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Introduction: Online Decision Making

As an employer hiring for a position, you have applications from multiple candi-
dates. You have a rough estimate of their abilities from the applications, but you
will not know for sure until you interview them. After interviewing each one, you
must decide immediately: hire or pass. You can only hire one person, and once
you pass on a candidate, there’s no going back. How do you strategize considering
the uncertainty of future candidates?
This problem can be formalized with a sequence of n random variables ((Xi)n

i=1) ,
where we (the employer) must select one of the realizations of the random variables
(candidates).

Figure 1. Try it yourself with our card demo!

It has been known for nearly 50 years [1] that there exists an algorithm such that

E[ALG ] ≥ 1
2E[PROPHET ]

where the prophet selects the maximum while knowing the outcome of all of the
random variables. This is known as the prophet inequality.

Background: Types of Algorithms

There are several types of algorithms that we study:

• An online algorithm is an algorithm for a situation in which information is
revealed gradually instead of all at once. The prophet inequality is about an
online algorithm.

• An algorithm for a situation in which we we know all the information beforehand
is called offline.

• Instead of the standard assumption that one knows the distribution of the ran-
dom variables, if we assume instead that we only have access to samples from
the random variables, then we may use sample based algorithms.

Background: Fairness

Arsenis and Kleinberg [3] introduced two ideas of fairness for these decision-
making algorithms: identity-independent fairness (IIF) and time-independent fair-
ness (TIF):

• IIF ensures that two candidates of the same value will have the same chance
of being selected. TIF ensures that the candidates’ order doesn’t affect each
person’s chance of being selected.

• Consider what happens if we know X1 will be a certain value x . Based on the
distributions of the other variables, as well as how our algorithm works, we can
say that X1 will be selected with certain probability.

• For an IIF algorithm, if we now condition on any variable Xi being x , the chance
that we pick it is the same probability as it was for X1.

• For a TIF algorithm, each variable’s chance of being selected (conditional on
their realized value) is independent of the order of the random variables. This
is helpful to consider in the hiring example; a TIF algorithm would give no
preferential treatment to a candidate based on their position in the order.

Background: k-Select

The k-select prophet inequality is a generalization of the standard prophet inequal-
ity where k random variables can be selected. In this setting, the objective becomes
maximizing the sum of the k variables selected.

Exploring Offline IIF Algorithms

In the offline case, we see the realizations of all the random variables and then
make our decision, again with the goal of maximizing the expected value of our
pick. Without any fairness constraints, we could clearly always choose the largest
option and obtain E[ALG] = E[PROPHET]. With the IIF constraint, we have two
new results:

When we consider an offline IIF algorithm, along with the condition that it can
only either accept the maximum or not make a decision at all, then it can be
at best 1

2-competitive.

The proof of this statement considers the random variables:

X1 =
{

0 w.p. 1 − ϵ

U(1, 1 + ϵ) w.p. ϵ
X2 =

{
0 w.p. ϵ

U(1, 1 + ϵ) w.p. 1 − ϵ

When X1 takes small non-zero values (i.e. much closer to 1 than 1 + ϵ), then it’s
unlikely to be the maximum and its chance of being chosen is small. When X2
takes the same value, although it’s almost certain to be the maximum, the IIF
condition prohibits us from accepting it most of the time. This means we can
only make a pick about half of the time.

Even without this maximum-only restriction, an offline IIF algorithm cannot
always match the prophet.

We found a distribution where the best possible algorithm is only 25
27-

competitive.

Double Sample Algorithm that is IIF and TIF

Arsenis and Kleinberg discovered a sample based IIF + TIF algorithm relying on
two samples.

Figure 2. Visual representation of the algorithm. We accept Xi if and only if it larger than Ymax
and everything that is colored red is less than Ymax. There is at most one Xi that satisfies this
property.

Previously, the competitive ratio of this algorithm was shown to be at least 1
9.

However, this bound is not tight, and with the following result

E[ALG ] ≥ 1
6E[PROPHET ]

we improve the bound to 1
6. This shows that online sample based IIF and TIF

algorithms can achieve a competitive ratio of at least 1
6.

Single-Sample Algorithm for Making k-Selections

Consider the following algorithm for k-select:

• Let the samples we have access to be Y1, . . . , Yn ∼ X1, . . . , Xn.
• Set a threshold equal to Y k , the k th largest realization out of {Y1, . . . , Yn}.
• Select each of X1, . . . , Xn that we see that is higher than the threshold until we

have made k selections or have decided on each of X1, . . . , Xn.

We proved that this algorithm is 1
2-competitive, that is:

E[ALG ] ≥ 1
2E[PROPHET ]

This had been shown in the literature for k = 1 [2] and k = 2 [4], but we were able
to generalize this to all natural numbers k . Moreover, we showed that this lower
bound of 1

2 is tight. While there exist more complicated sample-based algorithms
that can achieve asymptotically better competitiveness for large values of k , this
is still meaningful as it establishes that a very simple algorithm is able to achieve
the 1

2 lower bound.

k-Select Through Linear Programming

Directly finding an algorithm that maintains fairness whilst competitively selecting
k variables is challenging, so an alternate approach is to find an equivalent linear
program such that a solution to the linear program gives an online implementable
algorithm.

0 ≤ hi ,0(x) ≤ Pr [Xi = x ]
(

1 −
∑

x

∑
i ′<i

hi ,0(x)
)

0 ≤ hi ,j(x) ≤ Pr [Xi = x ]
(∑

x

∑
i ′<i

hi ′,j−1(x) −
∑

x

∑
i ′<i

hi ,j(x)
)

for 1 ≤ j < k

hi ,j(x) = 0 for j ≥ k or j ≤ −1 or i ≤ 0.

This linear program may look nothing like an algorithm, but we proved that we
can construct an algorithm such that the variables hi ,j(x) have a probabilistic
interpretation:

hi ,j(x) = Pr[ALG selects Xi & j selections have been made & Xi = x ]

We conjecture that we can use this linear program to develop an IIF + TIF k-select
algorithm.
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