
SURIM 2019 Final Report: The Tucker and
Tensor Train Formats as Low-Parametric

Representations of Tensors with Applications ∗

Jason Zhu

August 2019

Abstract

Tensors are multidimensional arrays that arise naturally in high-
dimensional problems from modelling quantum mechanical systems,
machine learning, solution of partial differential equations, signal pro-
cessing, and other fields. Numerical solutions to these problems are
difficult due to the curse of dimensionality, making the number of
operations and amount of storage necessary to solve these problems
increase exponentially with the number of dimensions. Analogous
to low-rank matrix decompositions, low-parameter tensor decompo-
sitions have been introduced in order to make tensors easier to work
with in applications. In this expository paper, we will study the Tucker
decomposition as well as the Tensor Train decomposition as presented
in sources [1] and [2]. We will investigate how each one of these de-
compositions present a low-parametric format of a tensor, as well as
algorithms to develop the low-parametric approximations and reap-
proximations of a given tensor in these formats.

1 Introduction

Tensors are multidimensional generalizations of matrices and vectors and,
in general, can be thought of as a multidimensional arrays containing data.

∗Advised by Dr. Vladimir Kazeev

1



They find application in high-dimensional problems such as those in ma-
chine learning, modelling quantum mechanical systems, signal processing,
solution of partial differential equations, financial modelling, and other ar-
eas of applied and computational mathematics. Throughout the paper, we
will use calligraphic capital letters to refer to tensors, and we will denote
a tensor A ∈ Rn1×n2×...×nd to represent an order-d tensor of sizes nk for
k ∈ {1, 2, ..., d}. Note that in the case of d = 1, 2, we recover the basic case
of column vectors and matrices.

To avoid the curse of dimensionality, we want to work with perhaps a
low parametric format of a high-dimensional tensor, analogous to low-rank
decompositions of matrices in linear algebra. As such, we will study two
notable tensor decompositions, namely the Tucker format and the Tensor
Train format, as low-parametric formats of a high-dimensional tensor. In this
paper, I will cover the basic linear algebra necessary to develop fluency when
working with tensors, the structure of each tensor decomposition, relevant
approximation and reapproximation algorithms, and one application of the
Tensor Train decomposition in supervised learning problems.

2 Review of Rank Revealing Factorizations

and the SVD

If we wanted to store all entries of matrix A ∈ Rm×n individually, it would
take O(mn) memory. However, we can do better by exploiting some of the
structure of a matrix to perhaps reduce the amount of storage necessary to
represent a matrix, namely its rank.

Definition 2.1. Let A ∈ Rm×n be a matrix. The rank of A is the minimum
number r ∈ N such that

A =
r∑

k=1

ukv
>
k

where uk ∈ Rm and vk ∈ Rn for all k ∈ {1, 2, ..., r}. We define the zero
matrix to have rank 0.

Equivalently, we could say that a matrix of rank r admits a dyadic de-
composition

A = UV >

2



where U ∈ Rm×r and V ∈ Rn×r. It then follows that if A is of rank r, then we
can store O(r(m+ n)) entries instead of the full O(mn) matrix to represent
the information in matrix A.

Furthermore, we will introduce an important matrix decomposition that
will assist us in understanding low-rank factorizations and approximations,
namely the compact singular value decomposition.

Theorem 2.1. Let A ∈ Rm×n be a matrix of rank r. Then there exist
matrices U, S and V such that

A = USV >

where U ∈ Rm×r and V ∈ Rn×r have orthonormal columns, and S ∈ Rr×r is
diagonal with the diagonal elements being called the singular values.

The singular value decomposition of a matrix exists for all matrices, and,
as we will see below, provides a good starting point for finding low-rank
approximations of a given matrix.

Below are three questions that will guide us in finding low-rank represen-
tation of a matrix, approximating a matrix by a lower-rank representation,
and reapproximation of a matrix in its dyadic decomposition.

1. Exact Factorization: Let A ∈ Rm×n be a matrix of rank r with
all entries given. Find matrices U ∈ Rm×r and V ∈ Rn×r such that
A = UV >.

2. Approximation: Let A ∈ Rm×n be a matrix of rank r with all entries
given. Find matrices U ∈ Rm×r̂ and V ∈ Rn×r̂ such that A ≈ Â =
UV >, with ||A− Â||F minimized.

3. Reapproximation: Let A ∈ Rm×n be a matrix of rank r, with A '
Â = UV > as an approximate decomposition be given. Find matrices
Û ∈ Rm×r̂ and V̂ ∈ Rn×r̂ with r̂ ≤ r such that Â ≈ Û V̂ >.

To answer the question of exact factorization, we simply consider the
compact SVD. The compact SVD automatically provides us with an exact
rank r factorization of a given matrix, and by multiplying matrices, we can
achieve the desired rank r representation easily.

A = USV >

= UV̂ >

3



where V̂ > = SV >.
For the question of approximation of a matrix, If we wish to obtain a

rank r̂ approximation to matrix A, we can consider the truncated SVD of
A. By this, we mean that we will truncate the tailing singular values of A
to attain a low rank approximation of A. First we will partition the SVD as
follows:

A = USV >

=
(
Û Ũ

)(Ŝ 0

0 S̃

)(
V̂ >

Ṽ >

)
= Û ŜV̂ > + Ũ S̃Ṽ >

In this process, we partition U , S, and V into matrices Û ∈ Rm×r̂, Ũ ∈
Rm×(r−r̂), Ŝ ∈ Rr̂×r̂, S̃ ∈ R(r−r̂)×(r−r̂), V̂ ∈ Rn×r̂, and Ṽ ∈ Rn×(r−r̂). We can
then consider the following rank r̂ approximation Â of A:

Â = Û ŜV̂ >

By the Eckard-Young theorem, we have that Â is the best rank r̂ ap-
proximation to A. Since we have Â in its SVD format, we can again merge
matrices to achieve the dyadic format. In addition, we have a nice expression
to describe the error of Â in terms of the singular values of A.

We have that

||A− Â||F = ||USV > − Û ŜV̂ >||F
= ||Û ŜV̂ > + Ũ S̃Ṽ > − Û ŜV̂ >||F .
= ||Ũ S̃Ṽ >||F

By the unitary invariance of the Frobenius norm,

||Ũ S̃Ṽ >||F= ||S̃||F=

√√√√ r∑
k=r̂+1

σ2
k

As a corollary, if we wanted to find a matrix B such that ||A−B||F≤ ε,
for some ε ≥ 0, we could truncate the last r−k singular values appropriately
to achieve an approximation of error ε away from A.

4



Remark 2.2. For the problem of exact factorization, it may be helpful to set
ε to be a value close to machine precision in the case of working with finite
precision arithmetic to truncate the spurious nonzero values.

Finally, to answer the question of reapproximation, suppose A = UV >,
but with sub-optimal rank r for matrices U and V . We want to avoid forming
the matrix A, again so we will work solely with matrices U and V . To achieve
a lower rank decomposition, perform a QR decomposition on U and V so that

U = QuRu

and
V = QvRv.

We can then assemble a smaller matrix P = RuRv such that

A = QuPQ
>
v .

We can then perform an SVD on matrix P to get that

P = XDY >.

Letting Û = QuX and V̂ = QvY , we have that A = ÛDV̂ > is an SVD of A.
We can then easily apply the problem of approximation in this format.

These matrix questions can be used to motivate the algorithms we will
develop in sections 2 and 3 to find (approximate) decompositions of tensors
in the Tucker and Tensor Train format. Additionally, it’s worth noting that
in this paper, we make the strong assumption that the tensors we work with
have some kind of low rank structure. This is due to the contexts in which
we work with tensors (signal processing, machine learning, quantum mechan-
ical systems, PDEs) where there is a high degree of symmetry, smoothness,
or structure in the underlying data, so we can expect some low-parametric
format to fall out from the decompositions, as in the case of low-rank matrix
factorizations.

3 The Tucker Decomposition

3.1 Introduction to the Tucker Decomposition

The Tucker Decomposition is a low parametric format of a tensor that fac-
torizes a tensor A ∈ Rn1×n2×...×nd into a core tensor S ∈ r1 × r2 × ... × rd

5



where rk ≤ nk and a set of matrices U (k) ∈ Rnk×rk for all k ∈ {1, 2, ..., d}.
Elementwise, we have the following:

Ai1i2...id =

r1∑
α1=1

r2∑
α2=1

...

rd∑
αd=1

Sα1α2...αd
U

(1)
i1α1

U
(2)
i2α2

...U
(d)
idαd

(1)

Again, we will ask the same questions as we do in the matrix case, namely
those of achieving this format with access to all entries of the original tensor
and those of (re)approximations. This can be done via a method known
as the higher order singular value decomposition, otherwise known as the
HOSVD.

3.2 Mode-k Unfoldings and the Mode-k product

Before introducing the HOSVD, we need to first introduce the idea of the
matricizations or unfoldings of a tensor of arbitrary size.

Definition 3.1. Let A ∈ Rn1×n2...×nd . The matrix unfolding A(k) ∈ Rnk×pk

where

pk =
d∏
s=1
s 6=k

ns

contains the element Ai1i2...id at the position with row number ik and column
number equal to

d∑
α=1
α 6=k

(iα − 1)
d∏

β=1
β>α
β 6=k

nβ

Example 3.1. Let A ∈ R2×3×2 where Ai1i2...id = 100i1 + 10i2 + i3. We have
that A admits three mode-k unfoldings, namely A(1), A(2) and A(3), where

A(1) =

(
111 121 131 112 122 132
211 221 231 212 222 232

)

A(2) =

111 211 112 212
121 221 122 222
131 231 132 232



6



A(3) =

(
111 121 131 211 221 231
112 122 132 212 222 232

)
Note that the columns of the mode-k unfoldings contain all of the mode-k

fibers, that is, the column vectors attained by fixing all indices except that
of the k’th position.

Next we will define the mode-k multiplication between a tensor and a
matrix. This gives us a convenient way to express basis transformations in
the language of tensors.

Definition 3.2. The mode-k product of a tensor A ∈ Rn1×n2×...nd and a
matrix U ∈ Rmk×nk , denoted A×kU is an (n1×n2×nk−1×mk×nk+1×...×nd)
tensor where elementwise, we have

(A×k U)i1i2...ik−1jik+1...id =

nk∑
ik=1

Ai1i2...ik−1ikik+1...idUjik

Equivalently, in the language of the mode-k unfoldings and regular matrix
multiplication, we have that

(A×k U)(k) = U · A(k)

3.3 The Higher Order SVD Algorithm

For any matrix A ∈ Rm×n, we have that A = USV > is an SVD of A. However,
in the language of the mode-k product, this can be recast in the form

A = USV > = S ×1 U ×2 V.

This makes it convenient to express the idea row and column transformation
in terms of this new product. Similarly, the Tucker Format can be expressed
in terms of the mode-k product as well:

A = S ×1 U
(1) ×2 U

(2) ×3 ...×d U (d)

This format of a tensor can be achieved via an algorithm known as the
higher order singular value decomposition, or HOSVD. This is one general-
ization of the ordinary matrix SVD to tensors.

The HOSVD starts by storing the tensor A as core tensor S, which will be
modified through the algorithm. Starting from k = 1 and iterating through

7



k = d, the algorithm proceeds by computing the mode-k unfolding S(k) of
tensor S and then performing the SVD of A(1). We then store the U factor
of the SVD and update the S tensor by multiplying it along mode k by U (k).
The algorithm reduces the Tucker ranks of the original tensor A with each
step of the HOSVD, working only with a smaller tensor to unfold at each
step. The formal description of the algorithm is as presented in Algorithm
1.

Algorithm 1 Compute the Higher Order SVD of a tensor A
Require: A = S ×1 U

(1) ×2 ...×d U (d)

{Initialization}
S = A
for k = 1, 2, ...d do
S(k) ← unfold(S, k)
[U,Σ, V >] ← SVD(S(k))
U (k) ← U
S ← S ×k U (k)

end for
return S, U (1), U (2), ..., U (d)

3.4 Approximation and Reapproximation

Algorithm 1 ensures an exact decomposition of A into its constituent factors.
However, when working with finite precision arithmetic, it may be more
helpful to actually truncate within some error ε close to machine precision
at each iteration of the SVD. As such, we may replace the SVD() function
called in each step of the HOSVD with SVDδ() where δ represents the value
such that we discard all singular values larger than δ.

Theorem 3.1. Let A ∈ Rn1×n2...×nd be a tensor and Abest be an approxima-
tion of ε of ranks r1, r2, ...rd of A. If Â is an approximation of A computed
through the HOSVD with truncation ranks r1, r2, ...rd, then

||A − Â||F≤
√
dε (2)

Proof. It can be shown that each iteration of the truncated SVD of the of the
k’th unfolding can be written as an orthogonal projection onto a subspace

8



of matrices of rank rk. It can also be shown that these projections freely
commute with one another. We will denote each one of these projections for
step k as Pk. We also have that the matrices for each of these orthogonal
projections is a matrix with orthonormal columns As such, we have that

||A − Â||2F= ||A − PdPd−1...P1A||2F

We will first consider the auxiliary problem

||A − PdPd−1...PkA||2F .

Also note that

A− Pd...Pk(A) = [Pd...Pk+1(id− Pk)(A)] + [A− Pd...Pk+1(A)]

By orthogonality and the Pythagorean Theorem, we have that

||A − Pd...Pk(A)||2F= ||Pd...Pk+1(id− Pk)(A)||2F+||A − Pd...Pk+1(A)||2F

Let εk be the error attained in the k’th SVD truncation. We have that
εk ≤ ε for k = 1, 2, ..., d. Then

||A − Â||2F = ||A − PdPd−1...PkA||2F
= ||Pd...Pk+1(id− Pk(A))||2F+||A − Pd...Pk+1(A)||2F
≤ ||(id− Pk)(A)||2F+||A − Pd...Pk+1(A)||2F
= ε2k + ||A − Pd...Pk+1(A)||2F

Iteration from k = 1 gives that

||A − Pd...P1(A)||2F ≤
d∑

k=1

εk ≤
d∑

k=1

ε2 = dε2

Thus,
||A − Â||2F≤

√
dε

9



From the proof, we see that the HOSVD algorithm provides a quasi-
optimal approximation Â of certain ranks to the original tensor A.

Now suppose we have a tensor A already in the Tucker format but with
suboptimal Tucker ranks. If A is already in the Tucker format, then we
can save on computational power by working only with the low-parametric
format.

We begin with a decomposition of the form A = S×1U
(1)×2U

(2)...×dU (d)

where U (k) does not necessarily have orthonormal columns for k = 1, 2, ..., d.
The reapproximation works first by an orthogonalization prcoess of the U (k)

factors. This is to ensure that errors of reapproximation do not propagate
through the algorithm. We begin by orthonormalizing the columns of the
matrices U (k). This can be done via the QR decomposition and merging
the non-orthogonal factor with the core tensor to get a modified tensor S ′.
We then perform the HOSVD algorithm on the modified core to get S ′ =
T ×1 V

(1) ×(2)
2 ... ×d V (d) and merge the U (k) and V (k) factors via matrix

multiplication to get matrices W (k) = U (k)V (k). The decomposition Â =
T×1W

(1)×2W
(2)...×dW (d) will be an approximation ofA. The full algorithm

is presented in Algorithm 2.

Algorithm 2 Compute a reapproximation of tensor A already in the Tucker
format
Require: A = S ×1 U

(1) ×2 ...×d U (d) with reduced ranks rk
{Orthogonalize the U (k) factors}
for k = 1, 2, ..., d do
Qk, Rk := qr(U (k))
S ← S ×k Rk

U (k) ← Q
end for
[T, V (1), V (2), ...V (d)] = approximate(S, ε), as in Algorithm 1
for k = 1, 2, ..., d do
W (k) = U (k) · V (k)

end for
return [T,W (1),W (2), ...,W (d)]

Since the error is only introduced in the core tensor, and all the other
factors have been orthogonalized, the error of approximation is again, quasi-
optimal (i.e. the lower rank approximation B satisfies ||A − B||F≤

√
dε).

10



4 The Tensor-Train Decomposition

4.1 Introduction to the Tensor-Train Decomposition

One of the unfortunate downfalls of the Tucker format is that it still suffers
from the curse of dimensionality. In particular, even if the Tucker ranks are
small, storing all entries of the core tensor is still exponential in d. Specif-
ically, it uses O(dnr + rd) storage to store all values. We will now look at
another decomposition of a Tensor into a low parametric format, namely the
Tensor Train (TT) format.

In this section, we will use functional notation to refer to refer to an
entry or a subtensor of a tensor, as will be more convenient when discussing
reshapings in the TT format.

Let A ∈ Rn1×n2×...×nd . Elementwise, we say that A is in the TT format
with

A(i1, i2, ..., id) = G1(i1)G2(i2)...Gd(id) (3)

whereGk(ik) is an rk−1×rk matrix. In order to ensure the resulting matrix
product is a scalar, we ensure that r0 = rd = 1. In order to represent every
entry, we have that Gk is actually a third order tensor of size rk−1× nk × rk,
and Gk(ik) can be thought of as the ik’th slice of this tensor. In the index
form, tensor A in the TT format can be written as

A(i1, i2, ..., id) =

r0∑
α0

r1∑
α1

...

rd∑
αd

G1(α0, i1, α1)G2(α1, i2, α2)...Gd(αd−1, id, αd)

(4)
Analogous to the Tucker case, the rk for k = 0, 1, ..., d are known as the

TT ranks of the decomposition.

4.2 The Tensor Train SVD Algorithm

For the Tensor Train decomposition, we will work with a different system of
matricizations from the Tucker format. Here the unfoldings we consider are
as follows

Ak(i1, i2, ..., ik; ik+1, ..., id) = A(i1, i2, ..., id) (5)

where (i1, i2, ..., ik) and (ik+1, ..., id) denote multi-indices representation a po-
sition in the row and column of Ak respectively. This can be achieved in
MATLAB or Julia with a call to the reshape() function.

11



Ak = reshape(A,
k∏
s=1

ns,
d∏

s=k+1

ns)

Example 4.1. Let A ∈ R2×3×2 where Ai1i2...id = 100i1 + 10i2 + i3. We have
that A admits two matrix reshapings, namely A1, A2 and A3, where

A1 =

(
111 121 131 112 122 132
211 221 231 212 222 232

)

A2 =


111 112
211 212
121 122
221 222
131 132
231 232


We can also consider the vectorization of A, reshaping it into a column

vector a ∈ R2·3·2

a =



111
211
121
221
131
231
112
212
122
222
132
232


It can also be shown that there exists a TT decomposition of tensor A

such that the TT ranks do not exceed rk where rk = rank(Ak). More details
are to be found in [2].

Similar to how we construct the Tucker format of a tensor via the HOSVD
algorithm, we will exploit the matrix SVD to build an algorithm computing
a TT format of a tensor. We will first store the tensor A into a temporary

12



tensor C. Iterating from k = 1 to k = d − 1, we then compute the k’th
matrix reshaping of C and perform the SVD. We reshape the U factor into
a the tensor core Gk of size rk−1 × nk × rk. We then update C to be the
SV > factor that came out of the SVD. At the end we return the cores Gk for
k = 1, 2, ...d as our decomposition. Again, we will consider SVD truncations
with a truncation parameter δ.

The formal description of this algorithm is presented in Algorithm 3,
paraphrased from [2].

Again, similar to the Tucker case, we have the following theorem

Theorem 4.1. Let A ∈ Rn1×n2×...×nd and assume rank bounds rk for k =
1, 2, ..., d. The best approximation Abest to A with TT-ranks bounded by rk
always exists, and the approximation B produced by the TT-SVD algorithm
is quasi optimal:

||A − B||F≤
√
d− 1||A − Abest||F

We omit the proof, but details can be found in [2].

Algorithm 3 Compute a Tensor Train format of tensor A with the TT-SVD
algorithm, paraphrased from [2]

Require: A ∈ Rn1×n2×...×nd

Initialization: C ← A, r0 = 1
for k = 1, 2, ...d− 1 do

C ← reshape(C, [rk−1, nk,
numel(C)

rk−1nk
])

[U, S, V >] = SVDδ(C)
Gk ← reshape(U, [rk−1, nk, rk])
C ← SV >

end for
Gd = C
return [G1, G2, ..., Gd]

4.3 The Tensor Train Rounding Process

Like in the Tucker format, we may be given a tensor A already in the TT
format, but with suboptimal TT ranks. These decompositions can often
appear when performing operations between two tensors already in the TT

13



format, so it will be convenient to develop a procedure that reapproximates
a given tensor with some prescribed accuracy ε.

Suppose that A is already in the TT format, but with increased ranks rk.
This procedure is intended to estimate the true value of ranks r′k ≤ rk while
maintaining the prescribed accuracy ε. We can achieve this via the unfolding
matrices Ak and reducing their ranks via SVD.

Consider the first unfolding matrix A1 with rank r1. As such, it admits
a dyadic decomposition

A1 = UV >

where

U(i1, α1) = G1(i1, α1), V (i2, i3, ..., id;α1) = G2(α1, i2)G3(i3)...Gd(id)

We can perform the same procedure of finding the SVD from a dyadic
decomposition as presented in section 1 so that we have that

A1 = ÛDV̂ >

Matrix U is relatively small, so we can compute its QR decomposition
directly, but matrix V is large, so we will compute the QR decomposition of
V in an auxiliary way, via cores G2, G3, ..., Gd of the decomposition.

The central idea of this QR factorization is a right to left sweep across
all of the cores. First we consider matrix Gd(id). We then have that

Gd(id) = RdQd(id)

via a row QR decomposition of Gd(id). We then have that

V (i2, ..., id) = G2(i2)G3(i3)...Gd−1(id−1)RdQd(d)

= G2(i2)G3(i3)...G
′
d−1(id−1)Qd(d)

where G′d−1(id−1) = Gd−1(id−1)Rd. This process of finding the QR decompo-
sition of a core and merging the non-orthogonal factor with the previous core
can be done iteratively by reshaping core Gk into a matrix of size rk−1×(nkrk)
and performing a row QR decomposition on it.

At the end of the procedure, we have the Q factor of V in the TT for-
mat, and the matrix Rv stored. At the end of this process, we will have
reduced r1 and modified cores G1andG2. Since G3, ..., Gd now have orthonor-
mal columns, to compress in the second mode, we just have to orthogonalize

14



G1 and G2 by storing the Rv matrix that came from the orthogonalization
algorithm. This just comes down to performing subsequent SVD truncations
on the next matrices and moving the non-orthogonal part forwards through
the cores. A formal description of the algorithm is provided in algorithm 4.

Algorithm 4 TT-Rounding Algorithm, paraphrased from [2]

Require: Tensor A in the TT format with prescribed accuracy ε
Compute the truncation parameter δ = ε√

d−1 ||A||F
for k = d to 2, step -1 do

[Gk(βk−1; ikβk), R(αk−1, βk−1)]← QRrows(Gk(αk−1); ikβk)
Gk−1 ← Gk−1 ×3 R, where ×3 denotes the mode 3 product

end for
for k = 1, 2, ...d− 1 do

[Gk(βk−1ik; γk),Σ, V (βk, γk)]← SVDδ (Gk(βk−1ik; βk))
Gk+1 = Gk+1 ×1 ΣV >

end for
return Gk, k = 1, 2, ...d as the cores of B

4.4 Basic Operations in the TT Format

In this subsection, we will discuss simple arithmetic and linear algebra oper-
ations that can be done with tensors in the TT format. We will begin with
addition of two tensors in the TT format.

Let A and B be two tensors in the TT format, i.e.

A(i1..., id) = A1(i1)...Ad(id), B(i1..., id) = B1(i1)...Bd(id)

By addition of tensors, we have elementwise, that

C(i1, i2, ..., id) = A(i1, i2, ..., id) + B(i1, i2, ..., id)

This can be done by a merge of the cores of A and B. For k = 2, 3, ...d−1,
we have that

Ck(ik) =

(
Ak(ik) 0

0 Bk(ik)

)
.

For cores C1 and Cd, we have that

C1(i1) =
(
A1(i1) B1(i1)

)
Cd(id) =

(
Ad(id)
Bd(id)

)
15



Indeed, by matrix multiplication, we do recover that

C1(i1)C2(i2)...Cd(id) = A1(i1)A2(i2)...Ad(id) +B1(i1)B2(i2)...Bd(id)

As seen here, the merge of cores can as much as double the TT ranks. The
TT-rounding procedure will be helpful in maintaining low-rank structure in
the decomposition.

Multiplication by a scalar in the TT format is simple, as it only comes
down to scaling any one of the cores by that scalar.

We will now discuss the matrix by vector product in the TT format. In
many problems of machine learning and quantum mechanical systems, expo-
nentially large matrices and vectors may arise as representations of data, so
we will discuss how to perform matrix-vector multiplication between matrix
M and vector x in the TT format.

In this context, we assume a vector of length N = n1...nd can be reshaped
as a d-dimensional tensor with mode sizes nk and represented in the TT-
format with cores X1, X2, ...Xd and elements X(i1, ..., id). Similarly, we say
that M is in the TT-format if its elements are defined as

M(i1, ..., id; j1, ..., jd) = M1(i1, j1)...Md(id, jd)

where Mk(ik, jk) is an rk−1 × rk matrix and (ik, jk) is a multi-index. If y =
Mx, we can also represent y in the TT format with entries Y (i1, ..., id).
Elementwise, we have that

Y (i1, i2, ..., id) =
∑

j1,j2,...,jd

M1(i1, ..., id; j1, ..., jd)X(j1, ..., jd)

The resulting tensor will also be in the TT-format. We have that

Y (i1, ..., id) =
∑
j1,...,jd

M1(i1, j1)...Md(id, jd)X1(j1)...Xd(jd)

=
∑
j1,...,jd

(M1(i1, j1)...Md(id, jd))⊗ (X1(j1)...Xd(jd))

=
∑
j1,...,jd

(M1(i1, jd)⊗X1(j1))...(Md(id, jd)⊗Xd(jd))

= Y1(id)...Yd(id),

where
Yk(ik) =

∑
jk

(Mk(ik, jk)⊗Xk(jk)).

16



Again, this process may result in cores Yk with suboptimal ranks, so the
TT-rounding algorithm may be applied again to estimate lower ranks.

We have now presented a short sample of the operations that can be
done with tensors in the TT format. For a fuller list of operations, including
multidimensional contraction, the Hadamard product, and scalar product,
refer to [2].

5 Machine Learning Application: Supervised

Learning with Tensorized Linear Systems

Most recently, one of the more promising applications of tensor decomposi-
tions is in the solution of large linear systems. This often arises in problems
of non-linear kernal learning, where input kernal vectors x are mapped into
a high dimensional space with a feature map before being classified by a de-
cision function into NL distinct classes (or labels). We consider the following
model:

f(x) = W · Φ(x) (6)

where x ∈ RN represent a vector input (say, the pixels of an image in
some vectorized form), Φ : RN → R×d

k=1N is the high dimensional mapping
into feature space, W ∈ RNL×dN is the matrix of weights, and f : RN → RNL

is the overall function mapping each input to a vector of labels. We will
interpret the resulting vector f(x) to be a vector of entries containing the
likelihood that a given input belogs to a particular class l for l ∈ {1, 2, ..., NL}.

Remark 5.1. The notation for the function Φ : RN → R×d
k=1N indicates that

Φ maps from an N−vector to a d−order tensor with mode size N in each
dimension. The choice of Φ can vary depending on application, and more
research is necessary to understand which choice of Φ is most appropriate
for a given context.

Suppose that we have NT training examples labelled {xn, yn} for n =
1, 2, ..., NT , where xn denotes the n’th input and yn is the corresponding n’th
output. We want to minimize the cost function

C =
1

2

NT∑
n=1

||f(xn)− yn||22 (7)

17



in the 2-norm. This comes down to finding the best weight matrix W such
that the cost function has the least error. By applying the definition of f ,
we have the following expression for the cost function:

C =
1

2

NT∑
n=1

||W · Φ(xn)− y||22 (8)

Now, consider zn = vec(Φ(xn)). This turns the high dimensional tensor
Φ(xn) into a column vector of size dN . We then have that

C =
1

2

NT∑
n=1

||Wzn − y||22

=
1

2
||Z · w − Y ||22

w = vec(W ) ∈ RNL·dN ,

Z =


I ⊗ z>1
I ⊗ z>2

...
I ⊗ z>NT

 ∈ RNL·NT×NL×dN ,

and

Y =


y1
y2
...

yNT

 ∈ RNL·NT

Since we minimize this quadratic cost, this comes down to finding the
least squares solution to the system

Zw = Y. (9)

Solving this linear systems using traditional numerical linear algebra tech-
niques are computationally infeasible due to the large dimensions of Z and
w. However, if we have Z,w and Y in the tensor train format, we may
use algorithms like the Linear Alternating Scheme or the Density Matrix
Renormalization Group to find approximate solutions to the system. These
algorithms rely on optimizing a few cores of w at a time, approaching a least
squares solution to the system. Convergence properties of these algorithms
are still not very well studied, but have promising results in practice. For
more detailed information on these algorithms, view [4] and [5].

18



6 Conclusion

This SURIM project was intended as a literature review on existing works
regarding two well-known tensor decompositions, namely the Tucker and
Tensor Train formats of a tensor. It is clear that the Tensor Train format
gives huge advantages in terms of storage and computational complexity, but
combining this format with say the Tucker format, it is possible to decompose
each one of the TT cores with the HOSVD algorithm, further reducing the
storage complexity.

An interesting theoretical problem discovered in this project was perhaps
something overlooked in the proof of the quasi-optimality bound in the ap-
proximation that comes out of the HOSVD algorithm, namely the sharpness
of the bound. Presented in this paper is a classic proof of the bound, but
something worth considering is the independence of each projection opera-
tion Pk. It is possible that the SVD truncations of the unfoldings are not
independent of each other, so that there might be a more optimistic bound
on the error arising out of each truncation.

As for future work related to more applied contexts, we hope to learn
more about and understand the tensor methods used in solving huge linear
systems, namely the Alternating Linear Scheme and the DMRG algorithms,
as well as how they relate to problems in supervised machine learning tasks
as in [3]. In addition, we hope to learn more about the convergence of
these methods and how to achieve faster or more accurate results for the
convergence of these methods.

7 Acknowledgements

This paper is dedicated to Joseph Tran. Thank you for being an amazing
friend and roommate this summer.

I would like to thank my project advisor Dr. Vladimir Kazeev who has
been instrumental in the success of this project. From the introduction to
the project to refining my presentation skills, Dr. Kazeev has helped me
incredibly in all aspects of this project. I’d also like to thank Dr. Chris Ohrt
for running the 2019 SURIM Program and for proofreading the first draft of
this paper. Finally, I’d also like to thank my fellow SURIM colleagues who
listened to and asked questions at my midterm and final talks.

19



References

[1] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
”A Multilinear Singular Value Decomposition”. SIAM J. Matrix Anal.
Appl. 21 (2000), no. 4, 1253–1278.

[2] I. V. Oseledets. ”Tensor-Train Decomposition”. SIAM J. Sci. Comput.
33, 2295–2317 (2011).

[3] E. M. Stoudenmire and David J. Schwab. ”Supervised Learning with
Tensor Networks”. Advances in Neural Information Processing Systems
29 (2016), 4799–4807

[4] I. V Oseledets and S. V. Dolgov. ”Solution of Linear Systems and Matrix
Inversion in the TT-Format”. SIAM J. Sci. Comput. 34, 2718–2739
(2012)

[5] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider.
”The Alternating Linear Scheme for Tensor Optimization in the Tensor
Train Format”. SIAM J. Sci. Comput. 34, 683–713 (2012)

20


