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Abstract

A Random Walk in Changing Environment (RWCE) is a weighted random walk on a locally finite,

connected graph G with random edge-weights at each time step. This includes self-interacting random

walks, where the edge-weights depend on the history of the process. In general, even the basic question

of recurrence or transience for RWCEs is difficult, especially when the underlying graph contains cycles.

In this note, we derive a condition for recurrence or transience that is too restrictive for classical RWCEs

but instead works for any graph G. Namely, we show that any bounded RWCE on G with “slightly”

changing edge-weights inherits the recurrence or transience of the initial weighted graph.

1 Introduction

Let N := {0, 1, 2, . . . } and G = (V,E) be any simple, undirected, locally finite, and connected graph. We

begin with the following definition.

Definition 1 (RWCE). A Random Walk in Changing Environment on a graph G = (V,E) is a stochastic

process {⟨Xt, wt⟩}t∈N such that for any y ∈ V, we have

P(Xt+1 = y | Ft) =
wt(Xt, y)∑

z∼Xt
wt(Xt, z)

where Xt ∈ V , wt ∈ (0,∞)E , and Ft = σ(X0, . . . , Xt, w0, . . . , wt) for each t ∈ N.

In words, at time t ∈ N the RWCE traverses a neighboring edge from Xt with probability proportional

to its weight, which is the realization of some random variable. While the term RWCE was coined by

Amir et al. in [1], many special cases have been extensively studied before. For instance, RWCEs include

the large class of self-interacting random walks, where the weights depend on the history of the process. A

well-known example is the linearly edge-reinforced random walk by Coppersmith and Diaconis [3] from the

eighties. Other examples include the once-reinforced random walk [4] or the “true” self-avoiding walk with

bond repulsion [7].

In general, even the basic question of recurrence or transience is difficult for RWCEs as the process is not

Markovian. In fact, the various notions of recurrence and transience may not necessarily coincide in general.

In this note, we adopt the definition below from [1].

Definition 2 (Recurrence/Transience/Mixed-Type). An RWCE is recurrent if a.s. every vertex is visited

infinitely often. It is transient if a.s. every vertex is visited finitely often. Otherwise, it is of mixed-type.

To aid the study of recurrence or transience, we further assume that the RWCE is elliptic.

1



Definition 3 (Elliptic RWCE). Let {⟨Xt, wt⟩}t∈N be an RWCE on G = (V,E). For each {x, y} ∈ E, assume

that P(Xt+1 = y | Xt = x), whenever P(Xt = x) > 0, is bounded away from 0 as t varies. Then, we say that

{⟨Xt, wt⟩}t∈N is elliptic (uniformly in time).

This is useful since any elliptic RWCE that a.s. visits some vertex infinitely (resp. finitely) often is also

recurrent (resp. transient). To see this, fix some x, y ∈ V . Then, by ellipticity (and connectivity of G),

whenever the RWCE is at x, the probability of eventually visiting y is at least pxy for some constant pxy > 0.

Hence, if x is visited infinitely often, then a.s. y is visited infinitely often. The contrapositive implies that if

y is visited finitely often, then a.s. x is visited finitely often.

A special case of ellipticity is when there are deterministic w,w′ ∈ (0,∞)E such that w ≤ wt ≤ w′ for

all t ∈ N. We say that such an RWCE is bounded. Even assuming boundedness, however, most results on

recurrence or transience rely on the underlying graph being a tree. For instance, consider the once-reinforced

random walk, which is a bounded RWCE. In [2], Collevecchio et al. completely characterized the recurrence

or transience of such processes on trees by introducing a quantity called the branching-ruin number. In

contrast, on Z2 the question of recurrence remains completely open. We remark that partial progress has

been made by Kious et al. [6] for graphs of the form Z× Γ where Γ is finite.

The situation is in fact similar for a much wider class of bounded RWCEs. Namely, consider any RWCE

on a tree T with increasing weights bounded above by w∞. In [1], Amir et al. showed that if (T,w∞) is

recurrent, then the RWCE is also recurrent.1 Such a general result, however, cannot hold if the underlying

graph contains cycles. For instance, Amir et al. [1] constructed a self-interacting, bounded, and increasing

RWCE on Z2 that serves as a counterexample. The case for transience is analogous, where Amir et al. proved

a general result for trees [1] that is not expected to hold for arbitrary graphs. An important question that

follows is whether the general result above can hold for any graph if the RWCE is not self-interacting. A

partial answer was given in [5] where Dembo et al. confirmed the transient case for Zd, d ≥ 3.

In this note, we derive a condition for recurrence or transience that is too restrictive for classical RWCEs

(such as the once-reinforced random walk) but instead holds for any graph. Loosely speaking, we show that

any bounded RWCE on G with “slightly” changing edge-weights inherits the recurrence or transience of the

initial weighted graph. We discuss our result further in the following section.

2 Main Result

Our condition on “slight” changes is conveniently stated in terms of resistances, which are simply the

reciprocal of weights. For any t ∈ N, we write rt := 1/wt. Such resistances arise when viewing the weighted

graph as an electrical network, which we will further exploit throughout this note. For now, the following is

our main result.

Theorem 1. Let G = (V,E) be any graph and w0 ∈ (0,∞)E be deterministic such that (G,w0) is recurrent

(resp. transient). Let {⟨Xt, wt⟩}t∈N be any bounded RWCE on G. If the random variable∑
t,e

|rt(e)− rt+1(e)|

is bounded, then {⟨Xt, wt⟩}t∈N is recurrent (resp. transient).

1A weighted graph (G,w) is recurrent (resp. transient) if the weighted random walk on (G,w) is recurrent (resp. transient).
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If the final condition above (or the boundedness condition) is satisfied, note that
∑

e∈E |rt(e) − rt+1(e)|
is finite for each t ∈ N and tends to zero as t → ∞. This is the reason we say that the weights are changing

only “slightly.” Moreover, in the special case where {rt}t∈N is increasing (resp. decreasing) and bounded

above (resp. below) by r∞, we remark that it suffices for
∑

e |r0(e)− r∞(e)| to be bounded.

2.1 Proof Overview

We begin with an overview of our proof. Let {⟨Xt, wt⟩}t∈N be any RWCE on G = (V,E) satisfying the

conditions of Theorem 1. Fix any s ∈ V which we consider as the origin of V and also the source of an

electrical network on G. To show recurrence (resp. transience), it suffices by ellipticity to show that s is a.s.

visited infinitely (resp. finitely) often.

Our proof consists of two main parts. First, we show Theorem 1 in the special case where s has a single

neighbor. To do so, we use the standard technique [1] of constructing a sup/submartingale of the form

{ft(Xt)}t∈N and then using the optional stopping theorem to bound the probability of return. In particular,

the construction works on any graph as we consider the maximum/minimum ratio of vertex-voltages across

a single time step. Since s has a single neighbor, for any v ̸= s, the voltage at v is positive and thus ratios

are well-defined.

Next, when s has multiple neighbors, we attach a new vertex s′ to s and construct a new RWCE whose

recurrence or transience implies the recurrence or transience of the original RWCE. Then, we apply the first

part above to this new RWCE by considering s′ as the origin of G′. This concludes the proof.

3 The Single Neighbor Case

Throughout this section, we assume that the origin s has a single neighbor. We aim to show the following

special case of Theorem 1.

Lemma 1. Let G = (V,E) be any graph and w0 ∈ (0,∞)E be deterministic such that (G,w0) is recurrent

(resp. transient). Assume the origin s ∈ V has a single neighbor and let {⟨Xt, wt⟩}t∈N be any bounded RWCE

on G. If the random variable ∑
t,e

|rt(e)− rt+1(e)|

is bounded, then {⟨Xt, wt⟩}t∈N is recurrent (resp. transient).

Indeed, choosing the origin is arbitrary and it suffices for a vertex of degree one to exist. As mentioned

above, we will construct a sup/submartingale and then apply the optional stopping theorem to derive a

condition for recurrence or transience. Then, we will show that this condition is satisfied assuming the

condition of Lemma 1.

3.1 Sup/submartingales

We first construct the desired sup/submartingale. Assuming that the origin s and the RWCE {⟨Xt, wt⟩}t∈N

are given, we introduce some notation involving electrical networks. For n ≥ 0, let Vn := {v ∈ V : d(s, v) ≤ n}
and ∂Vn := {v ∈ V : d(s, v) = n} where d is the shortest-path distance on G. Let Gn = (Vn, En) denote the

subgraph induced in G by Vn. For n ≥ 1, t ∈ N, and u ∈ Vn, let vn,t(u) denote the (random) voltage of u in

(Gn, wt) when s is grounded and ∂Vn is kept at voltage 1. If u /∈ Vn, define vn,t(u) := 1.
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The key connection between random walks on graphs and electrical networks is that whenever wt is

fixed, vn,t(u) equals the probability that the weighted random walk {Zk}k∈N on (Gn, wt) with Z0 = u ∈ Vn

will hit ∂Vn before s. In particular, both quantities are harmonic, meaning {vn,t(Zk∧θ)}k∈N is a martingale

with respect to {Zk}k∈N where θ := inf{k ∈ N : Zk ∈ {s} ∪ ∂Vn}. In our case, the analogous process for

{⟨Xt, wt⟩}t∈N is {vn,t(Xt∧τ )}t∈N where τ = inf{t ∈ N : Xt ∈ {s}∪∂Vn}. Unfortunately, for arbitrary u ∈ Vn

the sequence {vn,t(u)}t∈N is not necessarily monotone and thus {vn,t(Xt∧τ )}t∈N is not a sup/submartingale.

To bypass this difficulty, for each t ∈ N we consider the maximum/minimum of the ratio vn,t+1(u)/vn,t(u)

over all u ∈ Vn \ {s}. For n ≥ 1 and t ∈ N, let

αn,t : = max
u∈Vn\{s}

vn,t+1(u)

vn,t(u)
≥ 1,

βn,t : = min
u∈Vn\{s}

vn,t+1(u)

vn,t(u)
≤ 1,

where the inequalities follow by considering u ∈ ∂Vn. Also, the quantities are well-defined (positive and

finite) since s has a single neighbor which gives vn,t > 0 on Vn \ {s} for all t ∈ N. Finally, recall that

τ = inf{t ∈ N : Xt ∈ {s} ∪ ∂Vn} and Ft = σ(X0, . . . , Xt, w0, . . . , wt) for each t ∈ N. The following is our

desired sup/submartingale.

Lemma 2. Fix n ≥ 1 and let

At =
vn,t(Xt)∏t−1
k=0 αn,k

, Bt =
vn,t(Xt)∏t−1
k=0 βn,k

for t ∈ N. Then, {At∧τ}t∈N is a supermartingale and {Bt∧τ}t∈N is a submartingale with respect to {Ft}t∈N.

Proof. It suffices to prove the supermartingale case as the submartingale case is identical. First, note that

At+1 =
vn,t+1(Xt+1)∏t

k=0 αn,k

≤ vn,t(Xt+1)∏t−1
k=0 αn,k

by construction. Next, if t < τ, we have (t+ 1) ∧ τ = t+ 1 and thus

E[A(t+1)∧τ | Ft] ≤ E

[
vn,t(Xt+1)∏t−1

k=0 αn,k

| Ft

]
=

1∏t−1
k=0 αn,k

E [vn,t(Xt+1) | Ft] = At∧τ .

If t ≥ τ, then

E[A(t+1)∧τ | Ft] = E

[
vn,τ (Xτ )∏τ−1
k=0 αn,k

| Ft

]
=

vn,τ (Xτ )∏τ−1
k=0 αn,k

= At∧τ

as desired and we conclude our proof.

3.2 Optional Stopping Theorem

We now apply the optional stopping theorem to the sup/submartingale constructed above. For the results

of this section, we remark that it suffices to assume ellipticity instead of boundedness of the given RWCE.

We begin with the supermartingale {At∧τ}t∈N.
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Lemma 3. Let {⟨Xt, wt⟩}t∈N be any elliptic RWCE on G = (V,E) and assume the origin s ∈ V has a

single neighbor. For each n ≥ 1, assume there is an ∈ R such that
∏∞

t=0 αn,t ≤ an < ∞ almost surely. If

lim supn→∞ an < ∞ and vn,t(u) → 0 almost surely as n → ∞ for any t ∈ N and u ∈ V, then {⟨Xt, wt⟩}t∈N

is recurrent.

Proof. By ellipticity, it suffices to show that s is a.s. visited infinitely often. Since αn,t ≥ 1, note that the

conditions of the lemma hold for any subprocess {⟨Xt, wt⟩}t≥t′ where t′ > 0. Hence, it suffices to show that

Xt = s for some t ∈ N assuming X0 = u ̸= s. Fix some n ≥ 1 and recall the supermartingle {At∧τ}t∈N from

Lemma 2. Since |At∧τ | ≤ 1 for all t ∈ N, the optional stopping theorem gives E[Aτ ] ≤ E[A0]. Hence,

E[vn,0(X0)] ≥ E

[
vn,τ (Xτ )∏τ−1
t=0 αn,τ

]
≥ P(Xτ ∈ ∂Vn)

an

which can be rearranged as P(Xτ ∈ ∂Vn) ≤ an · vn,0(u). Taking the limit superior on both sides of the

inequality gives our desired result.

Next, we proceed similarly with the submartingale {Bt∧τ}t∈N.

Lemma 4. Let {⟨Xt, wt⟩}t∈N be any elliptic RWCE on G = (V,E) and assume the origin s ∈ V has a single

neighbor x. For each n ≥ 1, assume there is bn ∈ R such that a.s.
∏∞

t=0 βn,t ≥ bn > 0. If lim infn→∞ bn > 0

and infn,t vn,t(x) > 0, then {⟨Xt, wt⟩}t∈N is transient.

Proof. By ellipticity, it suffices to show that s is a.s. visited finitely often. We will show that given Xt = x,

assuming P(Xt = x) > 0, the probability of never returning to s again is at least some positive constant

independent of t. This suffices since whenever the process visits s, it must visit x the next step.

First consider when X0 = x. Fix some n ≥ 1 and recall the submartingale {Bt∧τ}t∈N from Lemma 2.

Since |Bt∧τ | ≤ 1/bn < ∞, the optional stopping theorem gives E[Bτ ] ≥ E[B0]. Hence,

E[vn,0(X0)] ≤ E

[
vn,τ (Xτ )∏τ−1
t=0 βn,τ

]
≤ P[Xτ ∈ ∂Vn]

bn

which can be rearranged as P[Xτ ∈ ∂Vn] ≥ bn · vn,0(x) ≥ bn · infn,t vn,t(x). Taking the limit inferior on both

sides as n → ∞, we get P[never return to s again | X0 = x] ≥ K for some K > 0.

When Xt = x, we can construct a submartingale similar to Bt∧τ by viewing Xt as the initial vertex and

(G,wt) as the initial graph. Since βn,t ≤ 1, the same method gives P[never return to s again | Xt = x] ≥ K

as desired and we conclude our proof.

3.3 Bounding Voltage-Ratios

Having Lemma 3 and 4, we want to use these results to prove Lemma 1. For this purpose, we estimate αn,t

and βn,t by deriving an upper bound for |vn,t+1(u)/vn,t(u)− 1|. We begin with the following expression for

|vn,t+1(u)− vn,t(u)|.

Lemma 5. For any n ≥ 1, t ∈ N, and u ∈ Vn−1 \ {s} we have

vn,t+1(u)− vn,t(u) =
1

Rn,t(s ↔ ∂Vn)

∑
e={x,y}∈En

(rt(e)− rt+1(e)) · in,t+1
u,{s}∪∂Vn

(x, y) · in,ts,∂Vn
(x, y)
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where Rn,t(a ↔ b) is the effective resistance between vertices a, b in (Gn, wt). Also, in,tv,S is the unit current

in (Gn, wt) from v (which is grounded) to S ⊆ Vn \ {v}. Finally, in,tv,S(x, y) is the amount of the current in,tv,S

across {x, y} from x to y.

Proof. Note that all random variables in the claim are determined given wt and wt+1. The key idea is to

represent vn,t+1(u) in terms of the current i1 := in,t+1
u,s∪∂Vn

. Namely, we claim that

vn,t+1(u) =
∑

y∈∂Vn

∑
x∈Vn

i1(x, y). (1)

In words, the right-hand side of (1) is the total amount of current in i1 that flows into ∂Vn. Recall that

the probabilistic interpretation of i1(x, y) is given by the weighted random walk on (Gn, wt+1) that begins

at u and runs until hitting s ∪ ∂Vn. Namely, i1(x, y) equals the expected net number of crossings of {x, y}
in the given direction during the random walk. In particular, it is zero if x ≁ y. Taking x ∼ y as specified

in the summation above, if x ∈ s ∪ ∂Vn we also have i1(x, y) = 0 as {x, y} is never crossed. Otherwise, if

x ∈ Vn−1 \ {s}, we can cross {x, y} exactly once during the random walk as it will terminate after crossing.

Hence, i1(x, y) equals the probability that the random walk terminates after crossing {x, y}. It follows that
the right-hand side of (1) is simply the probability that the weighted random walk on (Gn, wt+1) beginning

at u will hit ∂Vn before s. By the probabilistic interpretation of voltage, this is exactly vn,t+1(u).

The rest of our proof is routine algebra of flows, which we explain below. First, by Kirchhoff’s current

law we extend (1) to get

vn,t+1(u)− vn,t(u) =
∑
y∈Vn

vn,t(y)
∑
x∈Vn

i1(x, y).

As current is antisymmetric, we further obtain

vn,t+1(u)− vn,t(u) =
1

2

∑
x,y∈Vn

(vn,t(y)− vn,t(x)) · i1(x, y)

=
1

Rn,t(s ↔ ∂Vn)

∑
e={x,y}∈En

rt(e) · i0(x, y) · i1(x, y)

where i0 := in,ts,∂Vn
and the second equality is by Ohm’s law.

To conclude, it suffices to show that

L :=
∑

e={x,y}∈En

rt+1(e) · i1(x, y) · i0(x, y) = 0.

We evaluate L by essentially reversing the above process. Let ϕ(x) denote the voltage of x ∈ Vn induced by

i1. Then, by Ohm’s law we have

L =
∑

e={x,y}∈En

(ϕ(y)− ϕ(x)) · i0(x, y)

=
1

2

∑
x,y∈Vn

(ϕ(y)− ϕ(x)) · i0(x, y)

=
∑
y∈Vn

ϕ(y)
∑
x∈Vn

i0(x, y)
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where the second and third equalities follow since current is antisymmetric. By Kirchoff’s current law, we

can simplify further to obtain

L = ϕ(s)
∑
x∈Vn

i0(x, s) +
∑

y∈∂Vn

ϕ(y)
∑
x∈Vn

i0(x, y).

Note that ϕ(y) = ϕ(s) for any y ∈ ∂Vn and i0 is a unit flow. Hence, we get L = −ϕ(s) + ϕ(s) = 0 as desired

and conclude our proof.

We now crucially use the assumption that s has a single neighbor to get the following corollary.

Corollary 1. Assume that s has a single neighbor x. Then, for any n ≥ 1, t ∈ N, and u ∈ Vn \{s}, we have∣∣∣∣vn,t+1(u)

vn,t(u)
− 1

∣∣∣∣ ≤ wt(s, x)
∑
e∈E

|rt(e)− rt+1(e)|.

Proof. Since the right-hand side of Lemma 4 involves unit currents, taking absolute values gives

|vn,t+1(u)− vn,t(u)| ≤
1

Rn,t(s↔∂Vn)

∑
e∈E

|rt(e)− rt+1(e)|.

Moreover, the inequality trivially holds for u ∈ ∂Vn. Finally, since s has a single neighbor x, we see that

vn,t(u) ≥ vn,t(x) = rt(s, x)/Rn,t(s↔∂Vn). Combining the two inequalities gives our desired result.

3.4 Proof of Lemma 1

We are now ready to prove Lemma 1.

3.4.1 Showing Recurrence

We begin with the recurrent case.

Proof of Lemma 1 (Recurrence). We aim to use Lemma 3. First, we check that for any t ∈ N and u ∈ Vn,

we have vn,t(u) → 0 almost surely as n → ∞. Let d(s, u) = ℓ and (x0, . . . , xℓ) be a path from s to u. Then,

for n > ℓ we have

vn,t(u) =
1

Rn,t(s ↔ ∂Vn)

ℓ−1∑
k=0

in,ts,∂Vn
(xk, xk+1)rt(xk, xk+1)

≤ 1

Rn,t(s ↔ ∂Vn)

ℓ−1∑
k=0

rt(xk, xk+1).

Next, by the boundedness condition there exists C1 > 0 such that
∑

e δe ≤ C1 almost surely where δe :=∑∞
t=0 |rt(e)− rt+1(e)| for e ∈ E. Hence, it follows that |r0(e)− rt(e)| ≤ δe ≤ C1 and thus rt(e) ≤ r0(e) +C1.

Since r0 is deterministic,
∑ℓ−1

k=0 rt(xk, xk+1) is bounded and it suffices to show that a.s. Rn,t(s ↔ ∂Vn) → ∞
as n → ∞. Let i := in,ts,∂Vn

. Then, by Thomson’s principle, we a.s. have

Rn,0(s ↔ ∂Vn) ≤
∑
e∈En

i2(e)r0(e) ≤
∑
e∈En

i2(e)(rt(e) + δe) ≤ Rn,t(s ↔ ∂Vn) + C1.
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Since (G,w0) is recurrent, it follows that a.s. Rn,t(s ↔ ∂Vn) → ∞ for each t ∈ N as desired.

Next, we show that the condition on αn,t holds. With the crucial assumption that the RWCE is bounded,

there exists C2 > 0 such that wt(s, x) ≤ C2 where x is the unique neighbor of s. By Corollary 1, we get

∞∏
t=0

αn,t ≤
∞∏
t=0

(
1 +

∑
e∈E

wt(s, x)|rt(e)− rt+1(e)|

)
≤ exp

(∑
t,e

wt(s, x)|rt(e)− rt+1(e)|

)
≤ eC1C2 .

Therefore, we can choose an = eC1C2 in Lemma 2 for each n ≥ 1. This concludes our proof.

3.4.2 Showing Transience

By similar methods, we next prove the transient case.

Proof of Lemma 1 (Transience). We aim to use Lemma 4. We first check that infn,t vn,t(x) > 0. Since x is

the unique neighbor of s, recall that vn,t(x) = rt(s, x)/Rn,t(s ↔ ∂Vn) for n ≥ 1. Also, by the boundedness

condition, there exists C1 > 0 such that a.s. |r0(e) − rt(e)| ≤ δe ≤ C1 where δe :=
∑∞

t=0 |rt(e) − rt+1(e)|.
Letting i := in,0s,∂Vn

, Thomson’s principle gives

Rn,t(s ↔ ∂Vn) ≤
∑
e∈En

i2(e)rt(e) ≤
∑
e∈En

i2(e)(r0(e) + δe) ≤ Rn,0(s ↔ ∂Vn) + C1.

Moreover, as the RWCE is bounded, there exists C2 > 0 such that wt(s, x) ≤ C2 for all t ∈ N. Hence,

vn,t(x) ≥
1/C2

Rn,0(s ↔ ∂Vn) + C1
≥ 1/C2

lim
n→∞

Rn,0(s ↔ ∂Vn) + C1

since Rn,0(s ↔ ∂Vn) is increasing in n. As (G,w0) is transient, we conclude that infn,t vn,t(x) > 0 as desired.

Next, we show that the condition on βn,t holds. Note that

βn,t ≥ vn,t+1(x) ≥ inf
n,t

vn,t(x)

for any n ≥ 1 and t ∈ N. Moreover, let S := {t ∈ N : σt > 1/(2C2)} where σt =
∑

e∈E |rt(e)− rt+1(e)|. Since∑∞
t=0 σt ≤ C1 a.s., it follows that |S| ≤ 2C1C2 almost surely. Beginning with Corollary 1, we have

∞∏
t=0

βn,t ≥
∏
t∈S

βn,t ·
∏
t/∈S

(1− C2σt) ≥
∏
t∈S

βn,t · exp

(
−
∑
t/∈S

C2σt

1− C2σt

)
.

Since 1/(1− C2σt) ≤ 2 if t /∈ S, we conclude that a.s.

∞∏
t=0

βn,t ≥
(
inf
n,t

vn,t(x)

)⌈2C1C2⌉

exp

(
−2C2

∑
t/∈S

σt

)

≥
(
inf
n,t

vn,t(x)

)⌈2C1C2⌉

e−2C1C2 .

Choosing the final value as bn in Lemma 3 for all n ≥ 1, we conclude our proof.
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4 The Multiple Neighbor Case

We now consider the general case where the origin s has multiple neighbors. As mentioned in section 2.1,

the idea is to attach a new vertex s′ to s and construct a new RWCE on the new graph.

4.1 Desired Properties

Here, we describe the desired properties of the new RWCE. Recall that s is the origin of G and {⟨Xt, wt⟩}t∈N

is a bounded RWCE on G that satisfies the boundedness condition. Also, w0 is deterministic. First attach

a vertex s′ to s to get G′ = (V ′, E′) where V ′ = V ∪ {s′} and E′ = E ∪ {s, s′}. We aim to construct a

new bounded RWCE {⟨X ′
t, w

′
t⟩}t∈N on G′ whose recurrence (resp. transience) implies the recurrence (resp.

transience) of {⟨Xt, wt⟩}t∈N. Then, viewing s′ as the origin of G′, we can apply Lemma 1 to {⟨X ′
t, w

′
t⟩}t∈N

if it also satisfies the boundedness condition.

Note that the restriction of {⟨X ′
t, w

′
t⟩}t∈N to G induces a natural RWCE on G. If this induced RWCE

is equal in distribution to {⟨Xt, wt⟩}t∈N, we claim that we have our desired implication of recurrence or

transience. More concretely, let Nt be the number of edges in E traversed by (X ′
0, . . . , X

′
t) for each t ∈ N.

Also define stopping times τk = inf{t ∈ N : Nt = k} for k ∈ N. Then, we say the RWCE induced by

{⟨X ′
t, w

′
t⟩}t∈N on G is {⟨Yk, ωk}k∈N where Yk = X ′

τk
and ωk = w′

τk
↾E for each k ∈ N. In particular, the

vertex sequence {Yk}k∈N simply tracks the edges in E crossed by {X ′
t}t∈N.

We now explain how the desired implications follow if {⟨X ′
t, w

′
t⟩}t∈N is bounded and {⟨Yk, ωk⟩}k∈N equals

{⟨Xt, wt⟩}t∈N in distribution. First consider when {⟨X ′
t, w

′
t⟩}t∈N is recurrent and thus a.s. visits s′ infinitely

often. If s is visited finitely often in {⟨Yk, ωk⟩}k∈N, then the only way s′ can be visited infinitely often in

{⟨X ′
t, w

′
t⟩}t∈N is by alternating between s and s′ infinitely many times in a row. However, this happens with

probability zero as {⟨X ′
t, w

′
t⟩}t∈N is bounded and the probability of jumping from s to s′ is bounded above by

some number less than 1. Hence, s is a.s. visited infinitely often in {⟨Yk, ωk⟩}k∈N which implies recurrence

of {⟨Xt, wt⟩}t∈N. Next, assume that {⟨X ′
t, w

′
t⟩}t∈N is transient and thus a.s visits s finitely often. Since we

only remove vertices when obtaining {Yk}k∈N from {X ′
t}t∈N, it follows that s is a.s. visited finitely often in

{⟨Yk, ωk⟩}k∈N which implies transience of {⟨Xt, wt⟩}t∈N.

4.2 Formal Construction

Here, we construct our desired {⟨X ′
t, w

′
t⟩}t∈N. We determine the random variables sequentially, beginning

with X ′
0, then w′

0, then X ′
1, then w′

1, and so on. The key idea is to determine w′
t as if we were determining

wNt
given (Y0, Y1, . . . , YNt

, ω0, . . . , ωNt−1) as the history. If {X ′
t−1, X

′
t} = {s, s′}, however, then Nt = Nt−1

and in this case we freeze the weights by letting w′
t = w′

t−1. Indeed, we unfreeze afterwards as soon as an

edge in E is crossed.

For notational simplicity, let WE := (0,∞)E and w′
t,E := w′

t ↾E for any w′
t ∈ WE′

. We now give the

measure-theoretic construction of {⟨X ′
t, w

′
t⟩}t∈N. Let X ′

0 = X0 in distribution and let w′
0 ↾E= w0. Also let

w′
t(s, s

′) = 1 for all t ∈ N. Then, it remains to define the conditional probabilities P(w′
t+1,E ∈ A | G′

t) for

each t ∈ N and A ∈ B(WE) where G′
t := σ(X ′

0, . . . , X
′
t+1, w

′
0, . . . , w

′
t).

Let (Ω,F ,P) denote the underlying probability space and P̂wt+1|Gt
(·, ·) : B(WE)× Ω → [0, 1] denote the

RCPD of wt+1 given Gt := σ(X0, . . . , Xt+1, w0, . . . , wt) for t ∈ N. The RCPD exists since E is countable and

WE is a Polish space. By the Doob-Dynkin functional representation, we have

P̂wt+1|Gt
(A,ω) = ft,A(X0(ω), . . . , Xt+1(ω), w0(ω), . . . , wt(ω))
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for any A ∈ B(WE) and ω ∈ Ω where ft,A : V t+2× (WE)
t+1 → [0, 1] is some measurable function. Moreover,

we know that ft,·(X0, . . . , Xt+1, w0, . . . , wt) is a.s. a probability measure on (WE ,B(WE)).

To conclude, when Nt+1 = Nt + 1, we require

P(w′
t+1,E ∈ A | G′

t) = fNt,A(Y0, . . . , YNt+1, ω0, . . . , ωNt
). (2)

Otherwise, if Nt+1 = Nt, then given G′
t we require w′

t+1 = w′
t. Note that if we know

(X0, . . . , Xt, w0, . . . , wt−1)
d
=(Y0, . . . , Yt, ω0, . . . , ωt−1)

for t ≤ k+1, then (2) is a well-defined probability for t ≤ τk+1−1. We will show this equality in distribution

while proving {⟨Xt, wt⟩}t∈N
d
= {⟨Yt, ωt⟩}t∈N in the following section.

4.3 Verifying the Construction

Here, we justify our construction through the following lemma.

Lemma 6. We have {⟨Xt, wt⟩}t∈N
d
= {⟨Yt, ωt⟩}t∈N. In particular, (2) is well-defined for all t ∈ N.

Proof. By Kolmogorov’s extension theorem for Polish spaces, it suffices to show that

(X0, w0, . . . , Xt−1, wt−1, Xt)
d
=(Y0, ω0, . . . , Yt−1, ωt−1, Yt), (3)

(X0, w0, . . . , Xt−1, wt−1, Xt, wt)
d
=(Y0, ω0, . . . , Yt−1, ωt−1, Yt, ωt) (4)

for each t ∈ N. We proceed by strong induction on t ∈ N. If t = 0, both claims follow since τ0 = 0. Next,

assume that both claims hold for all t ≤ k where k ∈ N. We first show that (3) also holds for t = k + 1. By

Carathéodory’s extension theorem, it suffices to show that

P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}kj=0

)
= P

(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
for any x0, . . . , xk+1 ∈ V and E0, . . . , Et ∈ B(WE). Beginning with the right-hand side, we have

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
= E

k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej


= E

 k∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
E
[
1Yk+1=xk+1

| F ′
τk

]
where F ′

k = σ(X ′
0, . . . , X

′
t, w

′
0, . . . , w

′
k). If Yk ̸= s, then we have E

[
1Yk+1=xk+1

| F ′
τk

]
= ωk(Yk, xk+1)/ωk(Yk).

Otherwise, if Yk = s, then we have

E
[
1Yk+1=xk+1

| F ′
τk

]
=

∞∑
k=0

1

(ωk(s) + 1)k
· ωk(s, xk+1)

ωk(s) + 1
=

ωk(s, xk+1)

ωk(s)
.

Hence, we can write

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}kj=0

)
= E[gk(Y0, . . . , Yk, ω0, . . . , ωk)]
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where

gk(Y0, . . . , Yk, ω0, . . . , ωk) =
ωk(Yk, xk+1)

ωk(Yk)
·

k∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
.

By the inductive hypothesis, we have

E[gk(Y0, . . . , Yk, ω0, . . . , ωk)] = E[gk(X0, . . . , Xk, w0, . . . , wk)].

Working backwards, we see that

E[gk(X0, . . . , Xk, w0, . . . , wk)] = P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}kj=0

)
.

This gives (3) for t ≤ k + 1. It follows that (2) is well-defined for t ≤ τk+1 − 1.

Next, we show that (4) also holds for t = k + 1. Again, it suffices to show that

P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}k+1
j=0

)
= P

(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
for any x0, . . . , xk+1 ∈ V and E0, . . . , Ek+1 ∈ B(WE). Beginning with the right-hand side, we have

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
= E

k+1∏
i=0

1Yi=xi

k+1∏
j=0

1ωj∈Ej


= E

k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej
E
[
1ωk+1∈Ak+1

| G′
τk+1−1

] .

Since (2) is well-defined for t ≤ τk+1 − 1, we have

E[1ωk+1∈Ek+1
| G′

τk+1−1] = fk,Ek+1
(Y0, . . . , Yk+1, ω0, . . . , ωk).

Hence, we can write

P
(
{Yi = xi}k+1

i=0 , {ωj ∈ Ej}k+1
j=0

)
= E[hk(Y0, . . . , Yk+1, ω0, . . . , ωk)]

where

hk(Y0, . . . , Yk+1, ω0, . . . , ωt) = fk,Ek+1
(Y0, . . . , Yk+1, ω0, . . . , ωk) ·

k+1∏
i=0

1Yi=xi

k∏
j=0

1ωj∈Ej .

Since (3) holds for t = k + 1, we have

E[hk(Y0, . . . , Yk+1, ω0, . . . , ωk)] = E[hk(X0, . . . , Xk+1, w0, . . . , wk)].

Working backwards, we see that

E[hk(X0, . . . , Xk+1, w0, . . . , wk)] = P
(
{Xi = xi}k+1

i=0 , {wj ∈ Ej}k+1
j=0

)
.

This gives (4) for t ≤ k + 1. By induction, we conclude our proof.
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4.4 Proof of Theorem 1

We are now ready to prove Theorem 1 in full generality.

Proof of Theorem 1. We aim to use Lemma 1. We will check the necessary conditions forG′ and {⟨X ′
t, w

′
t⟩}t∈N

constructed above. First, choose s′ as the origin of G′. Then, s′ has a single neighbor s and w′
0 is determinis-

tic. Since wt(s, s
′) = 1 for all t ∈ N, combining this with Lemma 6 it follows that {⟨X ′

t, w
′
t⟩}t∈N is bounded.

Finally, since the weights are frozen when {⟨X ′
t, w

′
t⟩}t∈N traverses along {s, s′}, it follows that∑

t,e

|r′t(e)− r′t+1(e)|
a.s.
=
∑
k,e

|r′τk(e)− r′τk+1
(e)| d

=
∑
k,e

|rk(e)− rk+1(e)|

where the second equality is by Lemma 6. Hence,
∑

t,e |r′t(e) − r′t+1(e)| is also bounded. To conclude, by

Lemma 1, we see that {⟨X ′
t, w

′
t⟩}t∈N inherits the recurrence or transience of (G′, w′

0). Moreover, note that

R′(s′ ↔ ∂V ′
n+1) = 1 +R(s ↔ ∂Vn)

where R′ is the effective resistance function on (G′, w′
0) with s′ as the origin and R is the effective resistance

function on (G,w0) with s as the origin. Hence, it follows that (G,w0) and (G′, w′
0) are either both recurrent

or both transient. To conclude, if (G,w0) is recurrent, it follows that (G′, w′
0), then {⟨X ′

t, w
′
t⟩}t∈N, then

{⟨Xt, wt⟩}t∈N are also recurrent where the last implication was discussed in section 4.1. The case is the same

for transience and we conclude our proof.
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