INVOLUTIVE HEEGAARD FLOER THEORY IN DIMENSION FOUR

Abstract

The work of Donaldson and Floer in the 1980s demonstrated that a 3+1 dimensional topological quantum field theory (TQFT) is an optimal framework for studying four-dimensional smooth manifolds. In this project, we use the TQFT structure of involutive Heegaard Floer homology, a modern construction due to Hendricks and Manolescu [1], to produce a novel invariant of smooth four-manifolds.

Heegaard Floer Homology as a TQFT

 $\mathbb{Z}_2[U]$ addition assigning four modules to $HF(Y), HF^{-}(Y), HF^{+}(Y)$, and $HF^{\infty}(Y)$ – to every closed, oriented three-manifold Y, Heegaard Floer homology also assigns maps $F_W^\circ: HF^\circ(Y_1) \to HF_\circ(Y_2)$

to every (oriented) four-dimensional cobordism W from Y_1 to Y_2 .

These maps are **functorial**, in the sense that if W_1 is a cobordism from Y_1 to Y_2 and W_2 is a cobordism from Y_2 to Y_3 , then

 $F^{\circ}_{W_1 \cup_{Y_2} W_2} = F_{W_2} \circ F_{W_1}.$

The Ozsváth-Szabó Mixed Invariant

By removing two four-balls from a closed four-manifold X, we can view X as a cobordism from S^3 to S^3 . Unfortunately, for any X with $b_2^+(X) > 0$ 0, all of the corresponding maps

 $F_X^\circ: HF^+(S^3) \to HF^+(S^3)$

vanish, so they are not useful invariants.

We can salvage the situation as follows:

- Cut X in half along a three-manifold N which satisfies some nice properties (called an admissible cut).
- Glue together the maps

 $F_{X_1,\mathfrak{s}}^-: HF^-(S^3) \to HF^-(N,\mathfrak{s}),$

 $F_{X_2,\mathfrak{s}}^+: HF^+(N,\mathfrak{s}) \to HF^+(S^3).$

The result is the **Ozsváth-Szabó mixed invariant** $\Phi_{X,\mathfrak{g}}$.

Applications of $\Phi_{X\mathfrak{s}}$

- $\Phi_{X,\mathfrak{s}}$ can detect exotic smooth structures.
- The nonvanishing of $\Phi_{X,\mathfrak{s}}$ implies that embedded surfaces Σ in X satisfy the **adjunction inequality**:

 $\langle c_1(\mathfrak{s}), [\Sigma] \rangle + [\Sigma]^2 \leq 2g(\Sigma) - 2.$

• The fact that $\Phi_{X,k} \neq 0$ for X a symplectic manifold with canonical spin^c structure k has several consequences, including the indecomposability of symplectic manifolds and the symplectic Thom conjecture.

Owen Brass

Advisor: Prof. Ciprian Manolescu

Stanford University, Department of Mathematics

Involutive Heegaard Floer Homology

Every oriented three-manifold Y admits a **Heegaard splitting** – that is, a decomposition into two handlebodies glued along their boundary. • Choose a self-indexing Morse function $f: Y \to \mathbb{R}$ on the 3-manifold. • Considering the two manifolds-with-boundary $f^{-1}([0, 3/2])$ and

 $f^{-1}([3/2,3]).$

The information which informs how this gluing takes place can be stored in the form of a **Heegaard diagram** (shown below).

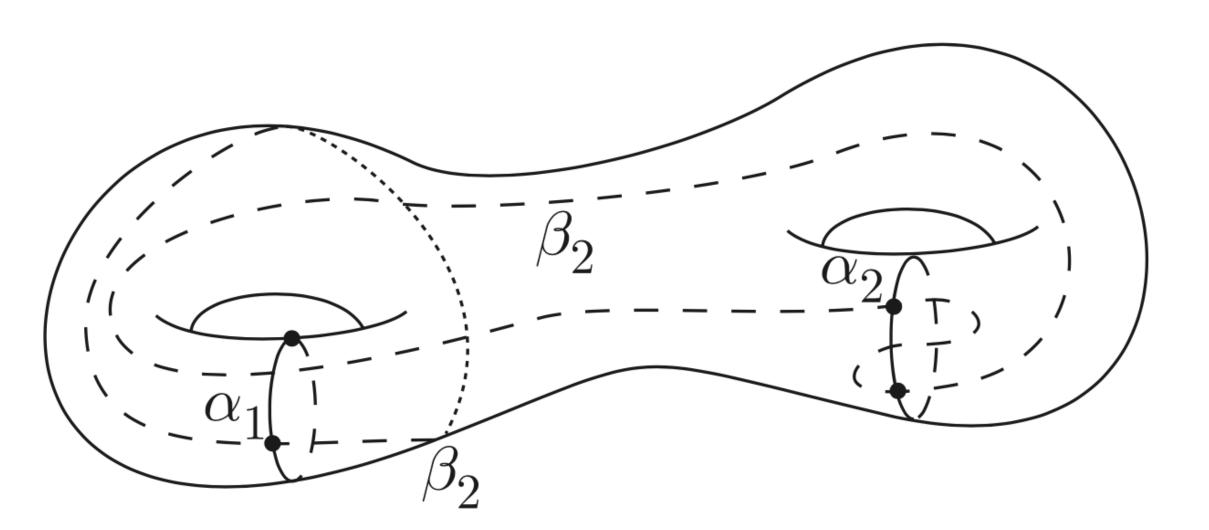


Fig. 1: A genus 2 Heegaard Splitting of S^3 [3].

The construction of Heegaard Floer homology for a three-manifold Yrelies on a choice of Morse function $f : Y \to \mathbb{R}$, which induces a Heegaard splitting (Σ, α, β) .

Involutive Heegaard Floer homology incorporates information about the natural symmetry on this data given by transitioning from f to $-f: Y \to \mathbb{R}.$

• This can be thought of as a path of Heegaard splittings from (Σ, α, β) to $(-\Sigma, \beta, \alpha)$.

Involutive Heegaard Floer homology also admits a TQFT structure, assigning maps:

 $F_{W\mathfrak{s}}^{\circ}: HF^{\circ}(Y_1,\mathfrak{s}|_{Y_1}) \to HF^{\circ}(Y_2,\mathfrak{s}|_{Y_2})$

to every spin cobordism (W, \mathfrak{s}) .

These maps reveal structure which ordinary Heegaard Floer homology cannot see.

- Kang used them the discover a pair of contractible four-manifolds X_1 , X_2 which are homeomorphic but not diffeomorphic even after one stabilization [2].
- Meanwhile, ordinary Heegaard Floer invariants vanish under stabilization.

An Involutive Mixed Invariant

Modeling Ozsváth and Szabó's construction in the setting of involutive Heegaard Floer theory, I defined an **involutive mixed invariant** $\Phi^I_{X\mathfrak{g}}$, which for closed spin four-manifolds (X, \mathfrak{s}) (with $b_2^+(X) > 3$) takes the form

 $\Phi_{X,\mathfrak{s}}^{I} = \begin{pmatrix} \Phi_{X,\mathfrak{s}} & 0 \\ \Psi_{X,\mathfrak{s}} & \Phi_{X,\mathfrak{s}} \end{pmatrix}$

where $\Phi_{X,\mathfrak{s}}$ is the Ozsváth-Szabó invariant, and $\Psi_{X,\mathfrak{s}}$ is a novel U-equivariant homomorphism.

Stabilization Formula for $\Phi^I_{X,\mathfrak{s}}$

The involutive mixed invariant satisfies a stabilization formula:

$$\Phi^I_{X\#(S^2\times S^2),\mathfrak{s}} = Q\Phi^I_{X,\mathfrak{s}}.$$

In particular, this implies that, unlike the Ozsváth-Szabó invariant, $\Phi^{I}_{X\mathfrak{s}}$ need not vanish after stabilization. It also implies that the off-diagonal homomorphism, $\Psi_{X,\mathfrak{s}}$, need not be trivial.

Potential Applications of $\Phi^I_{X,\mathfrak{s}}$ and **Future Goals**

- $\Phi_{X_{\mathfrak{s}}}^{I}$ might detect exotic smooth structures which $\Phi_{X,\mathfrak{s}}$ misses.
- $\Phi^{I}_{X_{\mathfrak{s}}} \neq 0$ is more general than $\Phi_{X,\mathfrak{s}} \neq 0$. As such, showing adjunction in the case that $\Phi^I_{X\mathfrak{s}} \neq 0$ would be a powerful result.
- Constructing a closed four-manifold X with $\Psi_{X,\mathfrak{s}} \neq 0$ which is not obtained through stabilization.

Acknowledgements

I would like to thank my advisor, Professor Ciprian Manolescu, for all of his support and suggestions throughout this project. I would also like to thank the director of SURIM, Dr. Lernik Asserian, for doing a wonderful job organizing the program.

References

[1] Kristen Hendricks and Ciprian Manolescu. "Involutive Heegaard Floer homology". In: Duke Mathematical Journal 166.7 (May 2017). DOI: 10.1215/00127094-3793141.URL:https://doi.org/10.1215%2F00127094-3793141. [2] Sungkyung Kang. One stabilization is not enough for contractible 4-manifolds. 2022. arXiv: 2210.07510 [math.GT].

[3] Dusa Mcduff. "Floer theory and low dimensional topology". In: Bulletin of the American Mathematical Society 43 (2005), pp. 25–42.

