
Estimated Prophet: The Prophet Inequality in Fair, Sample, and

Multi-Selection Settings

Quinn McIntyre, Ezra Steinberg, Peter Westbrook, Ethan Zhang

August 2023

Abstract

The prophet inequality is a classic model of online decision-making that has been extensively
studied for nearly half a century. With the aim of making more realistic assumptions, many
variations of this model have been explored. Some recent work has focused on generalizing the
prophet inequality to situations where multiple selections need to be made, or some explicit
notion of fairness needs to be satisfied, or full knowledge of the distributions is unavailable.
In this paper, after presenting several classic proofs of the prophet inequality, we extend these
recent advancements in several ways.

Arsenis and Kleinberg [8] introduced the notions of identity-independent fairness (IIF) and
time-independent fairness (TIF), and showed that it is possible to construct an algorithm satis-
fying these properties that is still optimally competitive. In this paper, we make explicit their
algorithm, and discuss a linear program that may help generalize their result to the k > 1
selections setting.

We also show that any offline IIF algorithm is at best 25
27 -competitive, and prove that any

offline IIF algorithm which is only allowed to select the maximum of the realized variables is at
best 1

2 -competitive.
Arsenis and Kleinberg also present a 1

9 -competitive IIF and TIF algorithm that makes de-
cisions based on access to only two samples from each distribution. We analyze their algorithm
more precisely, and demonstrate that it is in fact 1

6 -competitive.
Finally, we resolve a recent conjecture of Pashkovich and Sayutina [10], and demonstrate

that in the setting of making k > 1 selections with access to only a single sample from each
distribution, the algorithm that sets the kth largest sample as a threshold is 1/2-competitive.
Keywords: Online algorithms, prophet inequalities, fairness, k-select, single sample, linear
programming, contention resolution

Contents

1 Introduction 1

1.1 Our results . 2

1.2 Our techniques . 4

2 A Few Proofs of the Prophet Inequality 5

2.1 A proof based on dynamic programming . 5

2.1.1 A variation: competing against the the top k picks of the prophet 6

2.2 A proof based on induction on the number of random variables 7

2.3 A proof based on the idea of an online contention resolution scheme 10

2.3.1 A variation: graph matching with edge arrivals 11

3 An Explicit Algorithm for a Fair Prophet Inequality 12

3.1 The explicit algorithm . 12

3.2 Algorithm is well-defined . 13

3.3 Algorithm is IIF and TIF . 14

3.4 Algorithm is 1
2 -competitive . 15

4 Linear Programming to Solve k-Select Prophet Inequalities 16

4.1 Linear program for k selections . 16

4.1.1 Bijection between algorithms and linear program 16

4.1.2 The expected value of the algorithm . 20

5 An Exploration of Offline IIF Algorithms 21

5.1 Example where any offline IIF algorithm is at best 25
27 -competitive 21

5.2 Considering offline IIF algorithms which only choose the maximum 23

6 A Double-Sample Online Algorithm Satisfying IIF and TIF 24

6.1 1
6 bound with continuous random variables . 25

7 Single Sample Prophet Inequalities with k Selections 27

7.1 Introduction . 27

7.2 k = 2 . 29

7.2.1 j = 2 . 29

7.2.2 j = 3 . 30

7.2.3 j = 4 . 30

7.2.4 j ≥ 5 . 30

7.3 k = 3 . 30

7.3.1 j = 3 . 31

7.3.2 j = 4 . 31

1

7.3.3 j = 5 . 31

7.3.4 j ≥ 6 . 31

7.4 k = 4 . 32

7.5 k ≥ 5 . 32

7.6 Tightness . 36

8 Open Questions 36

9 Acknowledgements 36

1 Introduction

Suppose that you’re an employer and you’re looking to hire someone for a position. You have a
list of candidates, each of whom sent in an application, so you have a rough sense of their abilities
and how they’ll perform on the job. However, you’ll gain a lot more information when you’re able
to interview each candidate.

In this setup, after each interview, you have to make an irreversible decision: to hire or to pass.
You can only choose one candidate for the position, so once you hire someone the process is over.
Additionally, once you pass on a candidate, there’s no opportunity to revoke your decision after
further interviews. What is your strategy? How does the uncertainty of future candidates impact
each decision that you make?

This is an example of an online decision-making problem, where you don’t start with all of the
information at once. Instead, you gain additional information after every step of the process. By
contrast, an offline decision-making problem is one in which you begin with all the information
necessary to make a decision.

One way to model the situation mathematically is as follows. We have a fixed number of indepen-
dent positive random variables X1, X2, . . . , Xn, and we know beforehand all of their distributions
and the order in which they appear. One by one, we observe the realization of the random variable
and decide whether we accept or reject this value. Similar to the hiring problem from earlier, both
decisions are irreversible, and an acceptance ends the process. Our goal is to create an algorithm
that maximizes the expected value of our pick.

A reasonable way to measure the quality of such an algorithm is to take the ratio of the expected
value of our algorithm and the expected value of a prophet, who is able to see all of the realized
values and choose the largest one. Essentially, we’re comparing how our pick does on average to
the true maximum of the realized values (also averaged out over all possible realizations). The
prophet inequality, introduced by Krengel and Sucheston [1], states that for any random variables
X1, . . . , Xn, we can create an algorithm such that

E[ALG]

E[PROPHET]
≥ 1

2
.

In this paper, we begin with modern overviews of several different proofs of the prophet inequality.
We then focus on two variations of the prophet inequality.

The first variation explores the notion of fairness in the context of prophet inequalities. Arsenis
and Kleinberg [8] introduced two ideas of fairness for these decision-making algorithms: identity-
independent fairness (IIF) and time-independent fairness (TIF). Identity-independent fairness en-
sures that two candidates will have the same chance of being selected given they have the same
value. Time-independent fairness ensures that a candidate’s chance of being selected is independent
of the time at which they arrive. In this paper, we analyze various IIF and TIF algorithms, in both
the online and offline settings, and evaluate how well they perform.

The second variation explores making k selections; the goal is now to choose a fixed number k of
the random variables, rather than just one, and to maximize their sum. We investigate this in
the context of having access to only a single sample from each distribution, and resolve a recent
conjecture of Pashkovich and Sayutina [10].

1

1.1 Our results

To formally state our results, we start by defining two notions of fairness, IIF (identity-independent
fairness) and TIF (time-independent fairness), the former which is defined for an algorithm ALG
and the latter a family of algorithms {ALGπ}π∈Sn :

Definition 1 (IIF [8]). An algorithm ALG for a given instance I = ((Xi)
n
i=1, π) supported on a set

S is said to satisfy identity-independent fairness if there exists a function p : S → [0, 1] such that:

Pr[ALG hires i|Xi = x] = p(x),∀i ∈ [n], x ∈ S, π ∈ Sn.

We note that this definition works for both the online and offline settings. In the offline setting, we
know the realizations of all the random variables from the beginning and must select one.

Definition 2 (TIF [8]). A family of algorithms {ALGπ}π∈Sn, one for each arrival ordering π, for
an instance I = (Xi)

n
i=1 supported on a set S is said to satisfy time-independent fairness if there

exists a function p : [n]× S → [0, 1] such that:

Pr[ALGπ hires i|Xi = x] = p(i, x),∀i ∈ [n], x ∈ S.

Arsenis and Kleinberg [8] prove via linear programming that there exists a 1
2 -competitive algorithm

that is both IIF and TIF. In our paper, we discuss an explicit version of their algorithm that
achieves this 1

2 competitive ratio:

Algorithm 1: Explicit IIF and TIF Algorithm

Parameters: I = ((Xi)
n
i=1 , π)

for t=1, . . . , n do
i← π(t).
Inspect Xi and let x← Xi.
Qt ← 1−

∑t−1
k=1

∑
y∈S fπ(k)(y)

Pr[Xmax=y]
2
∑n

i=1 Pr[Xi=y]

Flip a coin with Heads probability equal to qt(x) =
Pr[Xmax=x]

2Qt
∑n

i=1 Pr[Xi=x]

if coin comes up Heads then
Hire i and halt.

else
Reject i and proceed.

end

end

Theorem 1. Algorithm 1 is an explicit IIF and TIF online algorithm that is 1
2 -competitive.

Additionally, we also explore the possibility of algorithms making k > 1 selections while being IIF
and TIF. Finding an algorithm that maintains fairness whilst competitively selecting k variables is
challenging, so we find a linear program such that a solution to the linear program gives an online
implementable algorithm. We conjecture that we can use this linear program to develop an IIF
and TIF algorithm for making k selections.

2

The next two theorems discuss how the IIF condition affects algorithms in the offline setting.
Arsenis and Kleinberg [8] showed that E[OPTIMAL OFFLINE IIF ALG] ≥ 1

2E[PROPHET] for
any random variables, but they do not have a tight example and leave as an open question whether
this constant of 1

2 can be improved. Theorems 2 and 3 attempt to make progress on that open
question.

Theorem 2. We can find random variables such that, for any offline IIF algorithm, we have

E[ALG] ≤ 25

27
E[PROPHET]

Theorem 3. When we consider an offline IIF algorithm, along with the condition that it can only
either accept the maximum or not make a decision at all, it can be at best 1

2 -competitive.

In their paper which introduced the notions of IIF and TIF, Aresnis and Kleinberg [8] provide a 1
2 -

competitive offline IIF algorithm. Their algorithm was restricted to either accepting the maximum
or not making a decision at all, which means the bound presented in Theorem 4 is tight. Their
algorithm uses a sampling approach, which does not actually need full information about the
distributions, but instead only needs to obtain a single sample from each random variable.

An algorithm that relies on one sample of realizations is called a single sample algorithm, while
an algorithm that relies on two sample of realizations is called a double sample algorithm. Arsenis
and Kleinberg [8] also presented the following online, double-sample algorithm which is both IIF
and TIF:

Algorithm 2: Double-sample Online IIF and TIF Algorithm

Data: Yi, Zi ∼ fi, π ∈ Sn

for t=1, . . . , n do
Observe Xπ(t) ∼ fπ(t).

if Xπ(t) > Ymax and (Xπ(s) < Ymax for all s < t) and (Zπ(s) < Ymax for all s ≥ t) then
Hire Xπ(t).

end

end

In their paper, this algorithm was proven to be 1
9 -competitive, worse than the 1

2 resulting from
placing either the online or sampled based constraints alone on the algorithm. However, this bound
is not tight, and with the following result

Theorem 4. Algorithm 2 is IIF and TIF. Moreover,

E[ALG] ≥ 1

6
E[Xmax]

we improve the bound to 1
6 . In Arsenis and Kleinberg’s work, all definitions and algorithms were

constructed assuming the random variables are discrete. In our proof, it will be convenient for
us to extend these definitions to the continuous case, where we introduce the following equivalent
definitions:

3

Definition 3 (Continuous IIF). For each i, let Si = Xi · 1(ALG accepts Xi). Then an algorithm

is IIF if and only if Si is continuous and si(x)
fi(x)

is independent of i for each i = 1, . . . , n, where si is
the pdf of Si.

Definition 4 (Continuous TIF). Define {ALGπ}π∈Sn as before. For each i and ALGπ ∈ {ALGπ}π∈Sn,
let Si,π = Xi ·1(ALGπ accepts Xi). Then {ALGπ}π∈Sn is TIF if and only if Ai,π(x) is differentiable

and
si,π(x)
fi(x)

is independent of π for each π ∈ Sn and i = 1, . . . , n, where si,π(x) is the pdf of Si,π.

We claim that in the continuous case, algorithm 2 remains IIF and TIF, and satisfies the 1
6 bound.

Lastly, we explore what happens with k ≥ 2 selections, without any regard for fairness, given
that we have access to a single sample from each distribution. Define X1 = Xmax, Xk =
max({X1, . . . , Xn} − {X1, . . . , Xk−1}). Define Y i analogously. We study the algorithm which
sets the kth largest sample as a threshold, and show that it is 1/2-competitive against a prophet
who always picks the k largest X-values, defining X-values as realizations of the random variables
X1 . . . Xn:

Algorithm 3: Single-Sample k-select Algorithm

Data: Yi ∼ Xi

j ← 0
for t=1, . . . , n do

if Xt > Y k and j < k then
Hire Xt.
j ← j + 1

end

end

Theorem 5. For any k, Algorithm 3, for continuous random variables Xi, is
1
2 -competitive, that

is,

E[ALG] ≥ 1

2
E[

k∑
i=1

Xk]

Furthermore, this lower bound is tight for all k.

Theorem 5 had previously been known for k = 1 [7]. Pashkovich and Sayutina very recently proved
this result for k = 2 [10], and conjectured that it was true for higher values of k1. Theorem 5
resolves their conjecture. Note that setting the kth largest sample as a threshold is not necessarily
the best choice, and other algorithms for the problem perform better for large values of k [5], but
the simplicity of this algorithm makes it interesting to analyze.

1.2 Our techniques

Our linear program that corresponds to online implementable algorithms making k selections is
inspired by [8] and [11].

1[10] implicitly assumes that the random variables are continuous, because they assume that various random vari-
ables don’t equal each other. Without this assumption, we can also recover the result using randomized tie-breaking
whenever two variables have the same realization. However, Pashkovich and Sayutina are interested specifically in
deterministic algorithms, so the randomized tie-breaking strategy is unavailable to them.

4

To prove theorems 2 and 3, we systematically searched for and optimized possible adversarial
examples.

In algorithm 2, all comparisons are strict. Thus, although the algorithm was originally defined
for discrete random variables, Arsenis and Kleinberg assigned to each random variable a random
number uniformly chosen from [0, 1], which is the value compared in the event of a tie [8]. To make
their discussion more formal, we use continuous random variables. In order to improve the bound
from the paper and prove theorem 4, we explicitly compute the expected value of the algorithm in
terms of the probability density functions of the random variables.

To prove Theorem 5, we first transform the algorithm into a uniformly worse-performing one that
always selects the k lowest X-values above the threshold Y k. We then condition on the combined,
sorted list of X and Y -values {a1, · · · , a2n}, and we express both the algorithm’s and prophet’s
performance in terms of the expected number of picks each makes above aj for each j. The
remainder of the proof involves casework for small values of j and k, and simple lower bounds for
high values of j and k. This is largely done by considering the probability that each X-value is
above aj and is selected by the algorithm/prophet and bounding this using a key lemma due to
Nuti and Vondrák [12].

2 A Few Proofs of the Prophet Inequality

2.1 A proof based on dynamic programming

In this section, we present one of the very first proofs of the prophet inequality, a classic proof due
to ideas of A. Dvoretzky, published by Krengel and Sucheston [1]. Consider a strategy of “optimal
play” that at any decision point makes the choice with the highest expected value conditioned on
our current information. Let Φi be the expected return from optimal play on the random variables
Xi, . . . , Xn. Then Φn+1 = 0, and Φi = E[max{Xi,Φi+1}]. This is because Φn+1 is the result of
optimal play with 0 variables, and optimal play at variable i obtains the maximum of the current
realization and the expected value of optimal play on the remaining variables (if we reject the
current one).

The original inductive version of the proof goes as follows. Let Si = max{Xi, . . . , Xn}. The proof
shows that

Φi ≥ E[(Si − Φi)+]

by (reverse) induction. Clearly the statement is true for i = n + 1. If we assume the statement
holds for k, then

Φk−1 = E[max(Xk−1,Φk)]

= Φk + E[(Xk−1 − Φk)+]

≥ E[(Sk − Φk)+] + E[(Xk−1 − Φk)+]

≥ E[(Sk−1 − Φk)+]

≥ E[(Sk−1 − Φk−1)+]

establishing the inequality for k − 1. This implies the inequality

Φ1 ≥ E[(S1 − Φ1)+] =⇒ Φ1 ≥ E[S1]− Φ1

so we can conclude that Φ1 ≥ 1
2E[S1], where E[S1] = E[Xmax] represents the expected value of the

prophet.

5

2.1.1 A variation: competing against the the top k picks of the prophet

DP Kennedy [3] generalizes the result to a situation where the prophet must select k random
variables, and we must select one. If we define Mi, 1 ≤ i ≤ n, to be ith order statistic, then
Kennedy provides the following upper bound on the sum of the top k order statistics, that is, the
prophet’s choices:

E[
k∑

i=1

Mi] ≤ (k + 1)Φ1

where the case of k = 1 represents the usual prophet inequality.

We will use backwards induction to show that defining Mi,j to be the ith largest order statistic
from X1 to Xj (with Mi implicitly meaning Mi,n), then:

E[
k∑

i=1

Mi] ≤ E[
k∑

i=1

max(Φj+2,Mi,j) + Φj+1]

for k ≤ j ≤ n. Clearly, for j = n, the (in)equality is trivial since Φn+1 = Φn+2 = 0. We have
moreover that

E[
k∑

i=1

max(Φj+2,Mi,j) + Φj+1] ≤ E[
k∑

i=1

max(Φj+1,Mi,j) + Φj+1]

= E[
k−1∑
i=1

max(Φj+1,Mi,j−1) + max(Φj+1,Mk,j−1, Xj) + Φj+1]

The final step there can be seen by splitting into cases: if Xj is not among the k highest of the
first j realizations, then we can ignore it and we have the same sum with the Mi,j replaced with
Mi,j−1, which makes no difference for the highest k realizations. If Xj is among the k highest of
the first j realizations, then Xj > Mk,j−1, and so both sums are max(Φj+1, Xj) added to sum of
max(Φj+1,Mi,j−1) for the highest k − 1 realizations up to j − 1.
We have also that

max(Φj+1,Mk,j−1, Xj) + Φj+1 ≤ max(Φj+1,Mk,j−1) + max(Xj ,Φj+1)

since, in fact, max(a, b, c) + a ≤ max(a, b) + max(c, a) for all real numbers a, b, c. Therefore,

E[
k∑

i=1

max(Φj+2,Mi,j) + Φj+1] ≤ E[
k−1∑
i=1

max(Φj+1,Mi,j−1) + max(Φj+1,Mk,j−1) + max(Xj ,Φj+1)]

= E[
k−1∑
i=1

max(Φj+1,Mi,j−1) + max(Φj+1,Mk,j−1) + Φj]

= E[
k∑

i=1

max(Φj+1,Mi,j−1) + Φj]

Therefore, the inequality

E[
k∑

i=1

Mi] ≤ E[
k∑

i=1

max(Φj+2,Mi,j) + Φj+1]

6

holds for j = n, and it holding for a given j between k + 1 and n implies that it holds for j − 1.
Therefore, it holds for j = k, and so

E[
k∑

i=1

Mi] ≤ E[
k∑

i=1

max(Φk+2,Mi,k) + Φk+1] = E[
k∑

i=1

max(Φk+2, Xi) + Φk+1]

Since max(Φk+2, Xi) ≤ max(Xi,Φi+1) = Φi for i ≤ k, we have

E[
k∑

i=1

Mi] ≤ E[
k∑

i=1

Φi +Φk+1] = E[
k+1∑
i=1

Φi] ≤ (k + 1)Φ1

which concludes the proof.

2.2 A proof based on induction on the number of random variables

In this section, we present another proof of the prophet inequality, which involves changing the
random variables and reducing their number, while increasing the ratio of the prophet’s pick to the
algorithm’s pick (thus putting us at a worse position than before). More specifically, we are going
to perform the changes:

X1, . . . , Xn → Φ2, X2, . . . , Xn

and

Φ2, X2, . . . , Xn → Φ2, X2, . . . , Xn−2, Lp.

for some chancy variable Lp and deterministic Φ2 (defined as in the DP proof). This proof is due
to Hill and Kertz [2], and we aim here to present it in a more accessible and modern fashion.

In the first change, the prophet and algorithm’s expected pick both worsen in an amount so that
the overall ratio increases. In the second change, we will construct Lp so that the algorithm’s
expected pick remains the same and the prophet’s expected pick increases, leading to an overall
ratio increase. This reduces the number of random variables by one, simplifying the problem to
the case where only two random variables remain.

Let X1, . . . , Xn be the random variables in the prophet inequality. Let ALG denote the best
algorithm to select one variable from the list and maximize the expected gain. Then the prophet
inequality claims that for n ≥ 2,

E[ALG] ≥ 1

2
E[Xmax]

where Xmax is the largest value realized amongst X1, , . . . , , Xn. We aim to show this by induction.

First, assume n = 2. Then, note that

E[ALG] ≥ max(E[X1],E[X2])

since one algorithm would be to choose the larger of E[X1],E[X2], meaning the best algorithm
achieves at least that much. Thus,

2E[ALG] ≥ 2max(E[X1],E[X2])

≥ E[X1] + E[X2]

7

≥ E[Xmax]

and

E[ALG] ≥ 1

2
E[Xmax]

completing the base case. Now, assume the prophet inequality is true for all m less than n, where
n ≥ 3 is a positive integer. We proceed with the inductive step.

For each i = 1, . . . , n, let Φi be the expected return from optimal play on the random variables
Xi, . . . , Xn. Moreover, let Xmax[i,j] denote the largest realization of X amongst Xi, , . . . , , Xj inclu-
sive, where i ≤ j are integers in {1, , . . . , , n}, and (X)+ = max(X, 0) the positive part of a random
variable X. Now, we claim that

E[Xmax] ≤ E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+] (1)

This follows from the fact

E[Xmax] ≤ E[max(Φ2, Xmax)]

= E[max(Φ2, Xmax[2,n]) + (X1 −max(Φ2, Xmax[2,n]))+]

= E[max(Φ2, Xmax[2,n])] + E[(X1 −max(Φ2, Xmax[2,n]))+]

≤ E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

Note that we used linearity of expectation here, in addition to the fact Φ2 ≤ max(Φ2, Xmax[2,n]).
Next, we have the following simple proposition:

Proposition 1. For all a ≥ b > 0 and δ ≥ 0, we have a+δ
b+δ ≤

a
b .

Proof. Indeed, ab+ bδ ≤ ab+ aδ, which can be rearranged into the desired inequality.

Now, for random variables Y1, , . . . , , Ym let ALG(Y1, , . . . , , Ym) denote the best expected value of an
algorithm. Then since E[max(Φ2, Xmax[2,n]) ≥ ALG(Φ2, X2, . . . , , Xn) > 0 (because for any specific
case, the true maximum is always at least what the algorithm gives, which is nonzero unless we are
in the trivial case in which all the random variables are zero), and E[(X1 − Φ2)+] ≥ 0,

E[max(Φ2, Xmax[2,n])]

ALG(Φ2, X2, . . . , , Xn)
≥

E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

ALG(Φ2, X2, . . . , , Xn) + E[(X1 − Φ2)+]

by the proposition. Then since Φi = Φi+1 + E[(Xi − Φi+1)+] as discussed in the DP proof,
ALG(Φ2, X2, , . . . , , Xn) = ALG(X2, , . . . , , Xn) and

E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

ALG(Φ2, X2, . . . , , Xn) + E[(X1 − Φ2)+]
=

E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

ALG(X1, X2, . . . , , Xn)

=
E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

Φ1

and by (1) we have

E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

Φ1
≥ E[Xmax]

Φ1

8

It follows that
E[max(Φ2, Xmax[2,n])]

ALG(Φ2, X2, . . . , , Xn)
≥ E[Xmax]

Φ1
(2)

Now, consider a random variable Lp such that Pr(Lp = Φn−1/p) = p > 0, and Lp = 0 otherwise
for some small p to be determined (such a variable with high probability of being zero and low
probability of being a high value is called a long shot.) Now, it is easy to verify Φn−1 = E[Lp],
which means that

ALG(Φ2, X2, .., Xn−2, Lp) = ALG(Φ2, X2, .., Xn) (3)

Taking the limit from the right as p→ 0, note that

E[max(Φ2, Xmax[2,n−2], Lp)]→ E[max(Φ2, Xmax[2,n−2]) + Lp] = E[max(Φ2, Xmax[2,n−2])] + E[Lp]

Indeed,

max(Φ2, Xmax[2,n−2], Lp)−max(Φ2, Xmax[2,n−2])− Lp = max(Φ2, Xmax[2,n−2])−max(Φ2, Xmax[2,n−2])

= 0

when Lp = 0 and

max(Φ2, Xmax[2,n−2], Lp)−max(Φ2, Xmax[2,n−2])− Lp

= max

(
Φ2, Xmax[2,n−2],

1

p

)
−max(Φ2, Xmax[2,n−2])−

1

p

when Lp =
1
p , revealing

E[max(Φ2, Xmax[2,n−2], Lp)−max(Φ2, Xmax[2,n−2])− Lp]]

= (1− p) · E[0] + p · E
[
max

(
Φ2, Xmax[2,n−2],

1

p

)
−max(Φ2, Xmax[2,n−2])−

1

p

]
= E[max(pΦ2, pXmax[2,n−2], 1)− 1]− pE[max(Φ2, Xmax[2,n−2])]→ 0

as p→ 0, as needed. Now, from a simple calculation with the fact that Φi = Φi+1+E[(Xi−Φi+1)+],
note that

E[max(Φ2, Xmax[2,n−2])] + E[Lp] = E[max(Φ2, Xmax[2,n−2])] + E[Xn] + E[(Xn−1 − E[Xn])+]

As any algorithm for the random variables X2, , . . . , , Xn can choose at least E[Xn] on expectation,
it follows E[Xn] ≤ Φ2 and

E[max(Φ2, Xmax[2,n−2])] + E[Xn] + E[(Xn−1 − E[Xn])+]

≥ E[max(Φ2, Xmax[2,n−2])] + E[Xn] + E[(Xn−1 −max(Φ2, Xmax[2,n]))+]

= E[max(Φ2, Xmax[2,n−1])] + E[Xn]

= E[max(Φ2, Xmax[2,n−1]) +Xn]

> E[max(Φ2, Xmax[2,n])]

Combined with inequality 2 and equation 3, we obtain for sufficiently small p that

E[max(Φ2, Xmax[2,n−2], Lp)] ≥ E(max(Φ2, Xmax[2,n])]

9

and

E[max(Φ2, Xmax[2,n−2], Lp)]

ALG(Φ2, X2, , . . . , , Xn−2, Lp)
=

E[max(Φ2, Xmax[2,n])] + E[(X1 − Φ2)+]

ALG(X1, X2, . . . , , Xn)

≥
E(max(Φ2, Xmax[2,n])]

ALG(Φ2, X2, .., Xn)

≥ E[Xmax]

Φ1

for sufficiently small p. By the inductive hypothesis on the n− 1 variables Φ2, X2, , . . . , , Xn−2, Lp,
note that

2 ≥
E[max(Φ2, Xmax[2,n−2], Lp)]

ALG(Φ2, X2, , . . . , , Xn−2, Lp)

It follows

Φ1 = E[ALG] ≥ 1

2
E[Xmax]

completing the inductive step. The prophet inequality for all n ≥ 2 follows, as desired.

2.3 A proof based on the idea of an online contention resolution scheme

In this section, we present another proof ot the prophet inequality, closely related to the idea of a
contention resolution scheme. For this method, we pick a separate threshold for each Xi and accept
the first variable that beats its threshold. We’ll show that, if the thresholds are chosen correctly,
then the algorithm is 1

2 -competitive. This proof is adapted from the work of Alaei [4].

We let pi = Pr[Xi = Xmax], so we have
∑

i pi = 1. Additionally, we define each τi such that
Pr[Xi ≥ τi] = pi.

We begin by proving an important inequality. In preparation, note that

Pr[Xi = Xmax and Xi < τi] = Pr[Xi = Xmax]− Pr[Xi = Xmax and Xi ≥ τi]

= Pr[Xi ≥ τi]− Pr[Xi = Xmax and Xi ≥ τi]

= Pr[Xi < Xmax and Xi ≥ τi]

Next, for each Xi, we see that

E[Xi|Xi = Xmax]

=
1

Pr[Xi = Xmax]

(
Pr[Xi = Xmax and Xi ≥ τi]E[Xi|Xi = Xmax and Xi ≥ τi] +

Pr[Xi = Xmax and Xi < τi]E[Xi|Xi = Xmax and Xi < τi]
)

≤ 1

Pr[Xi ≥ τi]

(
Pr[Xi = Xmax and Xi ≥ τi]E[Xi|Xi = Xmax and Xi ≥ τi] +

Pr[Xi < Xmax and Xi ≥ τi]E[Xi|Xi < Xmax and Xi ≥ τi]
)

= E[Xi|Xi ≥ τi]

We can calculate the expected value of the prophet’s choice, which comes out to

E[PROPHET] =

n∑
i=1

Pr[Xi = Xmax]E[Xi|Xi = Xmax] ≤
n∑

i=1

piE[Xi|Xi ≥ τi]

10

Now we can get to the main idea behind the proof. We denote by ri the probability that we reach
element Xi in our decision making process, and we note that r1 = 1 and r1 ≥ r2 ≥ · · · ≥ rn. We
define a new threshold Θi such that Pr[Xi ≥ Θi] =

pi
2ri

, and we accept Xi if it beats this threshold.

We’re certain this is defined for Θ1 because r1 = 1. We’ll use induction to prove that ri ≥ 1
2 for

i > 1, which will demonstrate why Θi is well-defined.

Assume that ri ≥ 1
2 for 1 ≤ i ≤ k. For each i, we have

ri+1 = ri

(
1− pi

2ri

)
= ri −

pi
2

Summing these equations for 1 ≤ i ≤ k, we get

rk+1 = r1 −
k∑

i=1

pi
2
≥ r1 −

1

2

n∑
i=1

pi = 1− 1

2
=

1

2

so we know that rk+1 ≥ 1
2 , so we can define Θk+1. Thus, we can do this for 1 ≤ i ≤ n.

Clearly, we must have Θi ≥ τi and E[Xi|Xi ≥ Θi] ≥ E[Xi|Xi ≥ τi]. Now, we have

E[ALG] =

n∑
i=1

ri Pr[Xi ≥ Θi]E[Xi|Xi ≥ Θi]

=

n∑
i=1

ri ·
pi
2ri
· E[Xi|Xi ≥ Θi]

=
1

2

n∑
i=1

piE[Xi|Xi ≥ Θi]

≥ 1

2

n∑
i=1

piE[Xi|Xi ≥ τi] ≥
1

2
E[PROPHET]

2.3.1 A variation: graph matching with edge arrivals

We now consider a variant of the prophet inequality, and use a similar approach based on the idea
contention resolution to create an algorithm for this variant. This proof is adapted from the work
of Ezra, Feldman, Gravin, and Tang [6].

Consider a graph, and we denote the edge connecting vertices u, v as (uv). Each edge has a positive
random variable assigned to it, and we’ll call that Xuv. In the edge arrival problem, the values of
each edge are revealed to us one at a time, in a fixed order, and we make the decision whether to
accept the edge (which can only be done if both vertices are currently free) or to move on. Our
goal is to create an algorithm that maximizes the expected value of the sum of our selected edges.
We will provide an algorithm that gives E[ALG] ≥ 1

3E[PROPHET].

First, a quick bit of more notation. We say that (u′v′) < (uv) if the value of Xu′v′ is revealed to us
before the value of Xuv.

We denote puv as the probability that (uv) is included in the optimal choice (i.e. the prophet’s
choice). Because each vertex can have at most one edge selected, for any fixed vertex v we know
that

∑
u′ pu′v ≤ 1. We can then define τuv such that Pr[Xuv ≥ τuv] = puv, and using similar

reasoning as the last section we can show that

E[Xuv|(uv) ∈ optimal] ≤ E[Xuv|Xuv ≥ τuv]

11

Now, we’ll get into the algorithm. We denote ruv as the probability that both vertices u and v are
available when the value of Xuv is revealed to us, so this value is 1 for the first edge that is revealed.
Additionally, we define Θuv such that Pr[Xuv ≥ Θuv] =

puv
3ruv

. The algorithm selects (uv) if

1. both u, v are available when we reach (uv) and

2. the realized value of Xuv is at least Θuv

so we can see that every edge is selected with probability puv
3 .

We’ll now show that Θuv can always be defined (i.e. ruv ≥ 1
3∀u, v). The reasoning is similar to the

original proof; we see (inducting on the order in which edges arrive) that

Pr[u is unavailable when we reach (uv)] =
∑

v′|uv′<uv

Pr[(uv′) is selected] =
∑

v′|uv′<uv

puv′

3
≤ 1

3

which means that

ruv = Pr[u, v both available when we reach (uv)] ≥ 1−Pr[u is unavailable]−Pr[v is unavailable] ≥ 1

3

so Θuv can always be defined, and clearly Θuv ≥ τuv and E[Xuv|Xuv ≥ Θuv] ≥ E[Xuv|Xuv ≥ τuv].
We find that

E[PROPHET] =
∑
u,v

Pr[(uv) ∈ optimal]E[Xuv|(uv) ∈ optimal] ≤
∑
u,v

puvE[Xuv|Xuv ≥ τuv]

and that

E[ALG] =
∑
u,v

ruv Pr[Xuv ≥ Θuv]E[Xuv|Xuv ≥ Θuv]

=
∑
u,v

puv
3

E[Xuv|Xuv ≥ Θuv]

≥ 1

3

∑
u,v

puvE[Xuv|Xuv ≥ τuv] ≥
1

3
E[PROPHET]

completing the proof.

3 An Explicit Algorithm for a Fair Prophet Inequality

Arsenis and Kleinberg [8] provide a proof that there exists an IIF 1 and TIF 2 algorithm that is 1
2 -

competitive using the method of linear programming. Here, inspired by the quantities appearing in
the contention resolution proof presented above, we provide an exposition with an explicit version
of the algorithm given by Arsenis and Kleinberg [8], rather than using the output of a black-box
linear program.

3.1 The explicit algorithm

To define the algorithm, let us write

r(x) :=
Pr[Xmax = x]

2
∑n

i=1 Pr[Xi = x]
,

12

and additionally, for convenience of notation, let us write

fi(x) := Pr[Xi = x].

Recall algorithm 1, equivalent to the algorithm considered in [8], but explicit:

Algorithm: Explicit IIF and TIF Algorithm

Parameters: I = ((Xi)
n
i=1 , π)

for t=1, . . . , n do
i← π(t).
Inspect Xi and let x← Xi.
Qt ← 1−

∑t−1
k=1

∑
y∈S fπ(k)(y)r(y)

Flip a coin with Heads probability equal to qt(x) =
r(x)
Qt

if coin comes up Heads then
Hire i and halt.

else
Reject i and proceed.

end

end

3.2 Algorithm is well-defined

For this algorithm to be well-defined, the coin flip must always be heads with a valid probability.
This means that 0 ≤ qt(x) ≤ 1 for all t. r(x) is always positive, so this condition will be satisfied

as long as Qt ≥ r(x), because then Qt will be positive, so 0 ≤ r(x)
qt
≤ 1.

First consider the inequality

r(x) +

n∑
k=1

∑
y∈S

r(y) · fπ(k)(y) ≤ 1.

To show that this is true, plug in the definition of r(x) and fπ(k)(y) into the right hand side of the
expression. This gives

Pr[Xmax = x]

2
∑n

i=1 Pr[Xi = x]
+

n∑
k=1

∑
y∈S

Pr[Xmax = y]

2
∑n

i=1 Pr[Xk = y]
· Pr[Xk = y].

Rearranging the sum in the right hand side of the expression gives

n∑
k=1

∑
y∈S

Pr[Xmax = y]

2
∑n

i=1 Pr[Xi = y]
· Pr[Xi = y]

=
∑
y∈S

Pr[Xmax = y] ·
∑n

k=1 Pr[Xk = y]

2
∑n

i=1 Pr[Xi = y]

=
1

2

∑
y∈S

Pr[Xmax = y]

13

=
1

2
.

To bound the left hand side of the expression, consider that

1(Xmax = x) ≤
n∑

i=1

1(Xi = x).

This is because if Xmax = x, then for some i, Xi = x. Taking the expectation of these terms gives
that

Pr[Xmax = x] ≤
n∑

i=1

Pr[Xi = x].

This implies that
Pr[Xmax = x]

2
∑n

i=1 Pr[Xi = x]
≤ 1

2
.

This proves that

r(x) +
n∑

k=1

∑
y∈S

r(y) · fπ(k)(y) ≤
1

2
+

1

2
= 1.

This implies that for all π,

r(x) +
n−1∑
k=1

∑
y∈S

r(y) · fπ(k)(y) ≤ 1.

This in turn implies that

r(x) +
t−1∑
k=1

∑
y∈S

r(y) · fπ(k)(y) ≤ 1, ∀t ∈ [n],

which means that for all t, Qt ≥ r(x), proving that this algorithm is well defined.

3.3 Algorithm is IIF and TIF

To demonstrate that the algorithm is IIF and TIF, we will show that

Pr[ALG hires π(i)|Xπ(i) = x] = r(x).

This can be shown by induction. For the base case, take the first random variable that the algorithm
looks at. In this case Q1 = 1, because t− 1 = 0, so the probability that the algorithm selects Xπ(1)

conditioned onXπ(1) = x is r(x). Therefore, Pr[ALG hires π(1)|Xπ(1) = x] = r(x). Now, the induc-
tive step will use strong induction and will assume that for all i ≤ t− 1, Pr[ALG hires π(i)|Xπ(i) =
x] = r(x). Now, this means that

t−1∑
k=1

∑
y∈S

fπ(k)(y)p(y) =
t−1∑
k=1

Pr[ALG hires π(k)] = Pr[ALG hires something before t].

Therefore,

Pr[ALG reaches time t] = 1− Pr[ALG hires something before t] = 1−
t−1∑
k=1

∑
y∈S

fπ(k(y)p(y) = Qt.

14

Now, the probability that Xπ(t) is selected is the probability that the algorithm reaches variable t,
and then the coin toss comes up heads. These events are, by construction, independent, so

Pr[ALG hires π(t)|Xπ(t) = x] = Qt ·
r(x)

Qt
= r(x).

This completes the inductive proof. The function r(x) does not depend on i, meaning that the
probability of selection of a given random variable only depends on the value of the realization, x,
nor does it depend on when is the sequence that random variable is seen. Therefore this algorithm
is IIF and TIF.

3.4 Algorithm is 1
2
-competitive

This algorithm can be shown to be 1
2 -competitive by calculating the expected value of the algorithm.

Theorem 6. Algorithm 1 satisfies the property that

E[ALG] =
1

2
E[PROPHET]

Proof. As a first step,

E[ALG] =
n∑

i=1

∑
x∈S

E[ALG|ALG hires Xi and Xi = x]

· Pr[ALG hires Xi and Xi = x].

Now,

E[ALG|ALG hires Xi and Xi = x] = x,

and

Pr[ALG hires Xi and Xi = x] = Pr[ALG hires Xi|Xi = x] Pr[Xi = x]

=
Pr[Xmax = x]

2
∑n

i=1 Pr[Xi = x]
Pr[Xi = x].

The final equality comes from the proof in the prior section. Now, plugging these expressions into
the expected value of the algorithm gives

E[ALG] =
n∑

i=1

∑
x∈S

x · Pr[Xmax = x]

2
∑n

i=1 Pr[Xi = x]
Pr[Xi = x].

Rearranging the sum gives the expression

E[ALG] =
∑
x∈S

x · Pr[Xmax = x] ·
∑n

i=1 Pr[Xi = x]

2
∑n

i=1 Pr[Xi = x]
=

1

2

∑
x∈S

x · Pr[Xmax = x] =
1

2
E[PROPHET].

This proves that the expected value of this algorithm is exactly 1
2 the expected value of the prophet’s

pick.

15

4 Linear Programming to Solve k-Select Prophet Inequalities

Constructing fair k-selection algorithms which have a competitive ratio close to 1 directly is very
difficult, so we consider instead a linear programming based approach. To set up this approach, it is
necessary to find a linear program such that its solutions are in bijection with online implementable
algorithms. We would then like to understand what corresponds to the expected value of the online
implementable algorithm. In this section, inspired by [8] and [11], we investigate these questions.
We conjecture that we can use our linear program to develop an IIF and TIF algorithm for making
k selections.

4.1 Linear program for k selections

Consider the following linear program, with variables hi,j(x).

0 ≤ hi,0(x) ≤ Pr [Xi = x]

(
1−

∑
x

∑
i′<i

hi′,0(x)

)

0 ≤ hi,j(x) ≤ Pr [Xi = x]

(∑
x

∑
i′<i

hi′,j−1(x)−
∑
x

∑
i′<i

hi′,j(x)

)
hi,j(x) = 0 for j ≥ k or j ≤ −1 or i ≤ 0.

The final condition in the case j ≤ −1 or i ≤ 0 is largely for convenience of the following proofs.

4.1.1 Bijection between algorithms and linear program

The next step is to establish a bijection between solutions to this linear program and online imple-
mentable k-selection algorithms.

Theorem 7. Any online implementable algorithm gives a valid solution to this linear program
where

hi,j(x) = Pr[ALG selects Xi & j selections have been made & Xi = x].

Proof. Consider for an online algorithm

hi,j(x) = Pr[ALG selects Xi & j selections have been made & Xi = x].

Using the fact that

0 ≤ Pr[ALG selects Xi | j selections have been made & Xi = x] ≤ 1,

it is easy to check that hi,j(x) must satisfy the linear program.

Now, let us consider a solution to the linear program, and construct the corresponding Algorithm
4.

This algorithm is automatically well-defined because, by definition, 0 ≤ pi,j(x) ≤ 1.

Now define:

16

Algorithm 4: Online k-Selection Algorithm

Parameters: I = ((Xi)
n
i=1 , π)

j ← 0
for t = 1, . . . , n do

i← π(t)
Inspect Xi and let x← Xi

if j = 0 then

p← p0,j(x) =
hi,0(x)

Pr[Xi=x](1−
∑

x

∑
i<i′ hi,0(x))

else

p← pi,j(x) =
hi,j(x)

Pr[Xi=x](
∑

x

∑
i′<i hi′,j−1(x)−

∑
x

∑
i′<i hi′,j(x))

end
Flip a coin with Heads probability equal to p
if coin comes up Heads then

Hire i
j ← j + 1

else
Reject i

end
if j = k then

Halt
end

end

Definition 5. Let

Qij :=

{
1−

∑
x

∑
i′<i hi′,0(x) if j = 0,∑

x

∑
i′<i hi′,j−1(x)−

∑
x

∑
i′<i hi′,j(x) if j ≥ 1.

To prove the bijection, it is necessary to prove the solutions hi,j(x) to the linear program that appear
in Algorithm 4 are equivalent to the probabilities Pr[ALG selects Xi & j selections have been made & Xi =
x]. To establish this result, it is necessary to prove Lemma 1

Lemma 1. Qi,j is the probability of reaching variable i having made j selections.

To prove Lemma 1, it is necessary to prove two intermediate lemmas. First, define

Definition 6.
pi,j :=

∑
x∈Si

pi,j(x) · Pr [Xi = x] ,

where Si = Supp[Xi]. The next step is to prove the probabilistic interpretation of this quantity.

Lemma 2. pi,j = Pr[Selecting Xi|j selections before]

Proof. ∑
x∈Si

pj,i(x)Pr [Xi = x] =
∑
x∈Si

Pr[Selecting Xi|j selections before and Xi = x]

17

· Pr [Xi = x and j selections before]

P [j selections before]
.

This equality follows because the realization of each random variable is independent of the picks of
the algorithm up to this point. Now this becomes

Pr[Selecting Xi & j selections before]

Pr[j selections before]
= Pr[Selecting Xi|j selections before].

Lemma 3.

Pr[reaching variable i having made j selections]

= pi−1,j−1 · Pr[reaching variable i− 1 having made j − 1 selections]

+ (1− pi−1,j) · Pr[reaching variable i− 1 having made j selections].

Proof. No selections can have been made before the first variable is realized, giving the base case.
Next, there are two ways that j selections have been made before the ith variable, either j − 1
selections were made at the i−1-th variable and it selects the i−1-th variable, or j selections were
made at the i− 1-th variable and it does not select the i− 1-th variable.

The next step is to prove that Qi,j is the probability of reaching variable i having made j selections.
This can be done by first proving two lemmas.

Lemma 4. Qi,0 is the probability of reaching variable i having made 0 selections.

Proof. This proof will be done inductively. For the base case Q1,0 = 1, because

Q1,0 = 1−
∑
x

∑
i′<1

hi,0(x) = 1.

The probability of reaching the first variable having made zero selections is trivially one, so Q1,0 is
the probability of reaching variable 1 having made 0 selections.

Now, for the inductive step, assume that Qi,0 is the probability of reaching variable i having made
0 selections.

Qi+1,0 = 1−
∑
x

∑
i′<i+1

hi′,0(x)

= 1−
∑
x

∑
i′<i

hi′,0(x)−
∑
x

hi,0(x)

= 1−
∑
x

∑
i′<i

hi′,0(x)−
∑
x

hi,0(x)

Pr[Xi = x]
(
1−

∑
x

∑
i′<i hi′,0(x)

)
· Pr[Xi = x]

(
1−

∑
x

∑
i′<i

hi′,0(x)

)

= Qi,0 −

(∑
x

pi,0(x) Pr[Xi = x]

)
Qi,0

18

=

(
1−

∑
x

pi,0(x) Pr[Xi = x]

)
Qi,0.

Now, by Definition 6, this becomes

Qi+1,0 = (1− pi,0)Qi,0,

so, by the inductive hypothesis, this becomes

Qi+1,0 = (1− pi,0) Pr[reaching variable i having made 0 selections].

Finally, by applying Lemma 3 and recognizing that the other term in the expression will be 0,
because it is impossible to make negative selections, this gives the final result:

Qi+1,0 = Pr[reaching variable i+ 1 having made 0 selections],

completing the inductive step.

Lemma 5. Qi,j is the probability of reaching variable i having made j selections for j ≥ 1.

Proof. This proof will be done inductively. For the base case: Q1,j = 0 for all j ≥ 1 by Definition
5.

For the inductive step, assume that Qi,j is the probability of making it to variable i having made j
selections for all j. Now, the goal is to prove that Qi+1,j is the probability of reaching the i+ 1-st
variable having made j selections. Beginning with the definition of Qi+1,j :

Qi+1,j =
∑
x

∑
i′<i+1

hi′,j−1(x)−
∑
x

∑
i′<i+1

hi′,j(x)

=
∑
x

hi,j−1(x)−
∑
x

hi,j(x) +
∑
x

∑
i′<i

hi′,j−1(x)−
∑
x

∑
i′<i

hi′,j(x)

=
∑
x

hi,j−1(x)

Pr[Xi = x] ·
(∑

x

∑
i′<i hi′,j−2(x)−

∑
x

∑
i′<i hi′,j−1(x)

)
· Pr[Xi = x]

(∑
x

∑
i′<i

hi′,j−2(x)−
∑
x

∑
i′<i

hi′,j−1(x)

)

−
∑
x

hi,j(x)

Pr[Xi = x] ·
(∑

x

∑
i′<i hi′,j−1(x)−

∑
x

∑
i′<i hi′,j(x)

)
· Pr[Xi = x]

(∑
x

∑
i′<i

hi′,j−1(x)−
∑
x

∑
i′<i

hi′,j(x)

)
+
∑
x

∑
i′<i

hi′,j−1(x)−
∑
x

∑
i′<i

hi′,j(x)

=

(∑
x

pi,j−1(x) Pr[Xi = x]

)
Qi,j−1 +

(
1−

∑
x

pi,j(x) Pr[Xi = x]

)
Qi,j .

Now, by Definition 6, this becomes

Qi+1,j = pi,j−1Qi,j−1 + (1− pi,j)Qi,j .

19

Next, by applying Lemma 4 in cases where Qi,0 appears and applying the inductive hypothesis for
all Qi,j where j ≥ 1 gives the following expression:

Qi+1,j = pi,j−1 · Pr[reaching variable i having made j − 1 selections]

+ (1− pi,j) · Pr[reaching variable i having made j selections].

Now, by Lemma 3, this becomes

Qi+1,j = Pr[reaching variable i+ 1 having made j selections],

completing the inductive step.

Proof. Proof of Lemma 1. This theorem follows directly from Lemmas 4 and 5.

Now, to complete the bijection, show:

Theorem 8. Any solution to this linear program gives a valid online implementable algorithm
where

hi,j(x) = Pr[ALG selects Xi & j selections have been made & Xi = x].

Proof. This follows directly from substitution into the definition of pi,j(x) and Lemma 1.

Having shown both directions, this gives:

Theorem 9. There exists a bijection between solutions to this linear program and online imple-
mentable k-select algorithms where

hi,j(x) = Pr[ALG selects Xi & j selections have been made & Xi = x].

Proof. This follows from Theorems 7 and 8.

4.1.2 The expected value of the algorithm

Now, we can derive that an expression for the expected value of the algorithm, giving us our
objective function for the linear program.

Theorem 10.

E[ALG] =
∑
x

n∑
i=1

k∑
j=0

x · hi,j(x).

Proof. Immediately we have that

Pr[Selecting Xi|Xi = x] =

k∑
j=0

pi,j(x)Qi,j =

k∑
j=0

hi,j(x)

Pr [Xi = x]Qi,j
Qi,j .

This follows directly from Lemma 1.

20

E[ALG] =
n∑

i=1

∑
x

x · Pr[Selecting Xi|Xi = x] · Pr [Xi = x]

=
n∑

i=1

∑
x

k∑
j=0

x · hi,j(x)

Pr [Xi = x]
· Pr [xi = x]

=
∑
x

n∑
i=1

k∑
j=0

x · hi,j(x).

This completes the proof of theorem 10.

Having calculated the expected value of the algorithm, this gives the complete linear program:

Maximize

n∑
i=1

∑
x

k∑
j=0

x · hi,j(x)

subject to 0 ≤ hi,0(x) ≤ Pr [Xi = x]

(
1−

∑
x

∑
i′<i

hi′,0(x)

)
,

0 ≤ hi,j(x) ≤ Pr [Xi = x]

(∑
x

∑
i′<i

hi′,j−1(x)−
∑
x

∑
i′<i

hi′,j(x)

)
,

hi,j(x) = 0 for j ≥ k or j ≤ −1 or i ≤ 0.

5 An Exploration of Offline IIF Algorithms

Up until now, we’ve focused on variations of the prophet inequality, where the values of the random
variables are realized one at a time in an online fashion and we have to choose to accept or reject
at each realization.

However, in this section we’ll discuss an offline version of the problem, where we know the realiza-
tions of all the random variables and must choose one of them. Again, the goal is to maximize the
expected value of our pick.

Clearly, without any fairness restrictions, we could always choose the largest value and obtain
E[ALG] = E[PROPHET]. However, we’ll see that when we restrict ourselves to using IIF algo-
rithms, then this isn’t always the case.

5.1 Example where any offline IIF algorithm is at best 25
27
-competitive

In this section, we’ll give the explicit random variables promised in Theorem 2. We’ll prove that
any offline IIF algorithm on these variables will be at best 25

27 -competitive.
We provide the following example:

X1 =

{
0 w.p. 7

9

1 w.p. 2
9

X2 =

{
1 w.p. 1

3
5
2 w.p. 2

3

21

Proof. In order to get this 25
27 bound, we must first define some notation. We let

fa,b = Pr[ALG choose X1|X1 = a AND X2 = b]

Similarly, we can define

ga,b = Pr[ALG choose X2|X1 = a AND X2 = b]

In order for this to be a valid offline selection (i.e. choosing at most one element in any given run),
we must have

fa,b, ga,b ≥ 0 ∀a, b
fa,b + ga,b ≤ 1 ∀a, b

Now, let’s figure out how to fit the IIF constraint. All we need to ensure is that

Pr[choose X1|X1 = 1] = Pr[choose X2|X2 = 1]

We calculate that

Pr[choose X1|X1 = 1] = Pr[X2 = 1] f1,1 + Pr

[
X2 =

5

2

]
f1, 5

2

=
1

3
f1,1 +

2

3
f1, 5

2

Similarly, we can calculate that

Pr[choose X2|X2 = 1] =
7

9
g0,1 +

2

9
g1,1

Thus, the IIF condition imposes the following equality:

1

3
f1,1 +

2

3
f1, 5

2
=

7

9
g0,1 +

2

9
g1,1

For reasons that will become clear later, we divide this equation by 3, resulting in

1

9
f1,1 +

2

9
f1, 5

2
=

7

27
g0,1 +

2

27
g1,1

Next, we calculate the expected value of our algorithm. We see that

E[ALG]

= Pr[X1 = 0, X2 = 1](0 · f0,1 + 1 · g0,1) + Pr

[
X1 = 0, X2 =

5

2

]
(0 · f0, 5

2
+

5

2
· g0, 5

2
)

+Pr[X1 = 1, X2 = 1](1 · f1,1 + 1 · g1,1) + Pr

[
X1 = 1, X2 =

5

2

]
(1 · f1, 5

2
+

5

2
· g1, 5

2
)

=
7

27
g0,1 +

35

27
g0, 5

2
+

2

27
f1,1 +

2

27
g1,1 +

4

27
f1, 5

2
+

10

27
g1, 5

2

=

(
7

27
g0,1 +

2

27
g1,1

)
+

(
35

27
g0, 5

2
+

2

27
f1,1 +

4

27
f1, 5

2
+

10

27
g1, 5

2

)
=

(
1

9
f1,1 +

2

9
f1, 5

2

)
+

(
35

27
g0, 5

2
+

2

27
f1,1 +

4

27
f1, 5

2
+

10

27
g1, 5

2

)
22

=
35

27
g0, 5

2
+

5

27
f1,1 +

10

27
f1, 5

2
+

10

27
g1, 5

2

Due to the restrictions g0, 5
2
≤ 1, f1,1 ≤ 1 and f1, 5

2
+ g1, 5

2
≤ 1, we have E[ALG] ≤ 35

27 +
5
27 +

10
27 = 50

27 .

To figure out how competitive this is, we can calculate the prophet’s expected value: E[Xmax]. We
see that Xmax = X2, and we have

E[Xmax] =
1

3
· 1 + 2

3
· 5
2
= 2

Thus, for any IIF algorithm, we have

E[ALG]

E[PROPHET]
≤ 50/27

2
=

25

27

5.2 Considering offline IIF algorithms which only choose the maximum

In this section, we will prove Theorem 3. For reference, we copy it below:

Theorem. When we consider an offline IIF algorithm, along with the condition that it can only
either accept the maximum or not make a decision at all, then it can be at best 1

2 -competitive.

Proof. To prove this, we’ll consider the following random variables:

X1 =

{
0 w.p. 1− ϵ

U(1, 1 + ϵ) w.p. ϵ
X2 =

{
0 w.p. ϵ

U(1, 1 + ϵ) w.p. 1− ϵ

for some ϵ > 0, where U(1, 1+ ϵ) is the continuous uniform distribution between 1 and 1+ ϵ. That
is, U(1, 1 + ϵ) has the pdf

f(x) =

{
1
ϵ for 1 ≤ x ≤ 1 + ϵ

0 for x < 1 or x > 1 + ϵ

For some 1 ≤ x ≤ 1 + ϵ, let’s consider the scenario where X1 = x. The algorithm is only allowed
to choose X1 when X2 < x, which happens with probability

Pr[X2 < x] = Pr[X2 = 0] + Pr[X2 > 0] · Pr[X2 < x|X2 > 0] = ϵ+ (1− ϵ)

(
x− 1

ϵ

)
Because X1 can only be chosen if it is larger than X2, we obtain

Pr[ALG choose X1|X1 = x] ≤ Pr[X2 < x] = ϵ+ (1− ϵ)

(
x− 1

ϵ

)
The IIF condition then implies that we have

Pr[ALG choose X2|X2 = x] ≤ ϵ+ (1− ϵ)

(
x− 1

ϵ

)
Now, we obtain bounds for E[PROPHET] and E[ALG]. For the prophet, we have

E[PROPHET] = E[Xmax] ≥ E[X2] = (1− ϵ)
(
1 +

ϵ

2

)
≥ 1− ϵ

23

For the algorithm, we take

E[ALG]

=

∫ 1+ϵ

1
x ϵf(x) Pr[ALG choose X1|X1 = x] dx+

∫ 1+ϵ

1
x(1− ϵ)f(x) Pr[ALG choose X2|X2 = x] dx

≤
∫ 1+ϵ

1
x ϵf(x) dx+

∫ 1+ϵ

1
x(1− ϵ)f(x) Pr[ALG choose X2|X2 = x] dx

≤
∫ 1+ϵ

1
x(ϵ)

(
1

ϵ

)
dx+

∫ 1+ϵ

1
x(1− ϵ)

(
1

ϵ

)(
ϵ+ (1− ϵ)

(
x− 1

ϵ

))
dx

=

∫ 1+ϵ

1
x dx+

1− ϵ

ϵ

∫ 1+ϵ

1
x

(
ϵ+ (1− ϵ)

(
x− 1

ϵ

))
dx

=
1

2
ϵ(ϵ+ 2) +

(
1− ϵ

ϵ

)(
ϵ(ϵ2 + 5ϵ+ 3)

6

)
=

ϵ(ϵ+ 2)

2
+

(1− ϵ)(ϵ2 + 5ϵ+ 3)

6

As we take ϵ → 0, these inequalities become E[PROPHET] ≥ 1 and E[ALG] ≤ 1
2 . Thus, we

conclude that for every ϵ > 0 we have

E[ALG]

E[PROPHET]
≤ 1

2
+ ϵ

so the algorithm is at best 1
2 -competitive.

6 A Double-Sample Online Algorithm Satisfying IIF and TIF

Without any consideration of fairness, the prophet inequality has a 1
2 bound. In the literature,

Arsenis and Kleinberg [8] introduce two notions of fairness, IIF and TIF, and provide an online
double sample algorithm satisfying both. The bound, however, worsens to 1

9 . In this section, we
analyze whether this 1

9 bound can be improved upon.

Let f1, . . . , fn be probability density functions. LetX1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn be continuous
random variables such that Xi, Yi, Zi ∼ fi for each i = 1, , . . . , , n. In the following algorithm
due to Arsenis and Kleinberg, introduced earlier as algorithm 2, the variables being selected are
X1, . . . , Xn, which are processed in an online fashion. The realizations of Y1, . . . , , Yn, Z1, . . . , Zn

are revealed offline, before the actual algorithm starts.

Algorithm: Double-sample Online IIF and TIF Algorithm

Data: Yi, Zi ∼ fi, π ∈ Sn

for t=1, . . . , n do
Observe Xπ(t) ∼ fπ(t).

if Xπ(t) > Ymax and (Xπ(s) < Ymax for all s < t) and (Zπ(s) < Ymax for all s ≥ t) then
Hire Xπ(t).

end

end

24

Note that the order of the Xi’s can vary. Moreover, all comparisons made can be safely assumed
to be strict, since all random variables are continuous.

Arsenis and Kleinberg have showed that for discrete random variables (tie-breaking mechanism),
the algorithm is IIF and TIF [8]. Moreover, they proved that

E[ALG] ≥ 1

9
E[Xmax]

[8]. Here, we seek to work with continuous random variables, allowing us to formalize Arsenis and
Kleinberg’s tie-breaking mechanism and to demonstrate a better bound of 1

6 . That is, we claim
that

E[ALG] ≥ 1

6
E[Xmax].

This improves upon the original result, proving the IIF and TIF algorithm Arsenis and Kleinberg
provided does better than claimed.

6.1 1
6
bound with continuous random variables

In this section, we prove theorem 4, which we recall is

Theorem. Algorithm 2 is IIF and TIF. Moreover, E[ALG] ≥ 1
6E[Xmax].

Proof. First, we convert to continuous random variables, and then, using the continuous definitions
of IIF and TIF, show that the algorithm is still IIF and TIF. Afterwards, we compute the expected
value of the algorithm and show that it is at least 1

6 the prophet’s pick.

Now, let’s prove that the algorithm (which in this section is ALG) is still IIF and TIF. For each
π ∈ Sn and i = 1, , . . . , , n, let i = π(t). Then we have

Pr(Si,π < x) = Pr(ALGπ accepts Xi & Xi < x)

= Pr(Ymax < Xi ≤ x & Xπ(s),s<t < Ymax & Zπ(s),s≥t < Ymax)

By the independence ofX1, . . . , , Xn and Z1, , . . . , , Zn, we can make an independent copiesX ′
1, , . . . , , X

′
n

of the random variables X1, , . . . , , Xn, call their maximum X ′
max, and write

Pr(Si,π < x) = Pr(x > Xi > Ymax & X ′
max < Ymax)

= E[1(x > Xi > Ymax > X ′
max)]

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
1(x > w > z > y)fi(w)fX′

max
(y)fYmax(z) dwdydz

by the independence of Xi, X
′
max, Ymax. Note that X ′

max and Ymax have the same distribution.
Denote their common pdf by f(x), and common cdf by F (x). Then

Pr(Si,π < x) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
1(x > w > z > y)fi(w)f(y)f(z) dwdydz

=

∫ x

0

∫ w

0

∫ z

0
fi(w)f(y)f(z) dydzdw

=

∫ x

0

∫ w

0
fi(w)F (z)f(z) dzdw

25

By the definition of a continuous random variable, Si, being the integral of a continuous function,
is continuous. Moreover,

si,π(x) =

∫ x

0
fi(x)F (z)f(z) dz

and

si,π(x)

fi(x)
=

∫ x
0 fi(x)F (z)f(z) dz

fi(x)

=

∫ x

0
F (z)f(z) dz

=

∫ x

0
F (z)F ′(z) dz

=
1

2
F (x)2

As this expression does not depend on π or i, the algorithm is IIF and TIF, as desired.

Having proven the algorithm is IIF and TIF, we compute E[ALGπ] and prove the 1
6 bound. Before

we do so, observe that

Pr[Ymax ≤ y] = Pr[Y1, , . . . , , Yn ≤ y]

=

n∏
i=1

Fi(y)

so that by the product rule

f(y) = Pr[Ymax ≤ y]′

=

n∑
i=1

fi(y)

Fi(y)
· F1(y)F2(y) · · ·Fn(y)

≤
n∑

i=1

fi(y)

Fi(y)
· Fi(y)

=

n∑
i=1

fi(y)

Thus

E[ALGπ] =

n∑
i=1

E[Si,π]

=

n∑
i=1

∫ ∞

0
si,π(x)x dx

=

n∑
i=1

∫ ∞

0

1

2
F (x)2 · fi(x)x dx

=

∫ ∞

0

1

2
F (x)2 · x

n∑
i=1

fi(x) dx

26

≥
∫ ∞

0

1

2
F (x)2 · xf(x) dx

Noting that (F (x)3)′ = 3F (x)2f(x), observe that∫ ∞

0

1

2
F (x)2 · xf(x) dx =

1

6

∫ ∞

0
(F (x)3)′ · x dx

which by the Tail Integral Formula implies

1

6

∫ ∞

0
(F (x)3)′ · x dx =

1

6

∫ ∞

0
(1− F (x)3) dx

≥ 1

6

∫ ∞

0
(1− F (x)) dx

=
1

6

∫ ∞

0
f(x)x dx

=
1

6
E[Xmax]

Thus

E[ALG] ≥ 1

6
E[Xmax]

and the result follows.

7 Single Sample Prophet Inequalities with k Selections

7.1 Introduction

In this section, we will establish the following result (Theorem 5) for algorithm 3:

Theorem. For any k, Algorithm 3 is 1
2 -competitive, that is,

E[ALG] ≥ 1

2
E[PROPHET]

where the prophet’s performance is defined as the sum of the k highest elements of {X1, . . . , Xn}.
This has proven been proven for the case where k = 1 [7] and k = 2 [10], but not for higher values
of k. Here, we will prove the result for all k ≥ 2. We will further prove that for any value of k, this
lower bound in expectation is tight.

We will actually prove this theorem for a slightly different algorithm (not actually implementable
in online decision-making), algorithm 5.

In the following, we will implictly let Xm = −∞ for m > n, and similarly ai = −∞ for i > 2n and
we will refer to the realizations of the random variables X1 . . . Xn as X-values, or simply X’s. Since
this algorithm always selects the worst (up to) k X’s that could have been chosen by Algorithm 3,
we have clearly that Algorithm 3 will always perform better than Algorithm 5, and so it suffices to
prove

27

Algorithm 5: Worse Single-Sample k-select Algorithm

Data: Yi ∼ Xi

Let Y 1 = Ymax, Y
k = max({Y1, . . . , Yn} − {Y 1, . . . , Y k−1})

for t=1, . . . , n do
if Xt > Y k and Y k > Xt+1 then

Hire {Xmax(1,t+1−k), . . . , Xt}.
end

end

Theorem 11. For any k, Algorithm 5 is 1
2 -competitive, that is,

E[ALG] ≥ 1

2
E[PROPHET]

Hereafter, “algorithm” will be used generically to refer to Algorithm 5.
In order to prove the theorem, note that we can express the algorithm’s expected performance as

k∑
i=1

E[Ai]

where Ai denotes the algorithm’s ith largest pick, if any. Thus the algorithm’s expected performance
is

k∑
i=1

∫ ∞

0
Pr(Ai ≥ x)dx

And the prophet’s becomes

k∑
i=1

E[Xi] =
k∑

i=1

∫ ∞

0
Pr(Xi ≥ x)dx

where Xi is defined analagously to Y i as the ith largest order statistic from the X’s. Conditioning
on {a1 > a2 > . . . > a2n}, the ranked list of the realizations {X1, . . . , Xn, Y1, . . . , Yn}, it suffices to
show that for any j,

k∑
i=1

Pr(Ai ≥ aj) ≥
1

2

k∑
i=1

Pr(Xi ≥ aj)

The former sum is the expected number of algorithm picks above aj . This can be expressed as the
sum of probabilities from i = 1 to n that Xi ≥ aj and the algorithm picks Xi. It is guaranteed
that Xi ≥ aj and the algorithm picks Xi when Xi > Y j+1−i, Y k > Xi+k and Xi > Y k. Therefore,

k∑
i=1

Pr(Ai ≥ aj) ≥
n∑

i=1

Pr(Xi > Y j+1−i, Y k > Xi+k, Xi > Y k)

≥
j+1−k∑
i=1

Pr(Xi > Y k > Xi+k) +
k∑

i=j+2−k

Pr(Xi > Y j+1−i, Y k > Xi+k)

We now have the following important lemma which will let us provide a simple analysis of the
second sum above:

28

Lemma 6. If i > j − k, then

Pr(Xi > Y j+1−i, Y k > Xi+k) ≥ 1

2
Pr(Xi > Y j+1−i).

Proof. Consider the quantity Pr(Xi > Y j+1−i, Y k > Xi+k) = Pr(Xi > Y j+1−i) Pr(Y k > Xi+k|Xi >
Y j+1−i). Let us concentrate on the conditional probability. We know that there is a certain number
θ of Y ’s, θ ≤ j − i, greater than Xi. We have also that Y k > Xi+k if the sequence a1, . . . , ai+2k−1

contains at least k Y ’s. This will hold if ai+θ+1, . . . , ai+2k−1 contains at least k − θ Y ’s. Consider
revealing the θ X’s sampled from the same distribution as Y 1, . . . , Y θ. At most θ spots amongst
ai+θ+1, . . . , ai+2k−1 have been taken up by these X’s. The remaining spots, of which there are
2k− 2θ− 1 each have at least a 1

2 chance of being a Y value, and we would like k− θ of these spots
to be Y ’s. If each spot had exactly a 1

2 chance of being a Y , then the chance of k− θ Y ’s would be
exactly 1

2 , so we conclude Pr(Y k > Xi+k|Xi > Y j+1−i) ≥ 1
2 .

The lemma lets us conclude that,

k∑
i=1

Pr(Ai ≥ aj) ≥
j+1−k∑
i=1

Pr(Xi > Y k > Xi+k) +
1

2

k∑
i=j+2−k

Pr(Xi > Y j+1−i)

Meanwhile, for the prophet,

1

2

k∑
i=1

Pr(Xi ≥ aj) =
1

2

min(j+1−k,k)∑
i=1

Pr(Xi > Y j+1−i) +
1

2

k∑
i=j+2−k

Pr(Xi > Y j+1−i)

Therefore, it suffices to show that

j+1−k∑
i=1

Pr(Xi > Y k > Xi+k) ≥ 1

2

min(j+1−k,k)∑
i=1

Pr(Xi > Y j+1−i) (4)

for any k, j.
For the remainder of this section, we will concentrate on establishing this inequality.

We will use the following lemma due to Nuti and Vondrák [12] in future sections:

Lemma 7. If a ≤ b, then Pr(Xa < Y b) or equivalently Pr(Y a < Xb) is at most Pr(Z < a), where
Z is a binomial random variable with n = a + b − 1 and p = 1

2 . This is equivalent to what the
probability that Xa < Y b would be if each of a1, . . . , a2n, . . . were independently and uniformly at
random assigned to be either X or Y , which we will hereafter refer to as “the binomial case”.

7.2 k = 2

When j = 1 this holds trivially as both sides of (4) vanish.

7.2.1 j = 2

Here we must show

Pr(X1 > Y 2 > X3) ≥ 1

2
Pr(X1 > Y 2)

which follows by direct application of Lemma 6 with i = 1, j = k = 2.

29

7.2.2 j = 3

Here we show that
2∑

i=1

Pr(Xi > Y 2 > Xi+2) ≥ 1

2

2∑
i=1

Pr(Xi > Y 4−i)

Since Pr(X2 > Y 2) = 1
2 by symmetry, we have that the right hand side is at most 3

4 . The left hand
side can be expanded into

1− Pr(Y 2 > X1)− Pr(X3 > Y 2) + 1− Pr(Y 2 > X2)− Pr(X4 > Y 2)

which by Lemma 7 is at least 3
4 .

7.2.3 j = 4

To show
3∑

i=1

Pr(Xi > Y 2 > Xi+2) ≥ 1

2

2∑
i=1

Pr(Xi > Y 5−i)

we can rearrange the LHS into Pr(X1 > Y 2 > X5) + Pr(X2 > Y 2 > X4). By Lemma 7, this is at
least 73

64 −Pr(X4 > Y 2). By symmetry, Pr(X4 > Y 2) ≤ Pr(Y 3 > X2), so the RHS is at most equal
to 1− 1

2 Pr(X
4 > Y 2). Rearranging, we need only show that

73

64
− 1

2
Pr(X4 > Y 2) ≥ 1

which can be proven by using Lemma 7 to show Pr(X4 > Y 2) ≤ 3
16

7.2.4 j ≥ 5

When j ≥ 5, we have

2∑
i=1

Pr(Ai ≥ aj) ≥
2∑

i=1

Pr(Ai ≥ a5) ≥
4∑

i=1

Pr(Xi > Y 2 > X2+i)

This sum can be rearranged to Pr(X1 > Y 2 > X6) + Pr(X2 > Y 2 > X5). By Lemma 7 this is at
least equal to 69

64 , and for any j,

69

64
> 1 >

1

2

2∑
i=1

Pr(Xi > Y j+1−i)

7.3 k = 3

For j ∈ {1, 2}, the inequality (4) vanishes. Further, we have using Lemma 7 that

Pr(X1 > Y 3 > X4) ≥ 17

32

Pr(X2 > Y 3 > X5) ≥ 59

128

Pr(X3 > Y 3 > X6) ≥ 91

256

30

7.3.1 j = 3

By Lemma 6, applied with i = 1, j = k = 3 we have

Pr(X1 > Y 3 > X4) ≥ 1

2
Pr(X1 > Y 3)

7.3.2 j = 4

Making use of Lemma 7,

2∑
i=1

Pr(Xi > Y 3 > X3+i) ≥ 167

128
− Pr(Y 3 > X2)

≥ 1− 1

2
Pr(Y 3 > X2)

≥ 1

2

2∑
i=1

Pr(Xi > Y 5−i)

given the fact that Pr(Y 3 > X2) ≤ 5
16 .

7.3.3 j = 5

3∑
i=1

Pr(Xi > Y 3 > X3+i) ≥ 345

256

>
1

2
(2 +

1

2
)

≥ 1

2
(

2∑
i=1

Pr(Xi > Y 6−i) + Pr(X3 > Y 3))

7.3.4 j ≥ 6

3∑
i=1

Pr(Ai ≥ aj) ≥
3∑

i=1

Pr(Ai ≥ a6)

≥
4∑

i=1

Pr(Xi > Y 3 > X3+i)

=

3∑
i=1

Pr(Xi > Y 3 > X8−i)

≥ 205

128

>
3

2

≥ 1

2

3∑
i=1

Pr(Xi > Y j+1−i)

31

7.4 k = 4

Again, (4) vanishes when j < 4. For higher values, we have by Lemma 7

Pr(X1 > Y 4 > X5) ≥ 147

256

Pr(X2 > Y 4 > X6) ≥ 143

256

Pr(X3 > Y 4 > X7) ≥ 124

256

Pr(X4 > Y 4 > X8) ≥ 99

256

This implies that for 4 ≤ j ≤ 7,

j−3∑
i=1

Pr(Xi > Y 4 > X4+i) ≥ j − 3

2
≥ 1

2

j−3∑
i=1

Pr(Xi > Y j+1−i)

and consequently for j ≥ 8,

j−3∑
i=1

Pr(Xi > Y 4 > X4+i) ≥
4∑

i=1

Pr(Xi > Y 4 > X4+i)

≥ 2

>
1

2

4∑
i=1

Pr(Xi > Y j+1−i)

7.5 k ≥ 5

Consider k ≥ 5. For j < k, both sides of (4) vanish, as we saw previously.

For values of j in the range [k, 2k − 2], it suffices to show that∑j+1−k
i=1 Pr(Xi > Y k > Xi+k)

j + 1− k
≥ 1

2

which implies

j+1−k∑
i=1

Pr(Xi > Y k > Xi+k) ≥ j + 1− k

2
≥ 1

2

min(j+1−k,k)∑
i=1

Pr(Xi > Y j+1−i)

For j ≥ 2k − 1, it suffices also to show∑k
i=1 Pr(X

i > Y k > Xi+k)

k
≥ 1

2

which implies

j+1−k∑
i=1

Pr(Xi > Y k > Xi+k) ≥
k∑

i=1

Pr(Xi > Y k > Xi+k) ≥ k

2
≥ 1

2

min(j+1−k,k)∑
i=1

Pr(Xi > Y j+1−i)

32

Combined, we must show that for k ≤ j ≤ 2k − 1,∑j+1−k
i=1 Pr(Xi > Y k > Xi+k)

j + 1− k
≥ 1

2

that is, for any r such that 1 ≤ r ≤ k,∑r
i=1 Pr(X

i > Y k > Xi+k)

r
≥ 1

2

Since we can write the probability Pr(Xi > Y k > Xi+k) as 1 − Pr(Y k > Xi) − Pr(Y k < Xk+i),
and 1 ≤ k < k + i, we can lower bound the probability using Lemma 7 by Pr(Xi > Y k > Xi+k) in
the binomial case. Therefore, for the rest of the section, we will assume that all probabilities refer
to probabilities in the binomial case.

To establish our desired inequality, we first establish the following lemma:

Lemma 8. The series Pr(Xi > Y k > Xi+k) is concave for 1 ≤ i ≤ k.

Proof. In the binomial case, for 1 ≤ i ≤ k − 1,

Pr(Xi+1 > Y k > Xi+k+1)− Pr(Xi > Y k > Xi+k) = Pr(Xi+k > Y k > Y i+k+1)− Pr(Xi > Y k > Xi+1)

=

(
i+2k−1
k−1

)
2i+2k

−
(
i+k−1
k−1

)
2i+k

Consider the difference

(Pr(Xi+2 > Y k > Xi+k+2)− Pr(Xi+1 > Y k > Xi+k+1))

− (Pr(Xi+1 > Y k > Xi+k+1)− Pr(Xi > Y k > Xi+k))

where 1 ≤ i ≤ k − 2. We have that this evaluates to((
i+2k
k−1

)
2i+2k+1

−
(
i+k
k−1

)
2i+k+1

)
−

((
i+2k−1
k−1

)
2i+2k

−
(
i+k−1
k−1

)
2i+k

)
=

i+ 2k

2(i+ k + 1)

(
i+2k−1
k−1

)
2i+2k

−
(
i+2k−1
k−1

)
2i+2k

+

(
i+k−1
k−1

)
2i+k

− i+ k

2i+ 2

(
i+k−1
k−1

)
2i+k

≤
(
i+2k−1
k−1

)
2i+2k

−
(
i+2k−1
k−1

)
2i+2k

+

(
i+k−1
k−1

)
2i+k

−
(
i+k−1
k−1

)
2i+k

= 0

Thus the series is concave for 1 ≤ i ≤ k.

Lemma 9. For a concave series x1, . . . , xn,∑n
i=1 xi
n

≥ x1 + xn
2

33

Proof. We have that by the concavity, for any i ≤ n− 2,

(xi+2 − xi+1)− (xi+1 − xi) ≤ 0

implying that
n−2∑
i=1

(xi + xi+2) ≤
n−2∑
i=1

2xi+1 =⇒ x1 + xn ≤ x2 + xn−1

By induction on this argument, we have that x1 + xn ≤ x1+i + xn−i for i ≤ n− 1. Therefore,

2
n∑

i=1

xi =
n−1∑
i=0

(x1+i + xn−i) ≥ n(x1 + xn) =⇒ x1 + xn
2

≤
∑n

i=1 xi
n

We have therefore that for 1 ≤ r ≤ k,∑r
i=1 Pr(X

i > Y k > Xi+k)

r
≥ Pr(X1 > Y k > X1+k) + Pr(Xr > Y k > Xr+k)

2

If Pr(Xr > Y k > Xr+k) ≥ Pr(Xk > Y k > X2k), then we have that

Pr(X1 > Y k > X1+k) + Pr(Xr > Y k > Xr+k)

2
≥ Pr(X1 > Y k > X1+k) + Pr(Xk > Y k > X2k)

2

so it would suffice to show that

Pr(X1 > Y k > X1+k) + Pr(Xk > Y k > X2k)

2
≥ 1

2
.

If Pr(Xr > Y k > Xr+k) ≤ Pr(Xk > Y k > X2k), then by concavity we must have that Pr(Xr >
Y k > Xr+k) ≥ Pr(X1 > Y k > X1+k). Therefore,

Pr(X1 > Y k > X1+k) + Pr(Xr > Y k > Xr+k)

2
≥ Pr(X1 > Y k > X1+k)

so it would suffice to show that

Pr(X1 > Y k > X1+k) ≥ 1

2

Therefore, if we can show that

Pr(X1 > Y k > X1+k) ≥ 1

2
Pr(X1 > Y k > X1+k) + Pr(Xk > Y k > X2k)

2
≥ 1

2

for all k ≥ 5, then we would have the 1
2 -competitiveness for k ≥ 5, completing our proof.

To show the first inequality, we have

Pr(X1 > Y k > Xk+1) = 1−Pr(Y k > X1)−Pr(Y k < Xk+1) = 1− 1

2k
−

(
1

2
−
(
2k
k

)
22k+1

)
=

1

2
+

(
2k
k

)
22k+1

− 1

2k

34

Now we know that (
2k

k

)
≥ 4k

2k + 1
.

It follows that the above is at least
1

2
+

1

4k + 2
− 1

2k

which is above 1
2 for k ≥ 5. To show the second inequality we need, we have

Pr(X1 > Y k > Xk+1) + Pr(Xk > Y k > X2k) = 1− Pr(Y k > X1)− Pr(Xk+1 > Y k)

+ 1− Pr(Y k > Xk)− Pr(X2k > Y k)

= 1 +

(
2k
k

)
22k+1

− 1

2k
− Pr(X2k > Y k)

We have the following lower bounds for the above for k ∈ [5, 15]:

k LB

5 1.0020
6 1.0254
7 1.0392
8 1.0477
9 1.0530
10 1.0564
11 1.0585
12 1.0598
13 1.0605
14 1.0609
15 1.0608

By the Chernoff-Hoeffding bound,

Pr(X2k > Y k) = Pr(≥ 2kX ′s ∈ {a1, . . . , a3k−1}) ≤

((
3

4

) 2
3
(
3

2

) 1
3

)3k−1

< 0.944953k−1

At k = 16, we have that

1 +

(
2k
k

)
22k+1

− 1

2k
− 0.944953k−1 ≥ 1.0001

and for k ≥ 16, when k increases by 1, (
2k
k

)
22k+1

is multiplied by at least (2k+2)(2k+1)
4(k+1)2

≥ 33
34 while

1

2k
+ 0.944953k−1

is multiplied by at most 0.944953 < 29
34 . Thus for k ≥ 5,(

1 +

(
2k
k

)
22k+1

− 1

2k
− Pr(X2k > Y k)

)
≥ 1 =⇒ Pr(X1 > Y k > X1+k) + Pr(Xk > Y k > X2k)

2
≥ 1

2

As was shown above, this establishes 1
2 -competitiveness for k ≥ 5.

35

7.6 Tightness

We also prove that the lower bound of 1
2 is tight for all k. Consider the following random variables:

X1, . . . , XN ∼ Unif[0, 1], XN+1 ∼

{
0 w.p. N−1

N

N2 w.p. 1
N

We have that as N goes to infinity, and k remains fixed, the prophet’s expectation is asymptotically
1
N · N

2 = N . Meanwhile, the algorithm’s expectation is asymptotically N2 times the probability
XN+1 = N2 and the algorithm selects it. If we define Y i and Xi as the ith order statistic out of
Y1, . . . , YN and X1, . . . , XN , respectively, then

E[ALG] =
1

N
·N2 ·

(1

N
Pr(Y k−1 > Xk) +

N − 1

N
Pr(Y k > Xk)

)
≤ N2 · 1

N
·
(

1

N
+

N − 1

2N

)
which asymptotically is equal to N

2 . This establishes that the single-sample threshold k-select
algorithm achieves, at best 1

2 the prophet’s expectation.

8 Open Questions

Our work does leave several open questions. First, is there a simple single-threshold algorithm for

the prophet inequality with k selections using just a single sample that is 1−O
(
log k√

k

)
-competitive?

We cannot expect better, since even with full knowledge of the distributions, we cannot do better

than 1−O
(
log k√

k

)
[9].

Another direction of further research concerns the worst-case random variables for the offline IIF
case. We already know that E[OPTIMAL OFFLINE IIF ALG]

E[PROPHET] ≥ 1
2 for any random variables, and it was

previously posed as an open question if this 1/2 could be improved [8]. Based on our work, we are
certain that this ratio cannot be larger than 25/27, however it’s still unclear if this 1

2 is tight or
not.

Another open question is if the k-select linear program can be used to generate an online IIF and
TIF algorithm for k selections that achieves a competitive ratio close to 1 as k goes to infinity.
Perhaps it is possible to do this through some sort of ‘smoothing’ to turn a solution into a fair
solution, similar to [8], and this may involve creating a relaxation of the linear program outlined.

Finally, it is unknown whether the bound of 1
6 for the online IIF and TIF algorithm using two

samples is tight, or if it can be improved. It is also unknown whether there is a constant competitive
IIF and TIF algorithm using just a single sample.

9 Acknowledgements

We would like to express our thanks to our mentor, Pranav Nuti, for all of his guidance and support
with this project. He went above and beyond as a mentor and helped all of us become familiar
with the process of math research and directed us towards interesting and fruitful problems.

We are also grateful to the SURIM program for providing the platform and resources to conduct
this research. Special thanks go to Dr. Lernik Asserian, the program organizer, for her unwavering
dedication to the program.

Finally we would like to acknowledge the VPUE grant we received that made this research possible.

36

References

[1] Ulrich Krengel and Louis Sucheston. “On semiamarts, amarts, and processes with finite
value”. In: Probability on Banach spaces 4 (1978), pp. 197–266.

[2] T. P. Hill and R. P. Kertz. “Ratio comparisons of supremum and stop rule expectations”. In:
Z. Wahrscheinlichkeitstheorie verw Gebiete 56 (1981), pp. 283–285.

[3] Douglas P Kennedy. “Optimal stopping of independent random variables and maximizing
prophets”. In: The Annals of Probability (1985), pp. 566–571.

[4] Saeed Alaei. “Bayesian Combinatorial Auctions: Expanding Single Buyer Mechanisms to
Many Buyers”. In: SIAM Journal on Computing 43.2 (2014), pp. 930–972. eprint: https:
//doi.org/10.1137/120878422.

[5] Pablo D. Azar, Robert Kleinberg, and S. Matthew Weinberg. “Prophet Inequalities with
Limited Information”. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms. SODA ’14. Portland, Oregon: Society for Industrial and Applied
Mathematics, 2014, pp. 1358–1377.

[6] Tomer Ezra et al. “Online Stochastic Max-Weight Matching: Prophet Inequality for Vertex
and Edge Arrival Models”. In: Proceedings of the 21st ACM Conference on Economics and
Computation. EC ’20. Virtual Event, Hungary: Association for Computing Machinery, 2020,
pp. 769–787.

[7] Aviad Rubinstein, Jack Wang, and Matthew Weinberg. “Optimal Single-Choice Prophet In-
equalities from Samples”. In: 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020 60 (Nov. 2020).

[8] Makis Arsenis and Robert Kleinberg. “Individual Fairness in Prophet Inequalities”. In: Pro-
ceedings of the 23rd ACM Conference on Economics and Computation. EC ’22. Boulder, CO,
USA: Association for Computing Machinery, 2022, p. 245.

[9] Jiashuo Jiang, Will Ma, and Jiawei Zhang. “Tightness without Counterexamples: A New
Approach and New Results for Prophet Inequalities”. In: Proceedings of the 24th ACM Con-
ference on Economics and Computation. EC ’23. London, United Kingdom: Association for
Computing Machinery, 2023, p. 909.

[10] Kanstantsin Pashkovich and Alice Sayutina. “Single Sample Prophet Inequality for Uniform
Matroids of Rank 2”. In: (June 2023), pp. 1–14.

[11] Jiashuo Jiang, Will Ma, and Jiawei Zhang. “Tight Guarantees for Multi-unit Prophet In-
equalities and Online Stochastic Knapsack”. In: Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1221–1246. eprint: https://epubs.siam.
org/doi/pdf/10.1137/1.9781611977073.51.

[12] Pranav Nuti and Jan Vondrák. “Secretary Problems: The Power of a Single Sample”. In:
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2015–2029. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.
ch77.

37

https://doi.org/10.1137/120878422
https://doi.org/10.1137/120878422
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.51
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977073.51
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch77
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch77

	Introduction
	Our results
	Our techniques

	A Few Proofs of the Prophet Inequality
	A proof based on dynamic programming
	A variation: competing against the the top k picks of the prophet

	A proof based on induction on the number of random variables
	A proof based on the idea of an online contention resolution scheme
	A variation: graph matching with edge arrivals

	An Explicit Algorithm for a Fair Prophet Inequality
	The explicit algorithm
	Algorithm is well-defined
	Algorithm is IIF and TIF
	Algorithm is 12-competitive

	Linear Programming to Solve k-Select Prophet Inequalities
	Linear program for k selections
	Bijection between algorithms and linear program
	The expected value of the algorithm

	An Exploration of Offline IIF Algorithms
	Example where any offline IIF algorithm is at best 2527-competitive
	Considering offline IIF algorithms which only choose the maximum

	A Double-Sample Online Algorithm Satisfying IIF and TIF
	16 bound with continuous random variables

	Single Sample Prophet Inequalities with k Selections
	Introduction
	k=2
	j=2
	j=3
	j=4
	j5

	k=3
	j=3
	j=4
	j=5
	j6

	k=4
	k5
	Tightness

	Open Questions
	Acknowledgements

