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Introduction

• An n by n complex matrix Q is unitary if

QQ∗ = I,

where Q∗ is the conjugate transpose of Q. The group of n by n
unitary matrices form the n-th unitary group U(n).

• Define the unitary group as U := colim U(n) where the transition
maps are natural inclusions. The celebrated Bott periodicity theo-
rem ([2], [3]) states that the homotopy groups of U are periodic.

Theorem 1. The stable homotopy of the classical groups is peri-
odic; that is,

πk(U) = πk+2(U).

Different proofs of the theorem:

• Bott’s original proof by Morse theory.

• Atiyah’s proof relating the Bott periodicity to topological K-theory
[1].

• This project presents an algebro-geometric proof of Bott period-
icity for the unitary group via the geometry of affine Grassmanni-
ans.

Infinite Grassmannians

• Let V be a finite-dimensional complex vector space.

Definition. The Grassmannian Gr(n;V ) is the space of all n-
dimensional linear subspaces of V .

• Gr(n;V ) has a structure of compact smooth manifold.

Example. Gr(1;Cn) is the space of all lines in Cn passing through
origin, which is the (n−1)-dimensional complex projective space.

Definition. Define the Grassmannian manifold of V to be
Gr(V ) :=

⊔∞
n=0 Gr(n;V ). If V = Ck, we write Gr(V ) = Gr(k).

• We can glue all Grassmannian manifolds together to get an infinite
dimensional Grassmannian as follows.

• Consider the ring of all complex Laurent series C((t)) (or C((t))k
for some positive integer k), which is an infinite-dimensional com-
plex vector space.

Definition. Define the complex points of the Sato Grassmanni-
ans as

Gr(V )(C) := Z×
∞⋃
n=0

Gr(tnC[[t]]/C[[t]])

• There is also a notion of affine Grassmannians.

Definition.

GrGLn
(C) :=

∞⋃
m=1

{
C[[t]]-submodules of tmC[[t]]n/t−mC[[t]]n

}
.

Affine Grassmannian in Algebraic Geometry

• We now introduce affine Grassmannians as algebro-geometric objects, for
details see [6].

• Let k be a field. Let k[[t]] and k((t)) be the rings of formal power series and
the field of Laurent series with coefficients in k, respectively.

Definition. Let R be a k-algebra. Define an R-family of lattices Λ in k((t))n

to be a finitely generated projective R[[t]]-submodule of R((t))n such that
Λ[t−1] = R((t))n.

Definition. The affine Grassmannian GrGLn
(for GLn) is the presheaf that

sends each k-algebra R to the set of R-family of lattices.

• By a presheaf we mean a covariant functor from the category of affine k-
schemes to the category of sets.

• The following result forms the foundation for further discussion.

Theorem 2. The affine Grassmannian GrGLn
is represented by an ind-

projective scheme.

• The proof shows that there is a natural closed embedding

GrGLn
→ colimNGr(2nN).

• Affine Grassmannians can be defined more generally over any reductive
group scheme G over k[[t]].

• There are two equivalent characterizations:

Characterization 1. The affine Grassmannian GrG of G is given by

GrG(R) :=
{
(E , β)

∣∣ E a G-torsor on DR, β : E|D∗
R
≃ E0|D∗

R
a trivialization

}
.

Characterization 2. The affine Grassmannian GrG is the fpqc quotient
[G(k((t)))/G(k[[t]])].

• There is also an algebro-geometric notion of Sato Grassmannians.

Definition. We say that a topological vector space is linearly compact if it is
the topological dual of a discrete vector space. A topological vector space is
locally linearly compact if it admits a basis of neighborhoods of 0 of linearly
compact subspaces. A lattice in a Tate vector space V is a linearly compact
open subspace of V .

Definition. Let V be a Tate vector space. The Sato Grassmannian Gr(V ) is
the ind-scheme

Gr(V ) := lim−→ L1⊂L2
Gr(L2/L1),

where the direct limit is indexed by L1 ⊂ L2 that are two lattices in V .

• A standard example of a Tate vector space is V = k((t))n with the usual t-
adic topology.

• It contains Λ0 = k[[t]]n as a standard lattice, and lattices in k((t))n are pre-
cisely subspaces that are commensurable to Λ0.

• The proof of the Bott periodicity boils down to showing that the closed em-
bedding

GrGLn
→ Gr(V )

induces isomorphisms on lower homotopy groups at the level of C-points.

Outline of the Proof

Lemma. The closed embedding

GrGLn
→ Gr(V n)

induces isomorphisms on homotopy groups on the level of
C up to dimension 2n− 2 (with the analytic topology).

• The proof uses the Schubert decomposition of the affine
Grassmannians and a dimension calculation.

• To conclude we look at the following commutative diagram.

• The relationship between the loop space and affine Grass-
mannian is established by Pressley-Segal [5] and, much
more generally, by Quillen [4].

Future Work

• Generalize this proof to O and Sp.

• Generalize this closed embedding and consider possible im-
plications in algebraic K-theory.

• Say something in the motivic setting.
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