negative. If S1; S2 are disjoint, then there
must exist P1�P2 since the two graphs are adjacent. If they have a non-empty intersection, then
S1\S2 is a subgraph of ¡. Not all the vertexes P12S1\S2 can be interior vertexes. Any boundary
vertex P1 will have the required property such that P2�P1 �

We suppose that u has m�n weak sign graphs Si, and we have

v=
X
i=1

m

ciwi;

and choose ci not all zero. Moreover, we choose the ci to make v orthogonal to the first m¡ 1
eigenvectors of L.

Just like we had a unique continuation principle for the coefficients in the continuous case, we will
again have a unique continuation principle reference (but for the discrete case).
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Lemma 17. (analog of unique continuation) Suppose m>n and two of the weak sign graphs
of S1 and S2 of u are adjacent. Without loss of generality, we may suppose that S1 is weak positive
and S2 is weak negative. Then c1= c2, where ci are the corresponding relative weights in v.

We will not prove this lemma here, but it is proven by Davies [5]. Now, this lemma gives us the
key component to complete our proof for Theorem 15 on weak graphs. We now present a proof of
this theorem:

Proof. Assume for contradiction that u has m weak sign graphs, denoted Si for i=1; : : :m and
m>n consider v defined as above. At least one of the coefficients (without loss of generality, the
first coefficient) c1 is nonzero since we required that v be non-zero. Then, since n�1, we have that
m� 2 since m>n.

Since ¡ is connected, S1 must be adjacent to at least one other sign graph, S2. Now, using the
analog of the unique continuation principle (the previous lemma) we have that it must be the case
that c1= c2. If m� 3, again due to the connectivity of ¡, one of the S1 or S2 must be adjacent to
another sign graph S3, thus c1= c2= c3 again by the lemma.

We repeat this m¡ 1 more times until we get that c1= c2= � � � = cm. Therefore, we have that it
must be the case:

v=
X
i=1

m

ciwi= c1
X
i=1

m

wi= c1u:

However, this contradicts the assumption v is orthogonal to the eigenvectors of L. Therefore
m�n �

Thus, we have shown this analog of Courant's nodal domain theorem in the graph case.

6.2 Fiedler's Results

The analysis of the Laplacian on graphs is a very fruitful area of research that has been explored
deeply. Results like Theorem 15 are built on the foundation of many results about the Laplacian
eigenvalue problem on graphs. A combination of linear algebra and graph theory results come
together to provide theorems and lemmas that we implicitly assumed in the previous section.

Results like Theorem 15 contribute to the much bigger field of eigenvalue graph problems. Some
of the most famous and applicable results are by Miroslav Fiedler. His analysis on Laplacian
eigenvalues has revealed the connections between the Laplacian eigenvalue problem and the alge-
braic connectivity properties of graphs. Fiedler's insights are especially useful in spectral graph
partitioning algorithms. Seen below is an example pseudocode for a partitioning algorithm:

Algorithm

1. Compute the second eigenvector, x; of the laplacian

2. Sort the vertices so that x's elements are arranged as:

x1�x2: : ::�xn

3. Let Si=
�
f1; : : : ig i�n/2
fi+1; : : : ng i >n/2

be subgraphs

4. return mini f (Si)g

where � is the conductance of a subgraph, defined on a graph G=(V ;E) with vertices and edges
V and E, as

�(G)= min
S�V ;vol(S)�jE j

 (S);where  (S) := jE(S; S
�)j

vol(S)
;
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that is, the ratio of the number of edges cut to the volume of the set (sum of degrees). Many prob-
lems in computer science revolve around determining how connected a graph is and determining
optimal ways to partition graphs into subgraphs with the goal of having the number of cuts being
minimized and the number of vertices in each subgraph as equal as possible.

One of the most important results Fiedler has shown toward this goal is that the two subgraphs
resulting from the spectral partitioning algorithm are always connected. This ties very closely to
our analysis that the second Laplacian eigenvector has two weak sign graphs, which we showed in
Lemma 17. Fiedler also has results on giving tight bounds on the number of weak sign graphs for
specific types of graphs.

This field is still very active and current research still tries to find better and better algorithms
to partition a graph. Furthermore, spectral partitioning in itself has applications to Markov chain
mixing, high dimensional expanders, and many more important applied problems.
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8 Appendix

8.1 Linear Algebra Results

Hermitian matrices have remarkably nice properties. These properties are explored thoroughly
in Matrix Analysis [11]. These properties give rise to two important theorems about Hermitian
matrices that are especially related to our analysis of the Dirichlet Laplacian eigenvalue problem.

The first theorem is the Rayleigh Quotient theorem, very similar to the theorem presented in this
report.

Theorem 18. Let A2Mnbe Hermitian, let the eigenvalues of A be ordered as in:

�min=�1��2� : : :��n¡1��n=�max:

Let i1; : : : ik be given integers with

1� i1< : : : < ik�n;

let xi1; : : : ; xik be orthonormal and such that

Axip=�ipxip;

for each p=1; : : : ; k and let S= spanfxi1; : : : xikg then we have that:

a)

�i1 = min
fx:0=/ x2Sg

x�Ax
x�x

� max
fx:0=/ x2Sg

x�Ax
x�x

= �ik:

b) For any unit vector x,

�i1� x�Ax ��ik:

c) For any unit vector x,

�min� x�Ax ��max;

and

�min = min
x=/ 0

x�Ax
x�x

�max = max
x=/ 0

x�Ax
x�x

:

Proof. The intuition of the proof stems from the decomposition of A into eigenvectors. We assume
that x is unit length in S. Then we can write x as

x=�1xi1+ � � �+�kxik:
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In this form, we see that:

1=x�x= j�1j2+ � � �+ j�kj2:

This implies that:

x�Ax= j�1j2�i1+ � � �+ j�kj2 �ik;

from the convexity of the square function, it is clear that the optimization will extract the minimum
or maximum eigenvalue. �

Remark. We can also see a geometric interpretation of this theorem (specifically part c). We can
think of �max as the maximum of the continuous real-valued function f(x) = x�Ax on the unit
sphere in Cn (a compact set) since we are restricting to unit length.

From this theorem, we can go further to get almost exactly the same theorem as we had in this
report (Theorem 3 and 4). It is called the Min-Max theorem or the Courant-Fischer Theorem:

Theorem 19. (Courant-Fischer Theorem)

Let A 2Mn be a Hermitian and let �1� : : : � �n be the algebraically ordered eigenvalues. Let
k= f1; : : : ng and let S denote a subspace of Cn. Then

�k= min
fS:dim(S)=kg

max
fx:0=/ x2Sg

x�Ax
x�x

;

and

�k= max
fS:dim(S)=kg

min
fx:0=/ x2Sg

x�Ax
x�x

:

The Courant-Fischer theorem follows very nicely from the Rayleigh Quotients theorem. In the
Rayleigh quotients, we only had one optimization (a min or a max). This was because the set that
we were searching in was limited and we were only expecting to get out the maximum or minimum
eigenvalue. The Courant-Fischer theorem generalizes to any eigenvalue �k. The way that it is able
to generalize is by limiting the search domain S behind the scenes with the second optimization.
For example, by taking the minimum of all the maximums, it ensures that its picking up the �k
eigenvalue instead of �k+1 since the minimization chooses the correct search space S that has
dimension i and contains the kth eigenvector.

8.2 Domain Monotonicity of Eigenvalues (Neumann Data)

Let 
1; : : :
m be as above, and also assume:

M� =
�1[
�2[ : : :
�m:

For each r=1;:::m add Neumann data to @
r\M and leave original data on @
r\M unchanged.
Arrange all the eigenvalues of 
1; : : : ;
m in increasing order, with repetition according to multi-
plicity:

0� �1� �2� : : :

Then for each k=1; 2; : : : we have

�k��k:
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Proof. Let  i:M� !R be the eigenfunction of �i when  i is restricted to the appropriate sub-
domain and  i be 0 identically everywhere else. Now if f is any function in H(M), then f 2H(
r)
for every r=1; : ::m. We can therefore argue that if f is orthogonal to  1; : ::  k¡1 in L2(M), then:

D[f ; f ] =
X
r=1

m Z

r

krf k2dV�
X
r=1

m

�k

Z Z

r

f2dV= �kkf k2;

but there exists a nontrivial

f =
X
j=1

k

�j�j ;

orthogonal to  1; : : :  k¡1 in L2(M). Then,

D[f ; f ]��kkf k2: �

8.3 The Unique Continuation Principle

We use the unique continuation principle at the end of our proof of the Courant Nodal Domain
Theorem to prove our contradiction. We will provide here the statement of the theorem and some
discussion.

The unique continuation principle was proven in remarkable generality by N. Aronszajn [7]. There
are many forms of the unique continuation principle, and we will just provide a specific form that
is useful for our analysis.

If we consider a general operator of the form P =¡�+ q where q 2L1(
). Then, we have that:

Theorem 20. (Unique Continuation Principle) If u2H2(
) satisfies

Pu=0 in 
;

and we have that:

u=0 in some ball B contained in 
;

then u=0 in 
.

This theorem is very powerful and useful especially in the situation we set up at the end of the
Courant Nodal Domain Theorem proof. It is able to deliver the final blow for contradiction.

A quick corollary follows from this theorem:

Corollary 21. Since each eigenfunction is C1(M) and has the unique continuation property, it
cannot vanish on an open set.

This corollary was used in our contradiction argument in the Courant Nodal Domain Theorem.

8.4 Bessel Functions

Bessel functions are solutions to the differential equation:

x2
d2 y
d x2

+x d y
d x

+(x2¡n2) y=0;
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for an arbitrary complex number n, which is called the �order� of the Bessel function. We will
concentrate on the case that n is an integer or half-integer.

The solution of interest to us are called Bessel functions (of the first kind). One can write out a
series expansion as

Jn(x)=
X
m=0

1
(¡1)m

m!¡ (m+n+1)

�
x
2

�
2m+n

;

where ¡ is the gamma function (factorial). We are often interested in the roots of these function.
Further discussion on Bessel's functions can be found in Borthwick [1].
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