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Abstract

Any elliptic curve over the complex numbers is equivalent to a complex torus. The standard method of
showing this is using the Weierstrass ℘-function. We first review relevant background and then work out
the same equivalence using an exponential map on elliptic curves. Toward this end, we derive some relevant
estimates, define the exponential map on elliptic curves, and show that it is a surjective open homomorphism;
then a lattice quite naturally emerges as its kernel. We then show that this exponential map is equal to
the isomorphism constructed with the Weierstrass ℘-function. We include some numerical work (we suspect
that our method could be a faster means of numerically computing wp(z)) and graphics illustrating the ideas
herein presented. Finally, we discuss connections with complex multiplication of elliptic curves.
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Chapter 1

Background

1.1 Motivation
Consider the equation a4 + b4 = c4. This is a special case of Fermat’s last theorem, which implies that the
given equation has no non-trivial integer solutions. One way to show this is by the change of variables

x =
b2 + c2

a2
, y =

4b(b2 + c2)

a2

where we assume a 6= 0. If a4 + b4 = c4, then one can check that the relation y2 = x3 − 4x must hold. It
turns out that the only rational solutions to this relation are (x, y) = (0, 0) or (±2, 0). All cases correspond
to y = 0 and thus b = 0, which indicate that no non-trivial solutions of a4 + b4 = c4 exist.

We can prove the cubic case of Fermat’s theorem similarly. Consider the equation a3 + b3 = c3. Let

x = 12
c

a+ b
, y = 36

a− b

a+ b

where we assume abc 6= 0. Assuming the cubic equation is satisfied, we obtain the relation y2 = x3 − 432.
The only rational solutions are (x, y) = (12,±36). This gives either a = 0 or b = 0, again showing that there
are no non-trivial solutions.

Indeed, finding all rational points to such equations is not at all trivial. Rather, we considered the above
examples to motivate the concept of elliptic curves. Above, we have two equations involving a, b, c and two
equations involving x, y. Exactly three of them describe elliptic curves. In the quartic case, only the equation
y2 = x3−4x is an elliptic curve. In the cubic case, both the original Fermat equation and the derived relation
are elliptic curves. In fact, the given change of variables gives an isomorphism between the two.

Note the similarity between the equations y2 = x3 − 4x and y2 = x3 − 432. In general, any elliptic curve
can be described by its Weierstrass form, which is an equation of the form y2 = x3+Ax+B where A,B ∈ F
for some field F. This allows us to give a working definition of elliptic curves.

1.2 Definition
Here, we give a definition of elliptic curves.
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Definition 1 (Elliptic Curves). Let K ⊆ L be fields. Take any A,B ∈ K such that 4A3 + 27B2 6= 0. Then,
the corresponding elliptic curve over K with coordinates in L is defined as

E(L) = {(x, y) ∈ L2 | y2 = x3 +Ax+B} ∪ {∞},

where the final point included is the point at infinity.

We note that L is usually taken to be the algebraic closure of K. In this paper, we are most interested in
the case K = L = C. Moreover, note that the definition above has two technicalities. First, it requires that
4A3+27B2 6= 0, which is equivalent to saying x3+Ax+B has no multiple roots. Second, it requires a point
at infinity. To understand where these technicalities come from, we need to consider the surprising fact that
the set of points E(L) forms a group. This group structure essentially forms the basis of what makes elliptic
curves interesting and applicable. In the next section, we describe the actual group operation.

1.3 Group Law
An elliptic curve over any field forms a group. However, the group operation is most intuitive when un-
derstood geometrically. Hence, for illustration purposes, we first consider elliptic curves in the real plane.
Consider the figure below.

Figure 1.1: The Group Operation

The given graph is an example of an elliptic curve E over R. If we pick any two points P1 and P2 on E,
then we can produce a third point P1 +E P2 = P3 by the procedure depicted below. The idea is to draw
the line passing through points P1 and P2 and find the third intersection point with the elliptic curve, then
reflect it horizontally. There are a few things, however, to check that this operation actually gives a group
structure.
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First, we check that the operation is well-defined. By the y2 term in the Weierstrass form, we see that we
can always horizontally reflect points. Moreover, since the Weierstrass form gives a cubic in x, a line passing
through two points (including multiplicity) always intersects at a third single point (including the point at
infinity). Finally, we make sure that the third point remains in the given field. For instance, assume our
elliptic curve is over Q. How do we know the third point produced is also a rational point? To see this, take
any equation y2 = x3 + px + q where p, q ∈ Q. If we pick two rational points, the line through them will
be given by y = ax + b for some a, b ∈ Q. Solving for both equations, we will obtain a cubic with rational
coefficients. In particular, the coefficient of x2 is the sum of the x-coordinates of the three intersection points.
Since two of them are rational, the third must also be rational. This implies that the y-coordinate of the
third point is also rational, and thus our group operation is well-defined. In particular, we remark that the
group operation allows one to produce new rational points on an elliptic curve given two already known
points.

Next, we show that our group operation has an identity element. In fact, we claim that the point ∞ is
the identity, which is exactly why it is included as a technicality in the definition. In figure 1, one can think
of ∞ as lying on the top of the y-axis, or the coordinate (c,∞) for any c ∈ R. By symmetry, we see that
(c,∞) ∼ (c,−∞) and thus ∞ can also be thought of as lying on the bottom of the y-axis. Indeed, all these
coordinates describe the single point ∞. With this in mind, for any point P on the elliptic curve, one can
show that P +∞ = P since the line passing through P and ∞ is the vertical line passing through P, thus
intersecting the curve at its horizontal reflection. The same observation shows that the inverse of any point
P is its horizontal reflection.

Surprisingly, the given operation is also associative, but this isn’t as simple to verify as the other two
group axioms. One can either show this through direct computation or arguments in projective space. As a
final remark, we note that adding a point to itself is given by considering the tangent line of the point. The
condition 4A3 + 27B2 6= 0 is needed so that every point has a tangent line.

To conclude, note that the algebraic formulas describing the geometric procedures above work for any
field. Below, we give an algebraic definition of the group operation for elliptic curves.

Definition 2 (Group Law). Let E be an elliptic curve defined by y2 = x3 + Ax + B where A,B ∈ F for
some field F. Let P1 = (x1, y1) and P2 = (x2, y2) be points on E such that P1, P2 6= ∞. Then, P1 + P2 =

P3 = (x3, y3) is defined as below:
1. If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where m = (y2 − y1)/(x2 − x1).

2. If x1 = x2 but y1 6= y2, then P1 + P2 = ∞.

3. If P1 = P2 and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1,

where m = (3x2
1 +A)/(2y1).

4. If P1 = P2 and y1 = 0, then P1 + P2 = ∞.

Finally, we define P +∞ = P for all points P on E.

With this definition, we are indeed able to work with elliptic curves over any field.
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Figure 1.2: The fundamental parallelogram for the complex plane modulo a lattice. The top/bottom and
left/right sides are identified modulo the lattice

1.4 Facts about Lattices
Both this section and section 1.5 will closely follow Chapter 9 of Lawrence C. Washington’s book on elliptic
curves ([Was08]).

1.4.1 The Torus from a Lattice

Given two complex numbers ω1 and ω2 which are linearly independent over R, consider the set

Λ = {aω1 + bω2 : a, b ∈ Z} ⊂ C

which we may also write Zω1+Zω2, which we call a lattice. Note that a lattice is an additive subgroup of C,
so we may consider the quotient C/Λ. This quotient may be visualized via the “fundamental parallelogram”
of the lattice (Figure 1.2).

If we imagine folding this parallelogram outside of the page, identifying the bottom and top edges, and
the left and right edges, we see that this equal as a topological group to the torus.

1.4.2 Reasons Why Lattices are Nice

• The points z ∈ C/Λ such that nz ≡ 0 modulo Λ are very simple to determine geometrically (Figure
1.3), and in particular we may see that that there are n2 such points on the torus, and hence on any
elliptic curve over C.

• While the implementation details are somewhat complicated, the fact that there are n2 points of order
dividing n on an elliptic curve over C can be used to show that an elliptic curve over a finite field is
isomorphic to either a cyclic group or a product of cyclic groups (this is discussed in section 5.1).

• Once we have that elliptic curves over C are equivalent to tori, endomorphisms (that is, homomor-
phisms from E to itself given by rational functions) become very simple to visualize, as they are
just multiplication of C by a complex number such that the lattice is preserved (this topic is further
discussed in section 5.3).
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Figure 1.3: Points of order dividing 4 in the fundamental parallelogram.

1.5 The Weierstrass ℘-function
One way to show that elliptic curves over C are tori is to define the Weierstrass ℘-function, show that it
has certain properties, use it to construct a surjective homomorphism into some elliptic curve over C whose
kernel is a lattice, and then show that for an arbitrary elliptic curve over C we can construct the right lattice
to get such a homomorphism.

1.5.1 Definition and Properties

Given a lattice Λ, we define the Weierstrass ℘-function ℘(z) by

℘(z) =
1

z2
+

∑
ω∈Λ
ω ̸=0

[
1

(z − ω)2
− 1

ω2

]
. (1.1)

Then we need to show that this function has the following properties:

• It is meromorphic, with a pole of order 2 at each point in the lattice. That the poles are thus is to be
expected from the 1

z2 and 1
(z−ω)2 terms in the definition. Since the point at infinity is the identity of

the elliptic curve, poles will correspond to the kernel of the homomorphism we will construct.

• It is doubly periodic; that is, ℘(z + ω) = ℘(z) for all ω ∈ Λ.

• From the lattice, one may compute constants g2 and g3 such that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3, (1.2)

i.e. the image of the map C → C2 given by z 7→ (℘(z), ℘′(z)) lies on the elliptic curve y2 = 4x3− g2x−
g3.1

• The map z 7→ (℘(z), ℘′(z)) is a homomorphism from C as an additive group to the elliptic curve
y2 = 4x3 − g2x− g3.

• This map is surjective.
1One could put this curve into Weierstrass form, but the convention is not to do so.
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At this point we have a surjective homomorphism from C to an elliptic curve whose kernel is a lattice Λ, so
by the First Isomorphism Theorem, the elliptic curve is isomorphic to C/Λ.

1.5.2 How to Find the Right Lattice Given a Curve

Now we need to show that we can get any elliptic curve through the above procedure. The idea is to define
a bijection j : F → C (where F is a subset of C called the “fundamental domain”) and then show that if
an elliptic curve has a j-invariant of ℓ (the j-invariant is a complex number assigned to elliptic curves which
characterizes them exactly up to rescaling of axes), then the lattice Z + j−1(ℓ)Z induces a homomorphism
onto the elliptic curve via the ℘(z) this lattice induces. An added bonus of this result is that the space of all
possible elliptic curves over C up to isomorphism is geometrically identified with F , which is rather pretty.

1.6 Inspiration
It is suggested on page 148 of [Wal08] that the map z 7→ (℘(z), ℘′(z)) is in fact an exponential map, inspiring
us to try to work out this exponential map explicitly and show its equivalence to the map constructed with
℘(z). Before we go on, however, let us discuss a toy model which will employ many of our ideas in a simpler
setting.

1.7 A Toy Model: the Circle
Before getting to our results on elliptic curves, it is useful to first discuss the circle, since most of the ideas
and strategies of the coming results are analogous to much simpler ideas and strategies pertaining to the
circle.

1.7.1 The Exponential Map for the Circle

Suppose that we were presented with the circle group as the set

{(x, y) ∈ R2 : x2 + y2 = 1}

with the binary operation
(a, b)×S1 (x, y) = (ax− by, ay + bx)

and identity (1, 0), and wanted to show that this group is isomorphic to R/2πZ. One way to do so is as
follows.

Proof. First, note (e.g. by implicit differentiation of x2 + y2 = 1) that the tangent line to the identity is the
line x = 1. Then identify this tangent line with R via the mapping t 7→ (1, t), and consider the limit

lim
n→∞

(
1,

t

2n

)2n

.
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Figure 1.4: Exponential map for the circle

(The reason why we have 2n’s instead of n’s in the places where we have 2n’s will become more clear
after we define the exponential map for elliptic curves; regardless, passing to a subsequence of a convergent
sequence yields the same limit.) If we identify R2 with C in the usual way, then ×S1 becomes regular complex
multiplication and (1, t

2n ) becomes 1 + i t
2n , so this limit becomes

lim
n→∞

(1 +
it

2n
)(2

n).

By standard results in analysis, this is equal to

lim
n→∞

(1 +
it

n
)n = eit = cos t+ i sin t.

The identity cos2 t+ sin2 t = 1 tells us that the image of this map lies in E. This map is a homomorphism
(R,+) → (S1,×S1), since ei(t+s) = eiteis, and it is surjective because every point on the circle is equal to
(cos θ, sin θ) for some θ ∈ R. Its kernel consists of

{t ∈ R : eit = 1} = {t ∈ R : cos t = 1 and sin t = 0} = 2πZ.

Hence, by the First Isomorphism Theorem, the image of this homomorphism is isomorphic to its domain
modulo its kernel, so S1 ∼= R/2πZ.
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Chapter 2

Defining the Exponential Map

Let y2 = x3 +Ax+B be an elliptic curve E, and let P = (x0, y0) be a finite point on E.

Definition 3. We may define an alternative group law on E (which we will denote by +E′) via

M +E′ N := M +E N −E P, (2.1)

and this is the group law we will use to define the exponential map.1

We will denote Euclidian operations via a subscript “Eu”.

2.1 Defining the Projection Map
Because an elliptic curve is non-singular by definition,2 the elliptic curve will have a tangent space TPE,
which will be a 1-dimensional (over C) subspace of C2. By implicitly differentiating, we see that the tangent
space is given by

(3x2
0 +A)(x− x0) = 2y0(y − y0).

We may identify this tangent space with C via the mapping

ι(z) = (x0 + 2y0z, y0 + (3x2
0 +A)z). (2.2)

First, let’s assume that y0 = 0. In this case we may more simply identify the tangent space with C via
ι(z) = (x0, z) (which agrees with the ι above up to re-scaling by a factor of (3x2

0 + A)). Now we want to
define a function f that projects from the point (x0, z) onto the elliptic curve by moving in the x-direction.
To construct f , we will use the Implicit Function Theorem. Let

φ(z, x) = z2 − x3 −Ax−B. (2.3)

Then φ is a polynomial in z and x and is hence a complex analytic function C2 → C. And ∂φ
∂x = −3x2−A is

1Really, which point we choose as the identity for the group operation on E is arbitrary in such a way that there’s nothing
more natural about +E relative to +E′ . However, using the point at infinity is the more common convention, and we at times
need to mix the two group operations in a single expression, so we adopt the notation +E and +E′ to avoid confusion.

2Definition 1 requires that 4A3 + 27B2 ̸= 0, which implies that x3 + Ax + B has no repeated roots, which implies that
3x2 +A is never zero when x3 +Ax+B is zero, which ensures that the curve is non-singular.
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nonzero at x = x0, z = 0 because the elliptic curve is non-singular. Thus by the Implicit Function Theorem
for the complex variables setting,3 there exists a disk D ⊂ C around the origin and a holomorphic map
f̃ : D → C such that φ(z, f̃(z)) = 0, i.e. z 7→ (f̃(z), z) is a map from a disk in the tangent space onto
the elliptic curve. Because the zeroes of x3 + ax + b are separated and f̃ is continuous, and because the
implicit function theorem doesn’t rely on anything outside of a neighborhood of the point where we took
the Jacobian determinant, the image of D under z 7→ (f̃(z), z) contains a neighborhood V ⊂ E of the point
P and f̃(0) = x0.

When y0 6= 0, a similar argument applies except that we need to perform a linear change of variables, but
this doesn’t effect the non-singluarity of the curve and hence doesn’t effect the part where the directional
derivative of φ in the direction perpendicular to the tangent plane needs to be nonzero.

Thus f(z) = (z, f̃(z)) (or a more complicated expression involving linear changes of variables when
y0 6= 0) is the projection map we want, and is holomorphic C → C2. And the very definition of a tangent
space then requires that f̃(z) − x0 = O(z2), i.e. f̃(0) = x0 and f̃ ′(0) = 0. In the case when y0 6= 0, the
algebra is a bit more complicated, but we see from the definition of what a tangent space is that

f(z) = ι(z) +Eu O(z2) (2.4)

2.2 Some Inequalities
In order to show results about exp, we’ll need to derive some estimates showing that near P , the elliptic
curve operation is “almost Euclidian”. We’ll also need to define a function (which will be denoted ‖·‖R) that
measures distance from P which, near P , satisfies a version of the triangle inequality with respect to the
elliptic curve operation.

Because the group law is made up entirely of rational expressions, it is clear that the map

g(z, w) := f(z) +E′ f(w) (2.5)

is holomorphic in z and w if the denominators of the relevant rational expressions (once we write each
component of g(z, w) as a polynomial in z, f̃(z), w, f̃(w) divided by another such polynomial) are nonzero.4

But g(0, 0) = f(0) + f(0) − P = P + P − P = P is some finite value, so the denominators don’t vanish at
(0, 0),5 so they must not vanish on some neighborhood U1 ⊂ C2 of (0, 0), so g is holomorphic U1 → C2.

Thus for (z, w) ∈ U1, we may apply the following expansion (where all pluses and minuses are Euclidian,
with points in C2):

g(z, w)− g(z, 0)− g(0, w) = [g(z, w)− g(z, 0)]− [g(0, w)− g(0, 0)]− g(0, 0)

= −g(0, 0) + w ∂g
∂w |(z,0) − w ∂g

∂w |(0,0) +O(z2, zw,w2)

= −g(0, 0) + w
[
∂g
∂w |(z,0) − ∂g

∂w |(0,0)
]
+O(z2, zw,w2)

= −g(0, 0) + w
(
z ∂2g
∂z∂w +O(z2)

)
+O(z2, zw,w2)

= −g(0, 0) +O(z2, zw,w2),

3See the statement on the first page of [CP03]. We’re using the case of m = 1, in which case the Jacobian determinant is of
a 1× 1 matrix.

4See Proposition 2.1 of [Kni96].
5It could also be that the numerator and denominator both vanish and we have a removable discontinuity, but in this case

the same conclusion still holds.

11



or, rearranging, g(z, w)−g(0, 0) = g(z, 0)−g(0, 0)+g(0, w)−g(0, 0)+O(z2, zw,w2). Hence, since f(0) = P ,
we get the following result:

Lemma 1. For z, w in some neighborhood U1 of the origin, we have that

f(z) +E′ f(w)−Eu P = f(z)−Eu P +Eu f(w)−Eu P +O(z2, zw,w2). (2.6)

Note that if z = 0 or w = 0, we have that f(z) +E′ f(w)−Eu P = f(z)−Eu P +Eu f(w)−Eu P exactly,
so each term in the O(z2, zw,w2) must have at least one factor of z and at least one factor of w. Hence, we
get that for some a ∈ C2,

f(z) +E′ f(w)−Eu P = f(z)−Eu P +Eu f(w)−Eu P + azw + zO(w2, z) + wO(z2, w).

Then, taking the Euclidian norm of both sides and applying the triangle inequality, we get that

‖f(z) +E′ f(w)−Eu P‖Eu ≤ ‖f(z)−Eu P‖Eu + ‖f(w)−Eu P‖Eu + ‖a‖Eu|z||w|+O(|w|2, |z|) +O(|z|2, |w|).

Thus there exists a constant C0 > 0 such that for z and w in a neighborhood U2 ⊂ C of the origin,

‖f(z) +E′ f(w)−Eu P‖Eu ≤ ‖f(z)−Eu P‖Eu + ‖f(w)−Eu P‖Eu + C|z||w|.

To make the notation simpler we have the following definition:

Definition 4. Define |·|R : E → R≥0 by |M |R = ‖M −Eu P‖Eu (‘R’ for Rodrigo).

Then we can write this more compactly as

|f(z) +E′ f(w)|R ≤ |f(z)|R + |f(w)|R + C|z||w|. (2.7)

Note that because f(z) consists of first moving a distance |z|
√
|2y0|2 + |3x2

0 +A|2 from P in one direction
and then moving a distance which is O(z2) in a perpendicular direction, there exists a constant C 1

2
such

that |f(z)|R ≥ C 1
2
|z|, so there exists a constant C1 such that

|f(z) +E′ f(w)|R ≤ |f(z)|R + |f(w)|R + C1|f(z)|R|f(w)|R. (2.8)

Thus we may write that for M,N ∈ f(U2) (note that f(U2) is a neighborhood of P in the elliptic curve),

|M +E′ N |R ≤ |M |R + |N |R + C1|M |R|N |R. (2.9)

We now make the following definition, which will later be used to show that the sequence defining the
exponential map for elliptic curves converges:

Definition 5. Let ‖·‖R : E → R≥0 be given by

‖M‖R = log(1 + C1|M |R).

Near P , this satisfies a version of the triangle inequality:

Lemma 2. For M,N ∈ f(U2) (which is a neighborhood of P on E), ‖M +E′ N‖R ≤ ‖M‖R + ‖N‖R.

12



Proof. We simply use Inequality 2.9 and the properties of the logarithm to write

‖M +E′ N‖R = log(1 + C1|M+E′ |R)

≤ log(1 + C1|M |R + C1|N |R + C2
1 |M |R|N |R)

= log((1 + C1|M |R)(1 + C1|N |R))

= log(1 + C1|M |R) + log(1 + C1|N |R)

= ‖M‖R + ‖N‖R

Note that from the definition of f , the definition of ι (Equation 2.2) and Equation 2.4,

f(z + w) = ι(z + w) +Eu O((z + w)2) = ι(z) +Eu ι(w)−Eu P +Eu O((z + w)2)

while
f(z)−Eu P +Eu f(w)−Eu P = ι(z)−Eu P +O(z2) +Eu ι(w)−Eu P +O(w2),

which together show that

f(z + w)−Eu P = f(z)−Eu P +Eu f(w)−Eu P +Eu O(z2, zw,w2) (2.10)

If we combine this with Lemma 1, we get the following:

Lemma 3. For z and w near the origin,

f(z + w) = f(z) +E′ f(w) +O(z, w)2. (2.11)

This will provide the connection between addition in C on the left and addition in the elliptic curve on the
right which we’ll use to show that exp is a homomorphism.

Before defining the exponential map, we need to show one last inequality. Define h(z, w) = f(z) −E′

f(w)−Eu P . Since h(0, 0) = (0, 0), h is holomorphic on a neighborhood of the origin by the same reasoning
that applied to g earlier. Changing variables to h(u, v) where u = z+w and v = z−w, the observation that
h(u, 0) is identically (0, 0) shows that every term in the Taylor series for h(u, v) has at least one power of v.
Hence we may write, for some a, b ∈ C2,

h(u, v) = av + buv +O(v2, u) = (a+ bu)v +O(v2, u).

Hence there exists a neighborhood Ũ3 ⊂ C of the origin and a constant C 3
2
> 0 such that for u, v in Ũ3,

‖h(u, v)‖Eu ≤ C 3
2
|v|. Returning to the variables z and w, there exists a neighborhood U3 ⊂ C of the origin

such that for z, w ∈ U3, ‖h(z, w)‖Eu ≤ C 3
2
|z−w|. And it’s clear from the construction of f and ι that there

exists a constant C 5
6
> 0 such that

‖f(z)−Eu f(w)‖Eu ≥ C 5
6
|z − w|,

13



this implies that for some constant C2,

‖f(z)−E′ f(w)‖Eu ≤ C2‖f(z)−Eu f(w)‖Eu.

This implies the following:

Lemma 4. For M,N in f(U3),
|M −E′ N |R ≤ C2‖M −Eu N‖Eu. (2.12)

2.3 Topological Considerations
Thus far we have thought of E as a subset of C2 along with a point at infinity. Here it will be more convenient
to think of E as being the the subset of CP2 given by

{[x : y : z] ∈ CP2 : y2z = x3 +Axz2 +Bz3}.

Then C2 can be identified with the points with non-zero z by representing them as [x : y : 1] and the point
at infinity on the elliptic curve is [0 : 1 : 0].

First, note that E is path-connected. To show this, it suffices to choose a point (x0, 0) on E (we are
guaranteed to have three such points) and show that any other point on E can be connected to it by a
continuous path Γ : [0, 1] → E. Let (x, y) ∈ E. Modulo 2π, arg(y) must be equivalent to x3+ax+b

2 + α

where α is either 0 or π. Because C is path-connected, there exists a path Γ1 : [0, 1] → C such that
Γ1(0) = x0 and Γ1(1) = x. We can choose continuous r : [0, 1] → R≥0 and θ : [0, 1] → R such that
Γ1(t)

3 + aΓ1(t) + b = r(t)eiθ(t). Then (Γ1(t), r(t)
1
2 e

i
[

θ(t)
2 +α

]
) is the continuous path we need. The same

argument works for the point at infinity; we just need Γ1 to have a pole at 1.6 Since path-connectedness is
a stronger condition than connectedness, E is also connected.

Let us define the open and closed subsets of E to be given by the subspace topology of E as a subset of
the projective plane CP2.

With this topology we may see that E is sequentially compact. Let (xn, yn) be a sequence of points
on E. If this sequence has a bounded subsequence, then that subsequence is contained in a ball in C2

(which is compact) and hence has a subsequence (xnk
, ynk

) converging to a point in that ball. But because
polynomials are continuous, (limk→∞ ynk

)2 = (limk→∞ xnk
)3 + a(limk→∞ xnk

) + b, so this limit is on E. If
the sequence has no bounded subsequence. Because |y| ∼ |x| 32 when x and y are large, limn→∞

|xn|
|yn| = 0 and

limn→∞
1

|yn| = 0, so in CP2 the sequence converges to the point [0 : 1 : 0], which is the point at infinity on
the elliptic curve.

2.4 The Definition as a Limit
Let us now define the map exp : C → E via

exp(z) = lim
n→∞

2nf(
z

2n
) (2.13)

6In this case because |y| ∼ |x|
3
2 when x and y are large, Γ(1) will be the point [0 : 1 : 0] in CP2.

14



(where the multiplication by 2n means to add f( z
2n ) to itself 2n times with respect to +E′). Our first task

is to show that this limit always converges to a point on E (which could be the point at infinity).
First, let’s write the nth term in the sequence as

2nf(
z

2n
) = f(z) +

[
2f(

z

2
)− f(z)

]
+

[
4f(

z

4
)− 2f(

z

2
)

]
+ · · ·+

[
2nf(

z

2n
)− 2n−1f(

z

2n−1
)

]
= f(z) +

n∑
k=1

2kf(
z

2k
)− 2k−1f(

z

2k−1
).

Thus the convergence of sequence 2.13 is equivalent to the convergence of the series

f(z) +

∞∑
k=1

2kf(
z

2k
)− 2k−1f(

z

2k−1
). (2.14)

Remark 1. If z is outside of the domain of definition of f , then let ñ be sufficiently large such that z/2ñ is
in the domain of f , and for n > ñ, write

2nf(
z

2n
) = 2ñf(

z

2ñ
) +

n∑
k=ñ+1

2kf(
z

2k
)− 2k−1f(

z

2k−1
).

To avoid notational clutter we will generally ignore this subtlety and write as if z is in the domain of f .

To show convergence, we will show that after a finite number of terms, the tail of the series can be shown
to remain within an arbitrarily small neighborhood of P . First, note from Equation 2.11 that

f(z) = 2f(z/2) +Eu O(z2). (2.15)

If we combine this with Inequality 2.12, we see that there exists a neighborhood U4 ⊂ C of the origin and a
constant C3 > 0 such that for z ∈ U4,

|2f(z/2)−E′ f(z)|R ≤ C‖2f(z/2) +Eu O(z2)−Eu 2f(z/2)‖Eu ≤ C3|z|2.

Then, because log(1+ct) = t+O(t2), we get that for z in a neighborhood U5 of the origin and some constant
C4 > 0,

‖2f(z/2)−E′ f(z)‖R ≤ C4|z|2.

Hence, using the “triangle inequality” of ‖·‖R, for any N2 ≥ N1 such that z/2N1 is in U5 and ‖M‖R ≤
4C4|z|2/2N1 implies M is in the neighborhood where our ‘triangle inequality” holds, we get that

‖2kf( z

2k
)− 2k−1f(

z

2k−1
)‖R = ‖2k−1

[
2f(

z

2k
)− f(

z

2k−1
)

]
‖R

≤ 2k−1C4|
z

2k−1
|2

=
2C4|z|2

2k
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and hence that

‖
N2∑

k=N1

2kf(
z

2k
)− 2k−1f(

z

2k−1
)‖R ≤

N2∑
k=N1

‖2kf( z

2k
)− 2k−1f(

z

2k−1
)‖R

≤
N2∑

k=N1

2C4|z|2

2k

≤ 2C4|z|2

2N1
(1 +

1

2
+

1

4
+ . . . )

≤ 4C4|z|2

2N1

which goes to zero as N1 goes to infinity.
Thus we have shown that for any z and any ε > 0 there exists an N such that for all n,m ≥ N ,

|2mf( z
2m )−E′ 2nf( z

2n )|R < ε.
Note that given a point M on E, if we extend the formula for M +E′ (x, y) (which consists of rational

expressions) to points (x, y) not on the elliptic curve, we get components which are meromorphic in x and
y, and7 since M is finite, holomorphic on some neighborhood of P .8 Hence, since holomorphic functions are
a fortiori continuous, by requiring the Euclidian distance from (x, y) to P to be sufficiently small, we can
ensure that the Euclidian distance from M to M +E′ (x, y) is as small as we like.

Hence showing that “for any z and any ε > 0 there exists an N such that for all n,m ≥ N , |2mf( z
2m )−E′

2nf( z
2n )|R < ε” suffices to show that the series is Cauchy and hence converges. And it must converge to a

point on the elliptic curve because the elliptic curve is topologically closed.

7The argument is slightly different if M is the point at infinity.
8There could be a removable hole, but this is fine.
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Chapter 3

Properties of the Exponential Map

3.1 The Exponential Map is a Homomorphism
We now wish to show that exp(z+w) = exp(z)+E′ exp(w), i.e. that exp(z+w)−E′ exp(z)−E′ exp(w) = P ,
i.e. that limn→∞ 2nf( z+w

2n ) − limn→∞ 2nf( z
2n ) − limn→∞ 2nf( w

2n ) = P . Since the three limits all converge
and the elliptic curve operation is commutative, this is equivalent to the statement that

lim
n→∞

2nf(
z + w

2n
)− 2nf(

z

2n
)− 2nf(

w

2n
) = P,

which is equivalent to the statement that

lim
n→∞

∥∥∥∥∥2n
[
f(

z + w

2n
)− f(

z

2n
)− f(

w

2n
)

]∥∥∥∥∥
R

= 0.

But from inequalities 2.11 and 2.12 and that log(1+ct) = ct+O(t2), we know that there is a neighborhood
U6 of the origin and a constant C5 such that for z and w in U6, ‖f(z+w)−E′f(z)−E′f(w)‖R ≤ C5(|z|2+|w|2).
Hence for n sufficiently large such that z/2n and w/2n are in U6 and such that

‖M‖R ≤ 2nC5(|z/2n|2 + |w/2n|2) = C5(|z|2 + |w|2)
2n

implies M is in the neighborhood of P where our “triangle inequality” holds, we get that∥∥∥∥∥2n
[
f(

z + w

2n
)− f(

z

2n
)− f(

w

2n
)

]∥∥∥∥∥
R

≤ C5(|z|2 + |w|2)
2n

which goes to zero as n goes to infinity.

3.2 The Exponential Map is an Open Map
Let Ω be a bounded subset of C, and let K be a compact subset of Ω. Let B > 0 be such that |z| < B for all
z ∈ Ω. As in the argument that exp(z) converges, let N be sufficiently large such that z/2N is in U5 and the
intersection of E with the ball of radius 4C4|z|2/2N centered at P in C2 is in the neighborhood where our
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“triangle inequality” holds, for all z ∈ Ω (this is possible because Ω is bounded). On Ω, let us write exp(z)

as
exp(z) = 2Nf(

z

2N
) +E′

∞∑
k=N+1

2kf(
z

2k
)−E′ 2k−1f(

z

2k−1
). (3.1)

Because of how large we chose N to be, we know from our proof that exp(z) converges that
∑∞

k=N+1 2
kf( z

2k
)−E′

2k−1f( z
2k−1 ) can never have a pole. And if we cut off this sum after finitely many terms, then because the el-

liptic curve operation is rational, we get a meromorphic function of z (which will in fact be holomorphic on Ω

because we know there are no poles). And our proof of the convergence of the sequence also bounds the error
from cutting off this sum after N1 terms by 4C4B

2

2N1
, which is a uniform bound on K. Thus each component of∑∞

k=N+1 2
kf( z

2k
)−E′ 2k−1f( z

2k−1 ) is, on compact subsets of Ω, the limit of a uniformly convergent sequence
of holomorphic functions on Ω and is hence holomorphic. Then because +E′ consists of rational expressions
and 2Nf( z

2N
) is at least meromorphic, both components of exp(z) = “meromorphic” +E′ “holomorphic” are

meromorphic. Since Ω was arbitrary, this shows that each component of exp(z) is meromorphic on C.
Because meromorphic functions are open maps when we include the point at infinity properly in C, this

implies that exp(z) is an open map C → E.

3.3 The Image of the Exponential Map is Closed
Suppose we have a sequence of points xn ∈ C such that exp(xn) → W ∈ E. Because the elliptic curve
operation is continuous away from where it returns the point at infinity, limn→∞ exp(xn) = w implies that
limn→∞ exp(xn)−E′ w = P .

Because exp is open, its image includes a neighborhood U of P . For sufficiently large N , then, exp(xN )−E′

W lies in U . So there exists y ∈ C such that exp(xN )−E′ W = exp(y), which implies that W = exp(xN )−E′

exp(y) = exp(xN − y), showing that w is in the image of exp.

3.4 Putting It Together
Since C is open and closed, the image of exp is open and closed. The image is non-empty and E is connected,
so the image must be all of E.

Because exp is a surjective homomorphism C → E, its kernel H must be an additive subgroup of C, and
exp will induce a bijection φ : C/H → E. Since exp is an open map, φ is both an open map and a closed
map (i.e. a homeomorphism), so since E is compact, C/H must also be compact.

Because each component of exp is meromorphic, and the pre-image of any point by a meromorphic map
must be a discrete set, H must be discrete. Hence H is a discrete additive subgroup of C such that C/H
is compact. Then H must be a lattice.1 Thus as a group and as a topological space, E is isomorphic to C
modulo a lattice, which is a torus. And because our isomorphism consists of meromorphic functions, which
locally preserve angles, elliptic curves over C are also equivalent to tori in a geometric sense.

Remark 2. It is not difficult to see that with a few superficial modifications, our argument can also show
that each connected component of an elliptic curve over R is isomorphic to S1 (see Chapter 2 of [Was08]).

1See the sentence immediately following Definition 5.4 in [Gor11].
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3.5 The Exponential Map is Equal to z 7→ (℘(z), 12℘
′(z))

Definition 6. To move the identity point back to the point at infinity, let us define ẽxp : C → E by

ẽxp(z) := exp(z)−E P. (3.2)

Since +E consists of rational operations, it is clear that ẽxp1(z) and ẽxp2(z) are still both meromorphic,
and the computation

ẽxp(z + w) = exp(z + w)−E P

= exp(z) +E′ exp(w)−E P

= exp(z) +E exp(w)−E P −E P

= (exp(z)−E P ) +E (exp(w)−E P )

= ẽxp(z) +E ẽxp(z)

shows that ẽxp is a homomorphism (C,+) → (E,+E).
If we consider the reasoning we used to show that exp(z) converges, but instead of setting K large we

consider z small, we see that
exp(z) = f(z) +Eu O(z2). (3.3)

And we discussed earlier (Equation 2.4) that f(z) = ι(z) +O(z2), so we see that exp(z) = (x0 + 2y0z, y0 +

(3x2
0 +A)z) +Eu O(z2), from which it follows that exp′1(0) = 2y0 and exp′2(0) = (3x2

0 +A). By plugging the
expression

(x0+2y0z+O(z2), y0+(3x2
0+A)z+O(z2))−E P = (x0+2y0z+O(z2), y0+(3x2

0+A)z+O(z2))+E (x0,−y0)

into Mathematica (details in Appendix A) we may see that ẽxp1(z) has a pole of order 2 and residue 1 at
the origin, while ẽxp2(z) has a pole of order 3 and residue −1 at the origin. Before continuing on, let’s have
a digression relating to our toy model, the circle.

3.5.1 A Digression on our Toy Model: Showing That d
dx

sin x = cos x

Suppose that we just learned about sine and cosine and we wanted to find their derivatives. One way to do
this is to expand (cos(x + h), sin(x + h)) to first order in h. Because we know that x 7→ (cosx, sinx) is a
homomorphism (R,+) → (S1,×S1), we may write that

(cos(x+ h), sin(x+ h)) = (cos x, sinx)×S1 (cosh, sinh)

= (cosh cosx− sinh sinx, sinh cosx+ cosh sinx).

Suppose that we are also given that cos(0) = 1 and sin(0) = 0 and cos′(0) = 0 and sin′(0) = 1. Then

(cos(x+ h), sin(x+ h)) = ((1) cos x− (h) sinx, h cosx+ (1) sin x) +O(h2) (3.4)

so cos(x + h) = cosx + (− sinx)h + O(h2) and sin(x + h) = sinx + (cosx)h + O(h2), which shows that
d
dx cosx = − sinx and d

dx sinx = cosx.
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3.5.2 Extending this Method to the Exponential Map for Elliptic Curves

Consider also that
ẽxp(z + h) = ẽxp(z) +E ẽxp(h) = ẽxp(z) +E exp(h)−E P. (3.5)

If we plug the expression ẽxp(z) +E exp(h) −E P into Mathematica (details in Appendix A) and compute
a power series (analagous to Equation 3.4) for ẽxp1(z + h) around h = 0 given that exp′1(0) = 2y0 and
exp′2(0) = (3x2

0 +A) and that exp1(0) = x0 and exp2(0) = y0, we get that

ẽxp1(z + h) = ẽxp1(z) + 2ẽxp2(z)h+O(h2), (3.6)

so ẽxp
′
1(z) = ẽxp2(z).

3.5.3 The Desired Equality

We now have the machinery in place to prove the following proposition:

Proposition 1. Let L = Zω1+Zω2 be the lattice which is the kernel of exp, and let ℘(z) be the Weierstrass
℘-function associated to this lattice. Then ẽxp(z) = (℘(z), 1

2℘
′(z)).

Proof. Because the points of order 2 on E (with respect to +E) are precisely those points with y = 0, ẽxp(z)
is of order 2 if and only if ẽxp2(z) = 0. And since L is the kernel of ẽxp, ẽxp(z) is of order 2 if and only if z
is congruent modulo L to 1

2ω1, 1
2ω2, or ω1+ω2

2 . Hence ẽxp2(z) = 0 if and only if z is congruent modulo L to
1
2ω1, 1

2ω2, or ω1+ω2

2 .
Since L is the kernel of ẽxp and the point at infinity is the identity of E, ẽxp2(z) has poles only at each

point in L. And since ẽxp2(z + α) = ẽxp2(z) for α ∈ L, the degrees and residues of each pole are the same
as at zero, which we already know to be order 3 and residue −1.

But it is known2 that ℘′(z) only has zeros (all of which are of order 1) at points z such that z is congruent
modulo L to 1

2ω1, 1
2ω2, or ω1+ω2

2 and that the only poles of ℘′(z) are at the points of L and are of order
3 with residue −2. Hence ẽxp2(z)/℘

′(z) has no poles3 and so can be made holomorphic by filling in the
removable discontinuities. And ẽxp2(z)/℘

′(z) is doubly periodic with respect to L (since both ℘′(z) and
ẽxp2(z) are). Thus ẽxp2(z)/℘

′(z) attains its whole image over a compact subset of C and hence is bounded.
Since it’s entire, Liouville’s Theorem requires that ẽxp2(z)/℘

′(z) is constant. By comparing residues at the
poles at L we see that the constant is 1

2 , i.e. ẽxp2(z) =
1
2℘

′(z).
Thus we have that 1

2 ẽxp
′
1(z) =

1
2℘

′(z), so ẽxp1(z) = ℘(z) + c for some constant c. But ẽxp(z) lies on E,
so we know that

ẽxp2(z)
2 = ẽxp1(z)

3 +Aẽxp(z) +B

for all z ∈ C. But we just found that ẽxp2(z) =
1
2℘

′(z), and we also know (Equation 1.2) that

1

4
℘′(z)2 = ℘(z)3 − g2

4
℘(z)− g3

4

for constants g2 and g3 determined by the lattice. Hence for all z ∈ C,

ẽxp1(z)
3 +Aẽxp(z) +B = (℘(z) + c)3 +A(℘(z) + c) +B = ℘(z)3 − g2

4
℘(z)− g3

4
2See Chapter 9 of [Was08], especially Part 3 of Theorem 9.1 for the orders of the zeros being 1.
3Dividing a pole of order 3 by a pole of order 3 yields a removable discontinuity, while dividing a zero of order greater than

or equal to one by a zero of order one also yields a removable discontinuity.
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from which it follows that for all z ∈ C,

(℘(z) + c)3 +A(℘(z) + c) +B − ℘(z)3 +
g2
4
℘(z) +

g3
4

= ℘(z)3 + 3c℘(z)2 + 3c2℘(z) +A℘(z) +Ac+B − ℘(z)3 +
g2
4
℘(z) +

g3
4

= 3c℘(z)2 + (3c2 +
g2
4

+A)℘(z) +Ac+B +
g3
4

= 0

for all z ∈ C. But a nontrivial degree 2 polynomial over C has at most two solutions, and ℘(z) clearly takes
on more than two values, so we must have that

3c = (3c2 +
g2
4

+A) = Ac+B +
g3
4

= 0

which implies that c = 0 (so ẽxp1(z) = ℘(z)) and A = − g2
4 and B = − g3

4 .
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Chapter 4

Numerical Simulations and Graphics

Prior to attempting a formal proof of the above results, we decided to carry out some numerical simulations
to see whether the results we expected to be true were reasonable, and we include here some aesthetically
pleasing graphics produced by the program we wrote.

Using Python, we first implemented the elliptic curve group operation. We then implemented the expo-
nential map ẽxp as follows:

• Choose a point P = (x0, y0) on the curve.

• Choose some sufficiently large N (through trial and error we settled on N = 8) such that our function
will return the Nth element of sequence 2.13 and do a good job of approximating the limit of the
sequence.

• Given a complex number z, identify z
2N

with a point on the tangent space of E at P via ι (Equation
2.2).

• Plug the point we get into the elliptic curve operation to double it N times.

• Subtract P (with respect to the elliptic curve operation) from what we get.

Remark 3. Here we plug points into the elliptic curve operation which aren’t actually on the elliptic curve,
since we neglected to implement the projection map f . But by making N sufficiently large, the points not
on the elliptic curve are only off by a little bit, hence why we see to still get good results with the program.

In addition to producing the following graphics, we also numerically checked for some randomly chosen
values of z and w that the exponential map is a homomorphism and that the derivative of the first component
is twice the second component.

Remark 4. We suspect that this method of numerically computing the Weierstass ℘-function could be more
efficient than summing the terms in Equation 1.1. Heuristically, if we include only those terms ω in Equation
1.1 with |ω| < R then we get accuracy ∼ 1

R , so we need to include a number of terms on the order of 1
ε2

to get an error below ε. Based on our error estimates in Section 2.4, we expect that the number of terms
required to get a certain level of accuracy with our method will grow more slowly than this.

The results (with N = 8) for various values of A, B, and P are shown below. We graph a color map
where the RGB corresponds to the argument (red corresponds to an argument of 0, green corresponds to an
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argument of 2π
3 , and blue corresponds to an argument of 4π

3 ) and opacity corresponds to the absolute value
(zeros in white, poles have maximum opacity),1 of both the first and second components of the exponential
map, as well as the Euclidian norm in C2 of the exponential map,2 with z in a specified range. Some key
takeaways:

• By counting how many times a small loop around each pole hits each color, we can see that the first
component of the exponential map has poles of order 2 and the second component has poles of order
3, agreeing with the Weierstrass ℘-function and its derivative.

• From our proof that the sequence which defines the exponential map converges, we would expect that
when z is larger, we need to go further along in the sequence to get a good approximation to its limit.
Indeed, we see that for (<(z),=(z)) ∈ [−40, 40]2, we get some errors for large z when N = 8 which
disappear if we increase N to 12.

Figure 4.1: The first component of the exponential map for A = 0, B = −1, P = (1, 0), N = 8, (<(z),=(z)) ∈
[−4, 4]2

1More precisely, a complex number z is sent to the RGBA value with R = (cos(arg(z))+1)/2, B = (cos(arg(z)+ 2π
3
)+1)/2,

G = (cos(arg(z) + 4π
3
) + 1)/2, and A = arctan(|z|). Because arctan can output values outside of [0, 1], matplotlib clipped its

output into that range. This was unintentional but aesthetically fortuitous.
2We cap the norm at a finite value so that the resulting heat map is easier to read.
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Figure 4.2: The second component of the exponential map for A = 0, B = −1, P = (1, 0), N = 8,
(<(z),=(z)) ∈ [−4, 4]2

Figure 4.3: The kernel of the exponential map for A = 0, B = −1, P = (1, 0), N = 8, (<(z),=(z)) ∈
[−4, 4]2. The lattice being composed of equilateral triangles is to be expected, since it can be shown that
the endomorphism ring of y2 = x3 − 1 is Z[ω] for ω a cube root of unity (endomorphism rings and complex
multiplication are explained in Chapter 5).
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Figure 4.4: The first component of the exponential map for A = −1, B = 0, P = (1, 0), N = 8, (<(z),=(z)) ∈
[−2, 2]2

Figure 4.5: The second component of the exponential map for A = −1, B = 0, P = (1, 0), N = 8,
(<(z),=(z)) ∈ [−2, 2]2
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Figure 4.6: The kernel of the exponential map for A = −1, B = 0, P = (1, 0), N = 8, (<(z),=(z)) ∈ [−2, 2]2

Figure 4.7: The first component of the exponential map for A = −1, B = 0, P = (1, 0), N = 8, (<(z),=(z)) ∈
[−20, 20]2. Note the errors for large z.
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Figure 4.8: The second component of the exponential map for A = −1, B = 0, P = (1, 0), N = 8,
(<(z),=(z)) ∈ [−20, 20]2. Note the errors for large z.

Figure 4.9: The kernel of the exponential map for A = −1, B = 0, P = (1, 0), N = 8, (<(z),=(z)) ∈
[−20, 20]2. Note the errors for large z.
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Figure 4.10: The first component of the exponential map for A = −1, B = 0, P = (1, 0), N = 12,
(<(z),=(z)) ∈ [−20, 20]2. Note the errors for large z have gone away.

Figure 4.11: The second component of the exponential map for A = −1, B = 0, P = (1, 0), N = 12,
(<(z),=(z)) ∈ [−20, 20]2. Note the errors for large z have gone away.
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Figure 4.12: The poles of the exponential map for A = −1, B = 0, P = (1, 0), N = 12, (<(z),=(z)) ∈
[−20, 20]2. Note the errors for large z have gone away.
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Chapter 5

Application of Lattices

Previously, we studied the exponential map on elliptic curves over C to show they are equivalent to complex
tori. One nice aspect of this approach is how lattices naturally emerge as the kernel. In fact, we stress that
lattices are very closely related to elliptic curves over C. Here, we discuss some applications that illustrate
this connection.

5.1 Elliptic Curves over Finite Fields
Let Fq denote a finite field of q elements. Consider the elliptic curve E(Fq). Then, we see that E(Fq) is a
finite abelian group. Here, we use the close connection between lattices and elliptic curves over C to describe
elliptic curves over Fq.

Proposition 2. Let E(Fq) be any elliptic curve over Fq. Also, let Cn denote the cyclic group with n elements.
Then, we have

E(Fq) ∼= Cn or E(Fq) ∼= Cn × Cm

for some integer n ≥ 1 or integers n,m ≥ 1 such that n | m.

Proof. By the classification theorem for finite abelian groups, we have

E(Fq) ∼= Cd1
× Cd2

× · · · × Cdk

for some integers k ≥ 1 and d1, . . . , dk ≥ 1 such that di | di+1 for all i ∈ {1, 2, . . . , k − 1}. Let the function
[m] : E(Fq) → E(Fq) given by

[m](x) = x+ x+ · · ·+ x︸ ︷︷ ︸
m times

denote the multiplication by m map. First, consider the set

A = {x ∈ E(Fq) | [d1](x) = O}.

Since Cd1 is cyclic, all d1 points equal the identity when added to themselves d1 times. Moreover, since
Cd1 ≤ Cdi for all i ∈ {1, 2, . . . , k}, we see that each Cdi contains d1 such points. Hence, we conclude
|A| = dk1 . Moreover, A exactly gives roots of the map [d1].
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Finally, we will show that [d1] over any field has at most d21 distinct roots. The solutions of [d1](x) = O
come from the same rational polynomial regardless of the ambient field. Hence, the number of distinct
solutions of [d1] over Fp is at most the number of distinct solutions over C. In the complex case, we claim
that [d1] has exactly d21 roots. To see this, let E = C/Λ for some lattice Λ ⊂ C. Also, let Λ be generated
by ω1, ω2 ∈ C. Then, the points in C/Λ that result in the identity when added to themselves d1 times are
exactly given by the points (aω1 + bω2)/d1 where a, b ∈ {0, 1, . . . , d1 − 1}. One can see these give exactly d21

points. Therefore, we have dk1 ≤ d21 and thus k ≤ 2. This concludes our proof.

5.2 Endomorphisms of Elliptic Curves over C

Let E denote an elliptic curve over C. Since E is an abelian group, its endomorphisms form a ring, which
we denote as End(E). It turns out that the geometry of the lattice corresponding to E exactly determines
End(E). In this section, we will prove a precise statement of this phenomenon by closely following Chapter
10 of [Was08].

Recall that an endomorphism of E is a group homomorphism from E to itself given by rational functions.
The most basic examples include the multiplication-by-m maps we discussed in the previous section. Again,
they are given by

[m](x) = x+E · · ·+E x︸ ︷︷ ︸
m times

.

Indeed, since E is an abelian group, one can easily check that [m](x +E y) = [m](x) +E [m](y) for any
x, y ∈ E. Moreover, we can extend the map to negative integers by defining [−m](x) := [m](−x). Hence, we
always have Z ⊆ End(E), where each m ∈ Z corresponds to the map [m].

In general, we have the following theorem.

Theorem 1. Let E be an elliptic curve over C corresponding to the lattice Λ. Then,

End(E) ∼= {β ∈ C | βΛ ⊆ Λ}.

Note that βΛ is simply multiplying all elements of Λ by β. Moreover, say that β preserves Λ if and only
if βΛ ⊆ Λ. Then, an alternate way of viewing the statement Z ⊆ End(E) is noticing that stretching a lattice
by an integer (and possibly flipping it) always preserves the original lattice. When the lattice has extra
symmetry, we can preserve the lattice through actions other than stretching. For instance, rotating a square
lattice by 90 degrees, which corresponds to multiplication by i, gives the same lattice as the original one. In
the case that End(E) is strictly larger than Z, we say that E has complex multiplication. We will consider
elliptic curves with complex multiplication in the final part of this chapter.

We make one remark before proving theorem 1. Take any α : E → E given by (x, y) 7→ (R1(x, y), R2(x, y)).

If α is an endomorphism, one can assume (x, y) 7→ (r1(x), r2(x)y) instead where r1(x), r2(x) are rational
functions. Hence, being an endomorphism requires a big restriction on functions from E to itself.

To check the above remark, assume E has Weierstrass form y2 = x3 + Ax + B where A,B ∈ C. Since
R1(x, y) and R2(x, y) need to be rational functions and we can replace even powers of y by polynomials in
x, we see that

R1(x, y) =
p1(x) + p2(x)y

p3(x) + p4(x)y

where p1(x), . . . , p4(x) are polynomials in x. If we multiply both sides of the fraction by p3(x)− p4(x)y and
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again simplify, we get
R1(x, y) =

q1(x) + q2(x)y

q3(x)
,

where again q1(x), . . . , q3(x) are polynomials in x. One can conclude the same for R2(x, y).

For (x, y) ∈ E, recall that −(x, y) = (x,−y). Since α is a homomorphism, we must have the relation
α(x,−y) = −α(x, y), which implies R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y). This shows that q2(x)
above must equal the zero function, which gives R1(x, y) = r1(x) for some rational function r1. Similarly, we
may conclude that R2(x, y) = r2(x)y for some rational function r2.

We now prove our main theorem of the section.

Proof of Theorem 1. First, we show that End(E) ⊆ {β ∈ C | βΛ ⊆ Λ}. Take any α ∈ End(E). Recall
that φ : C/Λ → E given by z 7→ (℘(z), ℘′(z)) is an isomorphism where ℘ is the Weierstrass ℘-function (or
equivalently the exponential function we previously defined). Define α̃ : C/Λ → C/Λ by z 7→ φ−1(α(φ(z))).

One can easily check that α̃ is a homomorphism.
Restrict α̃ to a small neighborhood U of z = 0 such that α̃ is an analytic map from U to C where

α̃(x+ y) ≡ α̃(x) + α̃(y) mod Λ for all x, y ∈ U. Shift the map so that α̃(0) = 0. Then, for sufficiently small
U , we can assume that

α̃(x+ y) = α̃(x) + α̃(y)

since both sides are close to zero and can differ only by 0 ∈ Λ. Hence, for any z ∈ U, we have

α̃′(z) = lim
h→0

α̃(z + h)− α̃(z)

h
= lim

h→0

α̃(h)

h
= α̃′(0).

Let β = α̃′(0). Then, we conclude that α̃(z) = βz for all z ∈ U.

Now pick an arbitrary z ∈ C. Then, there exists an integer n such that z/n ∈ U. Hence, we have

α̃(z) ≡ nα̃(z/n) = βz mod Λ.

Recall the definition of α̃. If z ∈ Λ, we know that ℘(z) maps to the identity and thus α̃ ∈ Λ. In other words,
α̃(Λ) ⊆ Λ. This gives βΛ ⊆ Λ as desired.

Next, we show that {β ∈ C | βΛ ⊆ Λ} ⊆ End(E). Take any β ∈ C such that βΛ ⊆ Λ. Then, multiplication
by β gives a homomorphism β : C/Λ → C/Λ. Since E ∼= C/Λ, we wish to check the corresponding map on E

is given by rational functions. Since βΛ ⊆ Λ, note that ℘(βz) and ℘′(βz) are doubly periodic with respect to
Λ. A nice property of the Weierstrass ℘-function states that every doubly periodic function for Λ is a rational
function of ℘ and ℘′. Hence, there exists rational functions R,S such that ℘(β(z)) = R(℘(z)) and ℘′(β(z)) =

℘′(z)S(℘(z)). In other words, β induces a map [β] : E → E given by (℘(z), ℘′(z)) 7→ (℘(βz), ℘′(βz)), which
is given by rational functions. To see it is a homomorphism, note that [β](x) = ℘(β(℘−1(x))). This concludes
our proof.

5.3 Complex Multiplication
In this section, we give an example of complex multiplication. We further show how the previous theorem
can be used to determine the endomorphism ring.

Consider the elliptic curve y2 = x3 − x over C. Then, E ∼= C/Λ, where Λ = Zω + Ziω for some ω ∈ R.
In particular, Λ is a square lattice. By the theorem above, we will show that End(E) ∼= Z[i], which implies
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E has complex multiplication. Note that Λ is generated by ω and ωi. Take any z ∈ C.
If z ∈ Z[i], then z = a + bi for some a, b ∈ Z. Hence, ωz = ω(a + bi) ∈ Λ. and (ωi)z = ω(−b + ai) ∈ Λ.

Note that the generators are mapped to two new points in Λ. Since a lattice is closed under addition and
multiplication by z is a linear transformation, we see that zΛ ⊆ Λ as desired. This gives Z[i] ⊆ End(E).

If z /∈ Z[i], then without loss of generality we may assume z = a + bi where a /∈ Z. Hence, we have
ωz = ω(a+ bi) /∈ Λ. This shows that if z /∈ Z[i], then zΛ ⊈ Λ. This gives End(E) ⊆ Z[i].

Together, we have End(E) ∼= Z[i] as desired. The fact that E has complex multiplication corresponds
to the fact that the square lattice Λ has extra symmetries than merely stretching the lattice by an integer.
For instance, i ∈ End(E) corresponds to a 90-degree rotation. As a more interesting example, consider
i+ 2 ∈ End(E). Through the figure below, we provide a detailed picture of this endomorphism.

Figure 5.1: The endomorphism i+ 2.

First, the picture above describes the endomorphism in C/Λ. Here, the map is simply multiplication by i+

2, and the points of Λ are mapped to the red points on the right, which form a subset of Λ. Geometrically, the
map describes a certain “stretch-and-rotate” procedure. The map below describes the explicit endomorphism
on the elliptic curve E. Note that the formula is given by rational functions. One can obtain the formula
using [i+ 2](x) = [i](x) +E [2](x).

Moreover, by definition, the degree of this endomorphism is the larger degree of the numerator and
denominator of the first component of the image. In this case, we see that the degree is five. We can also
understand this in the picture above. First, note that ‖i+2‖ = 5 and the unit square on the left is stretched
to a square of area five. Alternatively, recall that all points of the lattice correspond to the kernel of the
endomorphism. Hence, we see that the preimage of the red square on the right, which we can regard as the
unit square on the left, contains five distinct points (with respect to Λ) that map to the kernel. Either way,
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we check that the degree of the map is indeed five.
To conclude, the lattice picture of elliptic curves is especially nice since the rather complicated algebraic

map on E can be interpreted as a simple geometric map on C/Λ. The bridge that allows us to jump back and
forth E and C/Λ is exactly the isomorphism between them given by the exponential map (or the Weierstrass
℘-function).
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Appendix A

Mathematica Computations

The following pages contain the Mathematica code that was referenced in Section 3.5
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In[24]:= Normalx[x1, x2, y1, y2] := ((y2 - y1) / (x2 - x1))^2 - x1 - x2

In[25]:= Normaly[x1, x2, y1, y2] := ((y2 - y1) / (x2 - x1)) * (x1 - Normalx[x1, x2, y1, y2]) - y1

The above functions give the x and y components of the group operation on the elliptic curve.

In[40]:= (((y2 - y1) / (x2 - x1))^2 - x1 - x2) /. {x1  (x0 + 2 * y0 * h + O[h]^2),

x2  x0, y1  (y0 + (3 * x0^2 + A) h + O[h]^2), y2  (-y0)}

Out[40]=

1

h2
+

1

O[h]

In[27]:= Normaly[x1, x2, y1, y2]
Out[27]=

-y1 +
(-y1 + y2) 2 x1 + x2 -

(-y1+y2)2

(-x1+x2)2


-x1 + x2

In[28]:= -y1 +
(-y1 + y2) 2 x1 + x2 -

(-y1+y2)2

(-x1+x2)2


-x1 + x2
/.

{x1  x0 + 2 * y0 * h + O[h]^2, x2  x0, y1  y0 + (3 * x0^2 + A) h + O[h]^2, y2  -y0}
Out[28]=

-
1

h3
+

1

O[h]2

Here we use that \exp(h) = \iota(h) + \mathcal{O}(h^2)  to determine the orders and residues of the 

poles of exp 1(z) and exp 2(z).

In[44]:= (((y2 - y1) / (x2 - x1))^2 - x1 - x2) /. {x1  E1[z], x2  E1[h], y1  E2[z], y2  E2[h]}
Out[44]=

-E1[h] - E1[z] +
(E2[h] - E2[z])2

(E1[h] - E1[z])2

In[45]:= -y1 +
(-y1 + y2) 2 x1 + x2 -

(-y1+y2)2

(-x1+x2)2


-x1 + x2
/. {x1  E1[z], x2  E1[h], y1  E2[z], y2  E2[h]}

Out[45]=

E1[h] + 2 E1[z] - (E2[h]-E2[z])2

(E1[h]-E1[z])2
 (E2[h] - E2[z])

E1[h] - E1[z]
- E2[z]

The above cells compute that x and y components of exp (z) +E exp (h) (where E1[h] and E2[h] are the 

components of exp while E1[z] and E2[z] are the components of exp .



In[46]:= (((y2 - y1) / (x2 - x1))^2 - x1 - x2) /. x1  -E1[h] - E1[z] +
(E2[h] - E2[z])2

(E1[h] - E1[z])2
,

y1 
E1[h] + 2 E1[z] - (E2[h]-E2[z])2

(E1[h]-E1[z])2
 (E2[h] - E2[z])

E1[h] - E1[z]
- E2[z], x2  x0, y2  -y0

Out[46]=

-x0 + E1[h] + E1[z] -
(E2[h] - E2[z])2

(E1[h] - E1[z])2
+

-y0 -
E1[h]+2 E1[z]-

E2h-E2[z]2

E1h-E1[z]2
(E2[h]-E2[z])

E1[h]-E1[z]
+ E2[z]

2

x0 + E1[h] + E1[z] - (E2[h]-E2[z])2

(E1[h]-E1[z])2

2

The above is the x component of exp (z) +E exp (h) -E P. We then take its series expansion with respect 

to h around h 0, plug in what we know, and simplify in order to show that the derivative of the first 

component of exp  is twice the second component.
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In[47]:= Series-x0 + E1[h] + E1[z] -
(E2[h] - E2[z])2

(E1[h] - E1[z])2
+

-y0 -
E1[h]+2 E1[z]-

E2h-E2[z]2

E1h-E1[z]2
(E2[h]-E2[z])

E1[h]-E1[z]
+ E2[z]

2

x0 + E1[h] + E1[z] - (E2[h]-E2[z])2

(E1[h]-E1[z])2

2

, {h, 0, 1}

Out[47]=

-x0 + E1[0] + E1[z] -
(E2[0] - E2[z])2

(E1[0] - E1[z])2
+

-y0 -
E1[0]+2 E1[z]-

(E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0]-E2[z])

E1[0]-E1[z]
+ E2[z]

2

x0 + E1[0] + E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2

2

+

E1′[0] +
2 (E2[0] - E2[z])2 E1′[0]

(E1[0] - E1[z])3
-
2 (E2[0] - E2[z]) E2′[0]

(E1[0] - E1[z])2
-

2 -y0 -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0] - E2[z])

E1[0] - E1[z]
+ E2[z]

2

E1′[0] +
2 (E2[0] - E2[z])2 E1′[0]

(E1[0] - E1[z])3
-
2 (E2[0] - E2[z]) E2′[0]

(E1[0] - E1[z])2


x0 + E1[0] + E1[z] -
(E2[0] - E2[z])2

(E1[0] - E1[z])2

3

+
1

x0 + E1[0] + E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2

2

2 -y0 -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0] - E2[z])

E1[0] - E1[z]
+ E2[z]

-
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 E2′[0]

E1[0] - E1[z]
-

(E2[0] - E2[z]) -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 E1′[0]

(E1[0] - E1[z])2
+

E1′[0] + 2 (E2[0]-E2[z])2 E1′[0]

(E1[0]-E1[z])3
- 2 (E2[0]-E2[z]) E2′[0]

(E1[0]-E1[z])2

E1[0] - E1[z]
h + O[h]2
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In[49]:= E1′[0] +
2 (E2[0] - E2[z])2 E1′[0]

(E1[0] - E1[z])3
-
2 (E2[0] - E2[z]) E2′[0]

(E1[0] - E1[z])2
-

2 -y0 -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0] - E2[z])

E1[0] - E1[z]
+ E2[z]

2

E1′[0] +
2 (E2[0] - E2[z])2 E1′[0]

(E1[0] - E1[z])3
-
2 (E2[0] - E2[z]) E2′[0]

(E1[0] - E1[z])2


x0 + E1[0] + E1[z] -
(E2[0] - E2[z])2

(E1[0] - E1[z])2

3

+
1

x0 + E1[0] + E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2

2

2 -y0 -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0] - E2[z])

E1[0] - E1[z]
+ E2[z]

-
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 E2′[0]

E1[0] - E1[z]
-

(E2[0] - E2[z]) -
E1[0] + 2 E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2
 E1′[0]

(E1[0] - E1[z])2
+

E1′[0] + 2 (E2[0]-E2[z])2 E1′[0]

(E1[0]-E1[z])3
- 2 (E2[0]-E2[z]) E2′[0]

(E1[0]-E1[z])2

E1[0] - E1[z]
/.

{E1'[0]  2 y0, E2'[0]  3 x0^2 + A, E1[0]  x0, E2[0]  y0}
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In[52]:= FullSimplify2 y0 -
2 A + 3 x02 (y0 - E2[z])

(x0 - E1[z])2
+
4 y0 (y0 - E2[z])2

(x0 - E1[z])3
+

1

2 x0 + E1[z] -
(y0-E2[z])2

(x0-E1[z])2

2
2 -

A + 3 x02 x0 + 2 E1[z] -
(y0-E2[z])2

(x0-E1[z])2


x0 - E1[z]
-

2 y0 -
2 A+3 x02 (y0-E2[z])

(x0-E1[z])2
+

4 y0 (y0-E2[z])2

(x0-E1[z])3

x0 - E1[z]
-
2 y0 x0 + 2 E1[z] -

(y0-E2[z])2

(x0-E1[z])2


(x0 - E1[z])2
(y0 - E2[z])

-y0 -
x0 + 2 E1[z] -

(y0-E2[z])2

(x0-E1[z])2
 (y0 - E2[z])

x0 - E1[z]
+ E2[z] -

2 2 y0 -
2 A+3 x02 (y0-E2[z])

(x0-E1[z])2
+

4 y0 (y0-E2[z])2

(x0-E1[z])3
 -y0 -

x0+2 E1[z]-
(y0-E2[z])2

(x0-E1[z])2
 (y0-E2[z])

x0-E1[z]
+ E2[z]

2

2 x0 + E1[z] -
(y0-E2[z])2

(x0-E1[z])2

3

,

{y0^2  x0^3 + A * x0 + B && E2[z]^2  E1[z]^3 + A * E1[z] + B}

Out[52]=

2 E2[z]

In[54]:= -x0 + E1[0] + E1[z] -
(E2[0] - E2[z])2

(E1[0] - E1[z])2
+

-y0 -
E1[0]+2 E1[z]-

(E2[0]-E2[z])2

(E1[0]-E1[z])2
 (E2[0]-E2[z])

E1[0]-E1[z]
+ E2[z]

2

x0 + E1[0] + E1[z] - (E2[0]-E2[z])2

(E1[0]-E1[z])2

2

/.

{E1'[0]  2 y0, E2'[0]  3 x0^2 + A, E1[0]  x0, E2[0]  y0}

Out[54]=

E1[z] -
(y0 - E2[z])2

(x0 - E1[z])2
+

-y0 -
x0+2 E1[z]-

(y0-E2[z])2

(x0-E1[z])2
 (y0-E2[z])

x0-E1[z]
+ E2[z]

2

2 x0 + E1[z] -
(y0-E2[z])2

(x0-E1[z])2

2

In[55]:= FullSimplifyE1[z] -
(y0 - E2[z])2

(x0 - E1[z])2
+

-y0 -
x0+2 E1[z]-

(y0-E2[z])2

(x0-E1[z])2
 (y0-E2[z])

x0-E1[z]
+ E2[z]

2

2 x0 + E1[z] -
(y0-E2[z])2

(x0-E1[z])2

2

,

{y0^2  x0^3 + A * x0 + B && E2[z]^2  E1[z]^3 + A * E1[z] + B}

Out[55]=

E1[z]
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