Introduction

Motivating Fact: Elliptic Curves over \(\mathbb{C} \rightleftharpoons \text{Complex Tori} \)

1. Elliptic Curves over \(\mathbb{C} \):
 - Solutions in \(\mathbb{C}^2 \) to the Weierstrass Form
 \(y^2 = x^3 + Ax + B \)
 for some \(A, B \in \mathbb{C} \), plus a point of infinity \(\infty \).
2. Complex Tori:
 - A lattice \(L \subset \mathbb{C} \) gives the complex torus \(\mathbb{C}/L \).

Main Objective

Let \(E \) be an elliptic curve over \(\mathbb{C} \). Then, \(E \cong \mathbb{C}/L \) for some lattice \(L \). The standard method to show this uses the Weierstrass elliptic function. That is,

\[
z \mapsto \left(\wp(z) - \frac{1}{3} \wp'(z) \right)
\]

gives a surjective homomorphism between \(\mathbb{C} \) and \(E \) with kernel \(L \).

Objective:
- Find a natural, geometric isomorphism between \(E \) and \(\mathbb{C}/L \).
- Show that \(\wp \) is essentially the exponential map on \(E \).

Toy Problem (Circle)

Q. How can we show \(S^1 \cong \mathbb{R}/2\pi\mathbb{Z} \)?

A. Construct a surjective homomorphism from a line to a circle!

\[
\exp(z) = \lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n
\]

Defining The Exponential Map on Elliptic Curves

Let \(E \) be an elliptic curve over \(\mathbb{C} \).

1. Consider \(E \) in \(\mathbb{C}^2 \) and pick a point \(P \in E \).
2. Make \(P \) the identity by the new group law

\[
P + E P = P_1 + E P_2 - E P
\]

3. Take the tangent space to \(P \) and associate it with \(\mathbb{C} \).
4. Define the exponential map

\[
\exp(z) = \left(2^z \right)^f \left(\frac{z}{2\pi} \right)
\]

where \(f \) projects \(z/2\pi \in \mathbb{C} \) to the elliptic curve, and \(\left(2^z \right)^f \) means that \(f/2^z \) is added to itself \(2^z \) times with respect to \(+_E \).

Claim: This map is a well-defined surjective homomorphism whose kernel is a lattice \(L \), so it induces an isomorphism between \(E \) and \(\mathbb{C}/L \), and in fact \(\exp(z) = \left(\wp(z), \frac{1}{3} \wp'(z) \right) \).

Numerical Work

Exponential map for \(y^2 = x^3 - 1 \) with identity point \((1,0)\). RGB values indicate argument, opacity indicates norm (zeros in white). The graphs match the behavior of \(\wp(z) \) and \(\wp'(z) \), respectively, as expected.

Outline of Proof of Claim

- Rewrite \(2^n f(z) \) as a telescoping sum.
- Derive estimates showing that \(+_E \) is "approximately the same as Euclidian addition" near \(P \).
- Use these estimates to show that the sequence defining \(\exp \) converges (i.e. \(\exp \) is well-defined) and that \(\exp \) is a homomorphism.
- Show that the image of the exponential map is an open and closed subset of a connected set, so \(\exp \) is surjective.
- Because \(E \) (endowed with an appropriate topology) is compact, conclude by arguing the kernel of \(\exp \) must be a lattice \(L \) in order for \(\mathbb{C}/\ker \exp \) to be compact.
- Compare poles and zeros, take a quotient, and use Liouville’s Theorem to show that the exponential map is equal to \(z \mapsto \left(\wp(z), \frac{1}{3} \wp'(z) \right) \).

Acknowledgements

- This project was conducted during the Stanford Undergraduate Research Institute in Mathematics (SURIM) summer program.
- We thank our mentor Rodrigo Angelo along with the SURIM director Lernik Asserian for their invaluable support.

Fig. 1: Complex Torus

Fig. 2: Group Law

Fig. 3: Exponential Map

Fig. 4: Plots