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Abstract

Let f(x) be a random integral polynomial of degree d ≥ 2 with coeffi-
cients uniformly and independently drawn from [−N,N ]. It is well known
that the probability that f(x) is irreducible over the integers with Galois
group Sd tends to 1 as N →∞. However, finding more precise estimations
for these probabilities is still an active area of research. In this paper, we
survey the classic work on this problem as well as a recent method intro-
duced by Rivin. Additionally, we discuss the precision of Rivin’s argument
for special classes of polynomials and end by investigating a toy case of
cubic trinomials.
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1 Introduction

Suppose f(x) = xd+ad−1x
d−1 + · · ·+a1x+a0 is a random integral polynomial.

If we further suppose that the integral coefficients ai are chosen uniformly and
independently at random from [−N,N ], some questions arise: What is the
probability that f(x) is reducible over the integers? What is the Galois group
of f(x) over the rational numbers?

Questions of this sort date back to at least the 1930’s [17]. In this paper
we provide a survey of known results and methods in the study of random
integral polynomials, specifically in the Large Box Model where N → ∞ and
the degree d is fixed. The two properties of random integral polynomials that
we are concerned with are reducibility over the integers and their Galois groups
over the rationals.

1.1 Large Box Model

The Large Box Model is the primary model we investigate.

Definition 1.1. In the Large Box Model, the degree d of the random poly-
nomials is fixed, and the integral coefficients ai are chosen independently and
uniformly at random from the support [−N,N ] as N →∞.

The model was introduced by B.L. van der Waerden in the 1930’s. In a 1936
paper [17], van der Waerden proved that the probability that a random integral
polynomial in the Large Box Model is irreducible over Z tends to 1 as N →∞.
This also proved a formulation of Hilbert’s Irreducibility Theorem [4]. A proof
of van der Waerden’s result on irreducibility is the subject of Section 2. van der
Waerden also proved the following:

Theorem 1.2. (van der Waerden, 1936) For a random polynomial f(x) in the
Large Box Model:

Pr(Gal(f(x)) = Sd) ≥ 1−O(N−1/6).

In that same paper, van der Waerden conjectured that the error term could
be generalized to O(N−1+ε) for any ε > 0. S. Chow and R. Dietmann [7] proved
van der Waerden’s conjecture for random polynomials of degrees 3 and 4 in a
2018 paper.

In a 1963 paper, R. Chela [6] built upon van der Waerden’s results on
irreducibility to show that the probability of irreducibility has tight bound
(1 + o(1))cd/N as N → ∞, where cd is some constant depending on d only.
This paper’s results and proofs are the subject of Section 3. Chela’s proof is
built on the observation that random polynomials with linear factors make up
a plurality of reducible polynomials; this is shown by van der Waerden’s theo-
rem in Section 2. Chela utilizes elementary counting and geometric methods to
prove a series of lemmas leading to the final result.

In 2015, I. Rivin [13] uploaded a paper that provided a new method for cal-
culating the probability of reducibility for random polynomials. This method
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and its applications are one of the main topics of this survey, and it is discussed
in sections 4, 5, and 6. Central to this method is the use of a Schwartz-Zippel
type bound which bounds the size of an algebraic variety over a finite field by
some power of the size of the field. The resulting probability is actually less
precise than that given by Chela, but Rivin’s method is more streamlined and
more broadly applicable. More importantly, using some results from the clas-
sification of finite simple groups, Rivin applies his method to give a necessary
and sufficient condition for a random polynomial to have Galois group Sd or Ad
over the rationals.

1.2 Bounded Height Model

The Bounded Height Model is an alternative to the Large Box Model for re-
searching properties of random integral polynomials. While we do not focus on
the Bounded Height Model in this paper, we include some interesting results
from the model in this subsection.

Definition 1.3. In the Bounded Height Model, the degree d of the random
polynomials goes to infinity, and the integral coefficients ai are chosen indepen-
dently and uniformly at random from a support of fixed size.

The dominant paradigm in the Large Box Model, as depicted in Chela and
Rivin’s papers, treats polynomials of degree d as elements of Rd. In the Bounded
Height Model however, d → ∞. Consequently, this paradigm is generally not
applicable to the Bounded Height Model. Proofs in the Bounded Height Model
generally rely on group theory, the theory of random walks, and analytic num-
ber theory.

In 1993, A.M. Odlyzko and B. Poonen [11] conjectured that in certain ver-
sions of the Bounded Height Model, irreducibility of polynomials becomes cer-
tain as the degree goes to infinity.

Conjecture 1.4. (Odlyzko and Poonen, 1993) Let d be a positive integer. For
random monic polynomials g0,1,d(x) = xd + ad−1x

d−1 + · · · + a0, where the ai
are 0 or 1 independently with probability 1/2, the probability that g0,1,d(x) is
reducible goes to 0 as the degree d goes to infinity.

The following result, due to E. Breuillard and P. Varjú [5], confirms Odlyzko
and Poonen’s conjecture, conditional on the Riemann Hypothesis holding for
certain number fields.

Theorem 1.5. (Breuillard and Varjú, 2019) Let f(x) be a random monic poly-
nomial of degree d with coefficients 0,1. Suppose the Riemann hypothesis holds
for the Dedekind zeta function ζK for all number fields K = Q(a), where a is
the root of a polynomial with 0,1 coefficients. Then:

Pr(f(x) irreducible in Z[x])→ 1 as d→∞.
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In a 1999 paper, S.V. Konyagin [9] conjectured that in the case that a random
polynomial in this model is reducible, it almost certainly has a linear factor
(x+ 1).

Conjecture 1.6. (Konyagin, 1999) Let d be a positive integer. For random
monic polynomials g0,1,d(x) = xd + ad−1x

d−1 + · · · + a0, where the ai are 0 or
1 independently with probability 1/2, the probability that g0,1,d(x) has a linear
factor x + 1 conditioned on g0,1,d(x) being reducible, goes to 1 as d goes to
infinity.

Another result given by L. Bary-Soroker, D. Koukoulopoulos, and G. Kozma
[1], is weaker than Theorem 1.5, but not conditional on any form of the Riemann
Hypothesis.

Theorem 1.7. (Bary-Soroker, et al., 2020) Let ΥH(n) denote the set of monic
polynomials of degree n, all of whose coefficients lie in [1, H]. Then there are
absolute constants c > 0 and n0 ≥ 1 such that if H ≥ 35, n ≥ n0, and we
choose a polynomial from ΥH(n) uniformly at random, then it is irreducible
with probability ≥ 1− n−c.

1.3 Outline

In Section 2, we present van der Waerden’s result on irreducibility and its proof.
In Section 3, we provide Chela’s 1963 results and the necessary proofs by build-
ing upon van der Waerden’s results. In Section 4, we introduce Rivin’s method
for finding the probability of reducibility for random polynomials, which makes
use of some results from algebraic geometry. In Section 5, we show how Rivin
utilizes his method in order to give a necessary and sufficient condition for a
random polynomial to have Galois group Sd or Ad. Section 6 discusses the
applicability and limitations of Rivin’s method on reducibility for the special
case of random monic trinomials, and Section 7 investigates the distribution of
Galois groups in the restricted case of cubic trinomials.

1.4 Notation

We adopt the Vinogradov asymptotic notation X �d Y which denotes that
there exists a constant Cd dependent only on the parameter d such that |X| ≤
CdY .

2 van der Waerden’s Results on Irreducibility

In his 1936 paper, van der Waerden [17] showed that the number of random
polynomials reducible over the integers with factors of any degree are compara-
ble in size to a power of the bound of the support.

Definition 2.1. Let ρk(d,N) be the number of reducible random polynomials of
degree d, support [−N,N ], with factor of lowest degree 1 ≤ k ≤ d/2. Let ρ(d,N)
be the number of all such reducible polynomials with factors of any degree.

4



Theorem 2.2. (van der Waerden, 1936)

ρk(d,N)�d N
d−k if d > 2k,

ρk(d,N)�d N
d−k logN if d = 2k.

Proving this result requires two distinct notions of the size of a polynomial:
the height and the Mahler measure.

Definition 2.3. The height of a polynomial f(x) = adx
d+ad−1x

d−1+. . . a1x+
a0, denoted by H(f), is defined as:

H(f) := max
i
|ai|.

Definition 2.4. If f(x) is a polynomial that factors over C as

f(x) = a(x− α1)(x− α2) . . . (x− αd),

then the Mahler measure of f(x), denoted by M(f), is defined as:

M(f) := |a|
∏
|αi|≥1

|αi|.

Example 2.5. The polynomial f(x) = x3+2x2−9x−18 = (x+3)(x−3)(x+2)
has Mahler measure

M(f) = |a|
∏
|αi|≥1

|αi| = 3 · 3 · 2 = 18.

It is immediate from the definition of the Mahler measure that it is mul-
tiplicative [3], i.e. for a polynomial f(x) = g(x)h(x), the equality M(f) =
M(g)M(h) holds. This property, along with the following lemma relating the
Mahler measure of a polynomial to its height, form the foundation of van der
Waerden’s results.

Lemma 2.6. Let f(x) be a polynomial of degree d. Then:(
d

bd/2c

)−1
H(f) ≤M(f) ≤ H(f)

√
d+ 1.

Proof. See [10].

We now have the tools and background to prove Theorem 2.2. The proof
consists of calculating all possible factorizations of a random polynomial with
a degree k factor, and then using the height and Mahler measure to bound this
number above by N .

Proof of Theorem 2.2. Let f(x) be a monic polynomial of degree d with support
[−N,N ]. Suppose that:

f(x) = g(x)h(x),
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where g(x) and h(x) are monic integer polynomials. Suppose further that
deg(g) = k, where 1 ≤ k ≤ d/2. Let b, c denote the heights of g(x) and
h(x) respectively. The following inequality results from the multiplicativity of
the Mahler measure and Lemma 2.6:

bc := H(g)H(h)�d M(g)M(h) = M(f)�d H(f) ≤ N. (2.1)

We now need to calculate all the possible arrangements of coefficients for the
polynomials g(x) and h(x). Fix b. The height b of g(x) = xk + bk−1x

k−1 +
· · · + b1x + b0 can occur at k possible terms, and the corresponding coefficient
can either be b or −b. The other k − 1 terms each have one of 2b + 1 possible
values. The d − k non-leading terms of h(x) each have one of 2c + 1 possible
values. Multiplying all these factors together gives all the possible factorizations
of f(x) for a fixed b and c. The number of such possible factorizations is thus
2k(2b + 1)k−1(2c + 1)d−k. This quantity can be related to N by the following
series of inequalities:

2k(2b+ 1)k−1(2c+ 1)d−k �k,d b
k−1cd−k �d b

k−1cd−k �d b
k−1

(
N

b

)d−k
,

where the first inequality comes from expanding out (2b+ 1) and (2c+ 1), the
second inequality comes from the observation that k is bounded above by d and
accordingly omitting the dependence on k, and the final inequality is a result of
(2.1). Summing across all possible values of b yields:

ρk(d,N)�d 2

N∑
b=1

bk−1(
N

b
)d−k = 2Nd−k

N∑
b=1

1

bd−2k+1
�d N

d−k.

Note the case b = 0 is not included since we are considering only monic polyno-
mials, and the factor of 2 is to account for both positive and negative values of
b. In the case that d = 2k, the approximation

∑N
b=1

1
bd−2k+1 =

∑N
b=1

1
b ≈ logN

holds. The result is that:

ρk(d,N)�d 2Nd−k
N∑
b=1

1

b
�d N

d−k logN,

completing the proof.

3 Chela’s Results

In 1963, R. Chela released a paper building upon van der Waerden’s results
[6]. Where van der Waerden’s work gave only an upper and lower bound for
the number of reducible random polynomials, Chela’s paper explicitly lays out
a limit that gives the probability that a random polynomial is reducible as its
support grows to infinity. To do this, Chela utilizes a corollary of van der Waer-
den’s inequality which roughly states that the plurality of reducible polynomials
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have linear factors. Chela’s argument flows by illustrating a counting method
for polynomials with linear factors and then proving that this count suffices to
arrive at a limit for the probability that a polynomial is reducible.

Although Chela’s results can easily be thought of as a probability, they are
in fact given as a limit as follows:

Theorem 3.1. For degree d > 2,

lim
N→∞

ρ(d,N)

Nd−1 = 2d
(
ζ(d− 1)− 1

2
+

kd
2d−1

)
,

where ζ is the Riemann zeta function.

Here, kd is defined as an hypervolume in d− 1 dimensional Euclidean space.
We let

kd =

∫
(R)

· · ·
∫
dx1 . . . dxd−1,

where {x1, . . . , xd−1} are the coordinates of Rd−1 and (R) is the region defined
by

|x1| ≤ 1, i = 1, . . . , d− 1,

∣∣∣∣∣
d−1∑
i=1

xi

∣∣∣∣∣ ≤ 1.

We note that as n tends to infinity, ζ(n) tends to 1. However, ζ(1) is undefined,
which is why Theorem 3.1 applies only when d > 2. A discussion of the limit
when d = 2 will be presented at the end of this section.

To arrive at a proof of Theorem 3.1, several lemmas are required. Essentially
we will illustrate a method to count (up to some error) the number of polynomi-
als which are reducible with a linear factor, then, we will prove that this count
suffices to give a robust approximation of the total number of reducible polyno-
mials. Then, because we are dealing with independently and uniformly chosen
random variables where each outcome is equally likely, we will have enough in-
formation to render a probability that a given polynomial is reducible as the
support goes to infinity.

Before outlining the necessary lemmas, we need to define two related, but
distinct, counting architectures.

We define Td,N (v) as the number of random polynomials with support N
and (x+ v) as a factor, where v is an integer.

We define ρ̄1(d,N) as the number of such polynomials with at least two, not
necessarily distinct, linear factors.

Note that
∑
v Td,N (v) is similar to ρ1(d,N), but the sum is not equal because

it allows for double counting of polynomials with multiple distinct linear factors.
However, the two quantities are related as follows:

Lemma 3.2. Summing over all v ∈ [−N,N ], we have:

ρ1(d,N) =
∑
v

Td,N (v) + o(Nd−1)
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Proof. As mentioned above, we have
∑
v Td,N (v) ≥ ρ1(d,N) due to possible

double counting. Let Ri for i = 1, . . . , d be the number of polynomials with
i distinct linear factors. We then have that

∑
v Td,N (v) = R1 +

∑d
i=2 iRi.

Additionally, for i > 1, we have

Ri ≤ ρ̄1(d,N) < ρ2(d,N) = o(Nd−1).

Since i is at least 2, every polynomial counted in Ri is also counted in ρ1(n,N),
which gives the first inequality. The second inequality comes from the fact that
ρ2(d,N) counts polynomials with irreducible quadratic factors which ρ̄1(d,N)
does not. The final equality comes directly from van der Waerden’s results.
Note that R1 ≤ ρ1(d,N), and when we combine this we have

∑
v

Td,N (v)− ρ1(d,N) = R1 +

d∑
i=2

iRi − ρ1(d,N)

≤
d∑
i=2

iRi

= o(Nd−1).

We have now related
∑
v Td,N (v) and ρ1(d,N). Next, we must quantify∑

v Td,N (v).

Lemma 3.3. For d > 2 and 1 < |v| ≤ N ,

lim
N→∞

∑
|v|>1 Td,N (v)

Nd−1 = 2d(ζ(d− 1)− 1).

Proof. We see that if v is a root of f(x), then −v must be a root of f(−x). As
such, Td,N (v) = Td,N (−v) and we can assume that 2 ≤ v ≤ N . To arrive at
this count for the number of polynomials that are reducible with a given linear
factor (x + v), we will appeal to constraints on the coefficients of the degree
d− 1 factor of the polynomial. To this end, we have

f(x) = xd + ad−1x
d−1 + · · ·+ a0

= (x+ v)(xd−1 + bd−2x
d−2 + · · ·+ b0).

Seen this way, we can define Td,N (v) as the number of valid (d − 1)-tuples
(bd−2, . . . , b0) (with ”valid” meaning that the (d−1)-tuples produce polynomials
f(x) whose coefficients remains within the constraint of the support [−N,N ]).
From here, we have a set of relationships between the ai coefficients and the bi
coefficients. In particular, ad−1 = bd−2 + v, vb0 = a0, and

bi =
ai − bi−1

v
, 0 ≤ i ≤ d− 2, (bd−1 = 0).
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To count the possible (d − 1)-tuples, we note that for a fixed bi−1, we have
ai ∈ [−N,N ] and can therefore conclude that bi must lie within the range[

−N − bi−1
v

,
N − bi−1

v

]
.

Note that the amplitude of this range is 2N
v which is independent of bi−1. This

implies that, for a given bi−1, there are either 2N
v or 2N

v + 1 integer values of bi.
Thus, the number of solutions the set of relations on ai and bi given above is

d−1∏
i=1

(
2N

v
+ rvi

)
, (|rvi| ≤ 1) .

We take this product from i = 1 to i = d− 1 because we have d− 1 coefficients
bi with which we are concerned. Before continuing, it is important to note
that bi ∈ [−N−bi−1

v , N−bi−1

v ] is not a priori enough to satisfy ad−1 = bd−2 + v.
However, we have the following inequality:

|bd−2| ≤ N
(

1

v
+

1

v2
+ · · ·+ 1

vd−1

)
.

This follows from the fact that |b0| = |a0v | ≤
N
v and

|b1| =
∣∣∣∣a1 − b0v

∣∣∣∣ =
|a1 − b0|

v
=
|a1|+ |b0|

v
≤
N + N

v

v
=
N

v
+
N

v2
.

Then, the inequality stated above follows by induction. From here, we have
that if v < N ,

|bd−2 + v| ≤ |bd−2|+ v

≤ N
(

1

v
+ · · ·+ 1

vd−2

)
+ v

< N

(
1

v − 1

)
+ v.

If v is not 2 or N−1, this holds if N is large enough. If v = 2, note that because
( 1
v + . . .+ 1

vn−1 ) < 1, for large enough N we have that N( 1
v + . . .+ 1

vn−1 ) < N−2.

If v = N − 1, then we see that |bd−2 + v| < N
N−2 +N − 1 = N + 2

N−2 . But this
value must be an integer, so |bd−2 + v| ≤ N . This guarantees that, for large
enough N , we have that |bd−2 + v| ≤ N which is necessary for ad−1 = bd−2 + v
to be satisfied. With all this information, we can then sum over all possible
values of v and arrive at

∑
2≤v≤N

Td,N (v) =

N−1∑
v=2

d−1∏
i=1

(
2N

v
+ rvi

)
+ Td,N (N).
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Then, as we remarked above, we have Td,N (v) = Td,N (−v), so

∑
|v|≥1

Td,N (v) = 2

N−1∑
v=2

d−1∏
i=1

(
2N

v
+ rvi

)
+ 2Td,N (N).

In order to simplify this equation into the desired form, we note that rvi is either
0 or 1. This way, the product can be expressed as ( 2N

v )d−1 +O(Nd−2). We also
have that Td,N (N) is o(Nd−1) since this is the number of ways of choosing the
d− 1 values of bi even without the restrictions discussed above. With all of this
information together, we have

∑
|v|≥1

Td,N (v) = 2

N−1∑
v=2

(
2N

v

)d−1
+ o(Nd−1)

⇒
∑
|v|≥1 Td,N (v)

Nd−1 = 2d
N−1∑
v=2

(
1

vd−1

)
+
o(Nd−1)

Nd−1

⇒ lim
N→∞

∑
|v|≥1 Td,N (v)

Nd−1 = 2d
∞∑
v=2

1

vd−1

= 2d

( ∞∑
v=1

1

vd−1
− 1

)
= 2d (ζ(d− 1)− 1) ,

thus completing the proof of the lemma.

Before continuing to the third and final lemma, we need to define two more
tools. First, we let

t(f(x)) = ad−1 + · · ·+ a0.

In other words, t(f(x)) represents the sum of all the coefficients of f(x) except
the coefficient of the leading term. Second, Ld(N,h) is the number of polyno-
mials f(x) such that t(f(x)) = h. Note that Ld(N,h) = Ld(N,−h) because
we have that t(f(x)) = −t(f(−x)). Additionally, we have that Td,N (−1) =
Ld(N,−1). This follows from the fact that a polynomial with root 1 must
have all its coefficients sum to 0, and since Ld(N,h) ignores the leading co-
efficient (which is 1 since all polynomials we are considering are monic), we
arrive at Td,N (−1) = Ld(N,−1). Lemma 3.3 counted polynomials with linear
factors (x − v) where |v| was greater than 1. We can now use the relation-
ship Td,N (−1) = Ld(N,−1) and the following lemma to count polynomials with
linear factors (x− v) where |v| = 1.

Lemma 3.4.

lim
N→∞

Ld(N,h)

Nd−1 = kd.
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Proof. First, we can assume h to be positive since Ld(N,h) = Ld(N,−h). To
prove this lemma, we will start by showing that for all h,

lim
N→∞

Ld(N,h)

Ld(N, 0)
= 1.

To prove this, we will require the assumption that limN→∞
Ld(N,0)
Nd−1 = kn. The

assumption will be proved later.
Let Ld(N,h) be the set of polynomials such that t(f(x)) = h. Take some

f(x) ∈ Ld(N, 0) and then let f ′(x) = xd+a′d−1x
d−1+· · ·+a′1x+a′0 where a′d−1 =

ad−1, . . . , a
′
1 = a1, and a′0 = a0 + h. This implies that f ′(x) ∈ Ld(N + h, h).

From the natural mapping f(x)→ f ′(x), we have an injective map

Ld(N, 0)→ Ld(N + h, h).

Since this map is injective, we can comment on the relative sizes of the sets in
question. Specifically, we have

Ld(N, 0) ≤ Ld(N + h, h).

We can make a nearly identical argument with f(x) ∈ Ld(N,h) and f ′(x)
defined as a′d−1 = ad−1, . . . , a

′
1 = a1, a

′
0 = a0 − h, and we can conclude that

Ld(N,h) ≤ Ld(N + h, 0).

Then, if we replace N with N − h in Ld(N, 0) ≤ Ld(N + h, h) we are left with
Ld(N − h, 0) ≤ Ld(N,h). Now we have two relations for Ld(N,h), and we can
express them as follows

Ld(N − h, 0)

Ld(N, 0)
≤ Ld(N,h)

Ld(N, 0)
≤ Ld(N + h, 0)

Ld(N, 0)
.

Observe that

lim
N→∞

Ld(N − h, 0)

Ld(N, 0)
= lim
N→∞

(
Ld(N − h, 0)

Ld(N, 0)
· Nd−1

(N − h)d−1

)

= lim
N→∞

Ld(N−h,0)
(N−h)d−1

Ld(N,0)
Nd−1

=
kd
kd

= 1.

Here, we used the assumption limN→∞
Ld(N,0)
Nd−1 = kn outlined at the beginning

of the proof. We can then use an identical process as above, simply replacing
N−h with N+h, and we will arrive at the same result. By the squeeze theorem,
we can conclude that for all h,

lim
N→∞

Ld(N,h)

Ld(N, 0)
= 1.
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We must now prove our assumption. While all of our methodology thus far
has been algebraic and combinatoric in nature, we will need a geometric appeal

in order to prove that limN→∞
Ld(N,0)
Nd−1 = kn. We must define several geometric

objects. Let Ed be d−dimensional Euclidean space with coordinates x1, . . . , xd,
and let Λd be the lattice of integer points of Ed. Given a region S ⊂ Ed, we
take ||S|| to denote the number of points in S ∩ Λd, and V (S) to denote the
volume of S.

We can now create a geometric object such that the number of lattice points
contained in that object is equal to Ld(N, 0). We take Cd to be the hypercube
defined by {(x1, . . . , xd) ∈ Ed : |xi| ≤ N} and H to be the plane given by
x1 + · · · + xd = 0. In other words, Cd represents all possible d−tuples of
coefficients lying within the support [−N,N ] and H represents those d−tuples
of coefficients such that t(f(x)) = 0. So, together we have

Ld(N, 0) = ||Cd ∩H||.

To make this problem easier to solve, we will reduce complexity by one
degree. Note that H is already a (d− 1)−dimensional space, so Cd ∩H is also
(d − 1)−dimensional. Take Cd ∩H to be given by |xi| ≤ N , i ∈ (1, . . . , d − 1),

and |
∑d−1
i=1 xi| ≤ N . This expression of Cd ∩ H is given by a collection of

(d − 1)-tuples, such that the height of the tuple is less than or equal to N so
is the sum. This (d− 1)−dimensional definition is equivalent to the previously
given d−dimensional definition, because given d − 1 points whose sum is less
than or equal to N , there exists a unique point in Cd such that the inclusion of
this as the dth point of the sum would make the sum 0.

Finally, we use the fact, which can be found in Chapter 3 of Computing the
continuous discretely by Beck and Robins [2], that

lim
N→∞

||Cd ∩H||
Nd−1 = V (R1),

where R1 is the scaling of Cd ∩H by a factor of 1/N as follows:

R1 := |yi| ≤ 1, i ∈ (1, . . . , d− 1),

∣∣∣∣∣
d−1∑
i=1

xi

∣∣∣∣∣ ≤ 1.

Here, V (R1) is identical to the definition of kd given at the beginning of this
section. So we may conclude that

lim
N→∞

Ld(N,h)

Nd−1 = lim
N→∞

Ld(N, 0)

Nd−1 = lim
N→∞

||Cd ∩H||
Nd−1 = V (R1) = kd.

Then, as we stated before, because we have Td,N (1) = Ld(N,−1), a corollary
of Lemma 3.4 is

lim
N→∞

Td,N (1)

Nd−1 = kd.
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We may now combine the results of our three lemmas to arrive at a proof of
Theorem 3.1. Observe that∑

v

Td,N (v) =
∑
|v|>1

Td,N (v) + 2Td,N (1) + Td,N (0).

We see that Td,N (0) is just the number of polynomials where the constant coef-
ficient is 0. This number is approximately 2d−1Nd−1. Using this fact, Lemma
3.3, and the above corollary of Lemma 3.4, we have

lim
N→∞

∑
v Td,N (v)

Nd−1 = lim
N→∞

∑
|v|>1 Td,N (v)

Nd−1 + 2 lim
N→∞

Td,N (1)

Nd−1 + lim
N→∞

Td,N (0)

Nd−1

= 2d(ζ(d− 1)− 1) + 2kd + 2d−1

= 2d
(
ζ(d− 1)− 1

2
+

kd
2d−1

)
.

The final step follows from van der Waerden’s results, which give us that
ρ(d,N) = ρ1(d,N) + o(Nd−1), and Lemma 3.2, which states that ρ1(d,N) =∑
v Td,N (v) + o(Nd−1). So, we have that, for d > 2,

lim
N→∞

ρ(d,N)

Nd−1 = lim
N→∞

∑
v Td,N (v) + o(Nd−1) + o(Nd−1)

Nd−1

= lim
N→∞

∑
v Td,N (v)

Nd−1 + 2 lim
N→∞

o(Nd−1)

Nd−1

= lim
N→∞

∑
v Td,N (v)

Nd−1 + 0

= 2d
(
ζ(d− 1)− 1

2
+

kd
2d−1

)
.

This completes the proof of Theorem 3.1. This conclusion can be restated as a
probability that a given polynomial is reducible. We know that the number of
possible random polynomials is approximately (2N)d, so the probability that a
polynomial is reducible (with large enough N) is given by the approximation

Pr(f(x) reducible) =
(2d(ζ(d− 1)− 1

2 + kd
2d−1 )Nd−1

(2N)d
.

Evidently, this probability goes to 0 as N goes to infinity.
To complete this discussion of the reducibility of random polynomials, we

must consider the case where d = 2. Theorem 3.1 only covers the case when
d > 2. To do this, we have

Theorem 3.5.

lim
N→∞

ρ(2, N)

2N ln(N)
= 1.

Proof. This is the result as it appears in Chela’s paper, but we can in fact provide
a more precise result. We will show that ρ(2, N) = 2N ln(N) + 2γN + o(N)
where γ is the Euler-Mascheroni constant.
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We begin by noting that

k∑
n=1

1

n
= ln(k) + γ + o(k).

Suppose f(x), a degree 2 polynomial with support [−N,N ], can be factorized
as f(x) = (x+a)(x+b). Then, to find the number of reducible polynomials is the
same as counting viable pairs (a, b). So, begin with the case that 0 ≤ a ≤ b ≤ N .
Then we must have that a ≤

√
N . Thus the number of f(x) satisfying this

condition is

r1 =

b
√
Nc∑

a=1

bN
a
c =

N ln(N) + γN + o(N)

2
.

Then, consider the case where −N ≤ b ≤ a ≤ 0. Similarly, we will have that
the number of f(x) satisfying this condition is

r2 =

b
√
Nc∑

−a=1

b N
−a
c =

N ln(N) + γN + o(N)

2
.

Finally, we have the case where −N ≤ a ≤ 0 ≤ b ≤ N . The number of f(x) in
this case is

r3 =

N∑
a=1

bN
a
c = N ln(N) + γN + o(N).

Then, the total number of reducible polynomials is given by

ρ(2, N) = r1 + r2 + r3 = 2N ln(N) + 2γN + o(N).

This leaves us with a slightly more precise version of Chela’s result.

We can again restate this an approximated probability as follows

Pr(f(x) reducible) =
ρ(2, N)

(2N)2
=

2N ln(N) + 2γN + o(N)

4N2
.

And, as before, this probability goes to 0 as N goes to infinity.

4 Rivin’s Irreducibility Results

This section introduces Rivin’s Method for calculating reducibility in the Large
Box Model. In 2015, Igor Rivin proposed a variation on Chela’s proof and re-
sults [13]. Rivin’s version of the reducibility question gives a more streamlined
understanding of the basic principle that the probability that a random polyno-
mial is reducible goes to 0 as the support grows to infinity. Although less precise,
his results show the same conclusion with far less work. Where Chela counts the
number of reducible polynomials, or at least the number of polynomials which
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have a linear factor, Rivin instead counts the number of possible configurations
of random coefficients which lead to a reducible polynomial. In this way, Rivin
is able to execute his entire counting argument in one step, rather than in the
three that were necessary to fully justify Chela’s results.

Definition 4.1. An algebraic variety is a set of solutions to a system of poly-
nomial equations over an affine space F d, where F is a field. We can express a
variety V as follows

V = {x ∈ F d : P1(x) = a1, P2(x) = a2, . . . , Pn(x) = an}.

Rivin’s argument will hinge on the creation of a variety out of the coefficients
of the random polynomial f(x). In this variety, x will represent ordered d−tuples
of coefficients, each a possible polynomial. From there, he is able to put a
bound on the size of the variety. In other words, he bounds the number of
possible solutions and thus bounds the number of possible polynomials. To do
this, we require the Schwartz-Zippel bound. Note that while algebraic varieties
may include many more that one polynomial equation in their definition, we
will actually only require one polynomial equation for this proof. As such, all
algebraic varieties and the lemmas regarding them that are mentioned moving
forward will only note the existence of one polynomial equation.

Lemma 4.2. Let F be a finite field and F̄ be its algebraic closure. If we have
a variety V = {x ∈ F̄ d : P (x) = a}, where P is a polynomial function F̄ d → F̄ ,
then |V (F )|, the number of F -points of V , is bounded by

|V (F )| �M |F |dim(V ),

where M is the complexity of V given by some integer larger than both d and
the degree of P .

Note that an F point of V is a solution to the variety where all values of
x lie in the field F . We will not prove the Schwartz-Zippel bound here, but a
detailed discussion of it can be found at [18].

This lemma is slightly too broad for our purposes, so we will make use of a
helpful precision as follows:

Lemma 4.3. Let V be a variety as before, but now defined over Z. Then, the
number |V (N)| of Z-points of V of height bounded above by N > 1 is bounded
by

|V (N)| �M Ndim(V ).

Proof. By Bertrand’s Postulate [14], there exists a prime p such that N ≤ p ≤
2N . So, by Lemma 4.2 we have that |V (Fp)| �M |Fp|dim(V ). But because
N ≤ p, every Z point of V of height bounded above by N corresponds to a
unique point in Fp. From here, Lemma 4.3 follows directly.

We have
f(x) = xd + ad−1x

d−1 + · · ·+ a0.
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Now, we let f(x) = g(x)h(x) where

g(x) = xk + bk−1x
k−1 + · · ·+ b0.

We begin by fixing a0, but we continue to allow {a1, . . . , ad−1} to vary in
[−N,N ]. This action has interesting parallels to Chela’s work. Like in the
geometric portion of the proof of Lemma 3.4, we are reducing by one degree of
complexity in order to make the problem easier to solve.

Next, we take {α1, . . . , αd} to be the set of roots of f(x). There are a
few relationships that are important to lay out. First, it is evident that a0 =∏d
i=1 αi. We also have that b0|a0. Most importantly, we have that the roots of

g(x) are some k−subset of the roots of f(x) and therefore b0 equals the product
of some k−subset of the roots of f(x). Expressed another way, we have that∏

1≤i1≤···≤ik≤d

(αi1αi2 ...αik − b0) = 0.

This states that in the product of every possible k−tuple of the roots of f(x)
minus b0, one term must be 0 and therefore the whole product must be 0.

Importantly, this equation is true up to automorphism on the roots of f(x).
No matter how the roots are rearranged, it is always true that the product
of one k−tuple equals b0. This fact allows us to create a variety in the coef-
ficients of f(x). Because the product is fixed under all automorphisms, it is
therefore a symmetric polynomial in b0. By the Fundamental Theorem of Sym-
metric Polynomials, we know that a symmetric polynomial in the roots of f can
be expressed as a polynomial in the elementary symmetric polynomials of the
roots of f , which are precisely the coefficients of f . As such, there exists some
polynomial gk in the coefficients of f(x) such that

gk(a1, . . . , ad−1) =
∏

1≤i1≤···≤ik≤d

(αi1αi2 ...αik − b0) = 0.

Note that gk is in terms of {a1, . . . , ad−1}, since at the beginning of this process,
we fixed a0 as some integer in [−N,N ]. With gk, we have a variety in the
coefficients of f(x), so we may now use the Schwartz-Zippel bound. Before
doing so, it is important to note that this variety in non-trivial. In other words,
it does not reduce to 0 = 0 and the statement gk = 0 actually carries significance.
A proof of this fact can be found in [12].

Using the variation of the Schwartz-Zippel bound laid out in Lemma 4.3, we
have that

|gk(N)| = O(Nd−2),

where |gk(N)| is the number of Z-points of the variety {gk = 0}. Here we have
switched from� notation to Big O notation because it will make the rendering
of the final result simpler, but the two notations are effectively the same in
this case. Note that the dimension of the variety is d − 2 because we have
one equation and d − 1 unknowns. This tells us that, given a fixed a0, there
are at most O(Nd−2) reducible polynomials. Thus, the probability that such
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a polynomial is reducible at most is O(1/N). We must then account for the
variability in a0. To do this, we use a well-known fact which states that the
average number of divisors of n ∈ [1, N ] is approximately logN . This means
that are approximately logN choices for b0, and because b0 uniquely determines
a0, we have that there are approximately logN choices for a0. Putting this
together, we have that the probability that a random polynomial is reducible is

given by O
(

logN
N

)
. Although this is slightly less precise than Chela’s result, it

is a far simpler proof, and it preserves the all-important fact that as N goes to
infinity, to probability that a random polynomial is reducible goes to 0.

5 Rivin’s Method on Galois Groups

In this section we briefly mention some applications of Rivin’s counting method
to the problem of determining the Galois group of a randomly chosen polyno-
mial. We first introduce some group-theoretic facts.

Definition 5.1. A permutation group Gn ≤ Sn acting on {1, . . . , n} in the
natural way is k-transitive if it acts transitively on ordered k-tuples of elements
in {1, . . . , n}.

Definition 5.2. A permutation group Gn ≤ Sn acting on {1, . . . , n} in the
natural way is k-homogeneous if it acts transitively on unordered k-tuples of
elements in {1, . . . , n}.

The following theorems follow from the classification of finite simple groups.

Theorem 5.3. For n ≥ 8, the only 6-transitive groups are Sn and An.

Theorem 5.4 (Livingstone-Wagner). If Gn is k-homogeneous, with k ≥ 5 and
k ≤ n

2 , then Gn is also k-transitive.

Notice that k-transitivity implies k-homogeneity, and the preceding theorem
gives a partial converse.

As above, let f(x) = xd + ad−1xd−1 + . . . + a0 be an arbitrary monic poly-
nomial of degree d, and let G be the Galois group of f . Fix d ≥ 12 (we will
see later that this is necessary to apply the Livingstone-Wagner Theorem), and
let the roots of f be r1, . . . , rd, in an ordering consistent with the permutation
action of G. In order to apply Rivin’s method, which deals with the irreducibil-
ity of a polynomial, not its Galois group, it is necessary to construct a suitable
resolvent polynomial. Define

f6(x) =
∏

1≤i1<...<i6≤d

(x− ri1 . . . ri6) .

The coefficients of f are rational algebraic numbers, hence (rational) integers.
Let G6 be the Galois group of f6. We have the following facts:

Lemma 5.5. If the G is Sd or Ad with d ≥ 12, then G6
∼= G. In particular, f6

is irreducible.
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Proof. Let L be the splitting field of f , and K the splitting field of f6, so
that L/K/Q is a tower of extensions. We have G = Gal(L/Q), and let H =
Gal(L/K). Since G is Sd or Ad, it is 6-transitive, so for any two 6-products of
roots of f , P1 and P2, there is some g ∈ G sending P1 to P2. Then the coset
gH in G/H = Gal(K/Q) ∼= G6 sends P1 to P2 since it is the restriction of the
action of g on L to K, so G6 is transitive on the

(
d
6

)
> 2 roots of f6 (here we

may conclude irreducibility of f6). Now, G6 is the quotient of Sd or Ad by a
normal subgroup, so it must be one of Sd = Sd/1, Ad = Ad/1, Z/2Z = Sd/Ad,
or 1 = Sd/Sd = Ad/Ad. From the transitivity of G6, the last two cases cannot
be possible, so indeed G6 is either Sd or Ad.

Lemma 5.6. If G6 is transitive, then G is 6-homogeneous.

Proof. This is very similar to the previous proof. We prove the contrapositive.
Say L is the splitting field of f , K the splitting field of f6, so tha L/K/Q
is a tower of extensions. Set G = Gal(L/Q) and H = Gal(L/K). Then in
G6
∼= Gal(K/Q), the action of each coset gH on K is exactly the action of

g on L, restricted to K. So if Gal(L/Q) is not 6-homogeneous, there exists
no element g ∈ G mapping some certain 6-product P1 to some other certain
6-product P2, so there exists no element in G6 mapping P1 to P2. Hence G6

is not transitive.

Combined, these lemmas tells us that

Theorem 5.7. The Galois group of f is Sd or Ad if and only if f6 is irreducible.

Proof. If p6 is irreducible, then G6 is transitive, and by Lemma 5.6, G is 6-
homogeneous. Since d ≥ 12, the conditions of Theorem 5.4 apply, so that G is
6-transitive. But as G is a permutation subgroup of Sd for d ≥ 8, by Theorem
5.3, G is either Sd or Ad.

The reverse direction follows immediately from Lemma 5.5.

Now, since the constant term of f6 is a
(d
6)·

6
d

0 , one would ideally like to apply
Rivin’s method directly to determine the probability that f6 is irreducible. From
that, we would like to conclude that the probability that a monic polynomial
f of degree d ≥ 12 with coefficients picked uniformly and independently from

[−N,N ] has Galois group Sd or Ad is at most O( logC N
N ), where the exponent C

is at most
(
d
6

)
· 6d (this follows from the fact that the average number of divisors

of a
(d
6)·

6
d

0 is at most (logN)(
d
6)·

6
d , which is derived from previous arguments).

However, this method relies on the critical condition that the variety generated
from eliminating the dependency equations in a possible factorization is never
the trivial variety. In [12], an f6 is constructed such that this variety is trivial.
So more analysis on the structure of f6 is necessary before Rivin’s method can
be applied to general polynomials f .
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6 Further Discussion of Rivin’s Method

It is natural to apply Rivin’s counting method, which gives an upper bound
on the probability that a random polynomial (selected from some finite set) is
reducible, to similar situations. We may ask the following general question:

Question 6.1. When does Rivin’s method give a tight upper bound on the num-
ber of reducible random polynomials?

Clearly, this is not always the case. Above, we saw that Rivin’s method gives
the tight upper bound of O( logN

N ) (where N is the height) for degree d = 2 in the
Large Box Model, but it does not give a tight upper bound for any d > 2. We
now simplify our discussion a bit and consider the strength of Rivin’s method
when applied to random monic trinomials.

For a fixed degree d, consider the set of trinomials of degree d with height
bounded by N :

Pd,N = {xd + axm + b : 0 < m < d; a, b ∈ [−N,N ]}.

The size of Pd,N is (d−1)(2N−1)2 = O(N2). We may ask for the probability
that a randomly chosen polynomial from Pd,N (with all choices equally likely) is
reducible. Clearly a lower bound is 1

2N+1 = O( 1
N ). The same line of argument

as in Section 4 gives us the following upper bound:

Theorem 6.2. The probability that a randomly chosen polynomial from Pd,N
is reducible is at most O( logN

N ).

When d is even, this upper bound is indeed tight:

Theorem 6.3. For even d, the probability that a randomly chosen polynomial
from Pd,N is reducible is at least Ω( logN

N ).

Proof. Recall that there are Ω(N logN) reducible quadratics of height bounded
by N . Therefore there are Ω(N logN) reducible trinomials of the form xd +

ax
d
2 + b. For any other m strictly between 0 and d, there are at least Ω(N) re-

ducible trinomials of the form xd+axm+b. Hence there are at least Ω(N logN)+
(d− 2)Ω(N) = Ω(N logN) reducible trinomials in Pd,N , from with the theorem
follows.

However, when d is odd, there are no obvious symmetries to exploit, and the
situation becomes much more difficult. We believe that this lack of symmetry
implies that Rivin’s upper bound is not tight:

Conjecture 6.4. For odd d, the probability that a randomly chosen polynomial
from Pd,N is reducible is (asymptotically) strictly greater that Ω( logN

N ).

More generally:
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Heuristic 6.5. Let P be a set of similarly structured monic polynomials of
height bounded by N , more specifically, a set of monic polynomials of fixed degree
d where a certain subset {ai1 , ai2 , . . .} of the coefficients (i.e. {i1, i2, . . .} ⊂
{1, . . . , d − 1}) of each p ∈ P are fixed (to 0), and the rest of the nonconstant
coefficients are allowed to vary in [−N,N ]. Assume that the polynomials in
P have no ”obvious” symmetries. Then Rivin’s bound is not tight; in other
words, the probability that a randomly chosen polynomial from P is reducible is
(asymptotically) strictly greater that Ω( logN

N ).

7 A Toy Case: Cubic Trinomials

The following work shows the difficulty of determining the Galois group of a
random polynomial, even in very restricted low-degree cases. The authors were
interested in trinomials of low degree so as to investigate simplified variants
of Rivin’s f6 resolvent (which does not have an effective explicit description in
terms of the coefficients of f), but even this was quite challenging. The following
Theorem 7.1, Theorem 7.3 and Theorem 7.8 can be found at [8], but we will give
original proofs of the first two results that do not rely on any results concerning
elliptic curves.

We investigate integer-coefficient polynomials of the form p(x) = x3 + c1x+
c0. The discriminant of p is

D = −4c31 − 27c20.

Recall that if p is irreducible, its Galois group is completely determined by the
value of D. Furthermore, the Galois groups of x3 + c1x+ c0 and x3 + c1x− c0
are equal, as the roots of the latter polynomial are negatives of the roots of the
former.

The following theorems are proved using only basic number-theoretic tech-
niques:

Theorem 7.1. p(x) = x3 + c1x± 1 has Galois group S3 unless c1 = 0,−2,−3.
In the first two cases, p is reducible; in the third case, p is irreducible with Galois
group A3.

Corollary 7.2. The Galois group of x3 + c2x
2 + 1 is S3 unless c2 = 0,−2,−3,

and the Galois group of x3 − c2x2 − 1 is S3 unless c2 = 0,−2,−3.

Theorem 7.3. If q is a rational prime, then p(x) = x3 + c1x± q does not have
Galois group S3 for only finitely many integers c1.

First, the following preliminary lemmas are needed:

Lemma 7.4 (Thue, [15]). Let f(x, y) ∈ Z[x, y] be an irreducible homogeneous
polynomial in two variables of degree at least 3. Then f(x, y) = m for any fixed
m ∈ Z− {0} has only finitely many solutions.
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Lemma 7.5. The only integer solutions to

(x+ y)3 − 9x2y = 1 (7.1)

are (−1,−1), (1, 0), and (0, 1).

Proof. Notice that (a, b) is a solution to Equation 7.1 if and only if (a+ b,−a)
is a solution to x3 − 9xy2 − 9y3 = 1. From [16], Appendix B, Equation B.3,
the only integer solutions to this equation are (1, 0), (−2, 1), and (1,−1), which
gives the result.

Lemma 7.6. The only solutions in integers to r2 − 3r + 9 = c3 are (r, c) =
(−3, 3); (6, 3). In particular, c = 3.

Proof. Let (r, c) be a solution to the given equation. We see that r2 − 3r+ 9 =

(r+ 3ω)(r+ 3ω2), where ω = − 1
2 +

√
3
2 i is a primitive cube root of unity. First,

we rule out the possibility that (r+ 3ω) and (r+ 3ω2) are coprime in Z[ω]. For
if this were the case, they would each be cubes in Z[ω], hence,

r + 3ω = (a+ bω)3

= a3 + b3 − 3ab2 + (3a2b− 3ab2)ω

for some integers a, b. Comparing coefficients of ω, we see that (ab)(a− b) = 1,
which has no solutions in integers.

Hence some non-unit d ∈ Z[ω] divides both r + 3ω and r + 3ω2. Then d
divides their difference, 3ω − 3ω2 = 6ω + 3, which has norm 27. Therefore
3|N(d). Since N(d)|r2 − 3r + 9, we must have 3|r, so that c is also a multiple
of 3. Write r = 3m and c = 3n, so we are now looking for integer solutions
to m2 − m + 1 = 3n3. From this we immediately see that 3 - m, 3 - n, and
9 - m2 −m+ 1.

Therefore we have (m+ω)(m+ω2) = 3n3 = (−1 +ω)(−1 +ω2)n3. Neither
factor on the left hand side divides 3 (which has norm 9), so m + ω divides
exactly one of −1 +ω or −1 +ω2 (and m+ω2 divides the other). Consider the
first case, that m+ ω divides −1 + ω.

Now, if there was some non-unit d dividing both (m + ω) and (m + ω2),
d would divide the difference ω − ω2 = 2ω + 1, which has norm 3, meaning

N(d) = 3. Therefore m+ω
−1+ω and m+ω2

−1+ω2 are coprime in Z[ω].
Hence, there exist integers a, b such that

m+ ω = (−1 + ω)(a+ bω)3

= (−a3 − b3 − 3a2b+ 6ab2) + (a3 + b3 − 6a2b+ 3ab2)ω.

Comparing coefficients of ω, we see

a3 + b3 − 6a2b+ 3ab2 = (a+ b)3 − 9a2b = 1. (7.2)

From Lemma 7.5, we know all the possible values of a and b; in each case,
m = −a3 − b3 − 3a2b + 6ab2 = −1. This means that the only solution for the
first case is m = −1.
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In the second case, m+ω divides −1 +ω2, so that m+ω
−1+ω2 = m+ω

−2−ω is a cube
in Z[ω]. Thus, for some integers a and b,

m+ ω = (−2− ω)(a+ bω)3

= (−2a3 − 2b3 + 3a2b+ 3ab2) + (−a3 − b3 − 3a2b+ 6ab2)ω.

Comparing coefficients of ω, we see

− a3 − b3 − 3a2b+ 6ab2 = 1. (7.3)

Now, (a, b) is a solution to Equation 7.3 if and only if (−b,−a) is a solution to
Equation 7.2. Therefore the only solutions to Equation 7.3 are (1, 1); (0,−1); (−1, 0).
In all three cases, m = −2a3− 2b3 + 3a2b+ 3ab2 = 2. This means that the only
solution for the second case is m = 2. This exhausts all possibilities.

Recalling that r = 3m, the only solutions for r are r = −3 and r = 6, and
in both cases, r2 − 3r + 9 = 27, meaning that c = 3.

Lemma 7.7. The only integral values c1 for which x3 + c1x± 1 is reducible are
c1 = 0,−2.

Proof. If x3 + c1x± 1 were reducible, it must have an integral root, which must
be 1 or −1. Thus the only compatible values of c1 are 0 and −2.

We are ready to prove Theorems 7.1 and 7.3.

Proof of Theorem 7.1. Consider the cases where x3 + c1x ± 1 is irreducible, so
it has Galois group A3 if and only if the discriminant D = −4c31 − 27 is a
rational square. To find such c1, it suffices to compute integer solutions (r, c1)
to c31 + r2 − 3r + 9 = 0, since the discriminant of this as a quadratic in r is
precisely D. From Lemma 7.6, we see that the only solutions (r, c1) are (3,−3)
and (6,−3), which, along with Lemma 7.7, gives Theorem 1.

Proof of Theorem 7.3. Fix c0 to be a (positive) rational prime q. Note that
there are only finitely many c1 such that x3 + c1x + q is reducible. Therefore
we may assume that x3 + c1x+ q is irreducible, so it has Galois group A3 if and
only if the discriminant D = −4c31 − 27q2 is a rational square. Then there is
some integer r such that (r, c1) is a solution to c31 + r2 − 3rq + 9q2 = 0, since
the discriminant of this as a quadratic in r is precisely D. Hence

r2 − 3rq + 9q2 = (r + 3qω)(r + 3qω2) = c3 (7.4)

for an integer c = −c1. So to prove Theorem 7.3, it suffices to show that there
are only finitely many integers r such that the norm of r + 3qω is an integral
cube.

Case 0: Suppose that r + 3qω, r + 3qω2 are coprime. Then by the same
argument as in Lemma 7.6, there exist integers a, b such that r + 3qω = (a +
bω)3 ⇒ q = (ab)(a−b), which is not possible unless q = 2 (and in this case, there

22



are only finitely many solutions). Since r is also a polynomial in the a, b, there
can only be finitely many (r, c) satisfying Equation 7.4 such that r+3qω, r+3qω2

are coprime.
For the other cases, suppose that r + 3qω, r + 3qω2 are not coprime with

greatest common divisor d ∈ Z[ω]. Then N(d)|N(3qω − 3qω2) ⇒ N(d)|27q2.
Since N(d) > 1, it can only have 3 or q as prime factors.

Case 1: q ≡ 2 mod 3. Now, if q|N(d), because N(d)|r2 − 3rq + 9q2, we
must have q|r and q|c. Then writing r = qm and c = qn, we have m2−3m+9 =
(m+ 3ω)(m+ 3ω2) = qn3. But since q ≡ 2 mod 3, it is prime in Z[ω], so either
m+3ω or m+3ω2 = (m−3)−3ω is a multiple of the integer q, a contradiction.

Thus N(d) is a power of 3, so we may write r = 3m and c = 3n, so that
m2 − mq + q2 = 3n3. Going through the possibilities, we find that 9 - m2 −
mq + q2, so that m+qω

−1+ω , m+qω2

−1+ω2 are coprime, hence both are cubes in Z[ω].
From the argument in Lemma 7.6, there must exist integers a, b such that q =
a3 + b3− 6a2b+ 3ab2, and by Lemma 7.4, there are only finitely many solutions
(a, b) (setting b = 1 shows that a3+b3−6a2b+3ab2 is irreducible). Since r = 3m
is also a polynomial in the a, b, there can only be finitely many (r, c) satisfying
Equation 7.4 in this case.

Case 2: q ≡ 1 mod 3. If q|N(d), as above, we write r = qm and c = qn, so

m2 − 3m+ 9 = (m+ 3ω)(m+ 3ω2) = qn3 (7.5)

Suppose that these two factors are relatively prime. Clearly, neither divides q,
but q is not prime in Z[ω]. Write q = c2 − ce + e2 for some integers c, e. We
note the following facts:

• Because q is prime, c and e are coprime.

• Because 3 - q, the following combinations (c, e) ≡ (0, 0); (1, 2); (2, 1) mod 3
do not occur. In particular, 2c− e does not divide 3.

• q factorizes as (c+ eω)((c− e)− eω). Furthermore,
c+ (c− e)ω = −ω2((c− e)− eω) = (− 1

ω )((c− e)− eω) is also a factor of q.

• At least one of e or c− e is not a multiple of 3.

• 3 - m. Therefore none of A = m + 3ω, B = (−ω)A = −ω(m + 3ω) =
3 + (3−m)ω, C = m+ 3ω2 = (m− 3)− 3ω, D = (−ω)C = −ω((m− 3)−
3ω) = −3−mω are real.

Now, one of A,B,C, or D equals (c+ eω)(a+ bω)3, where q = c2 − ce+ e2

and 3 - e (this must happen by the fourth item above). It was necessary to
introduce B and D above to possibly correct for the −ω2 unit. However, it does
not matter which of A,B,C, or D it is, since each has nonzero ω component s.
Equating ω components, we have

s = (e)a3 + (3c− 3e)a2b− (3c)ab2 + (e)b3. (7.6)
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To apply Lemma 7.4 and conclude there are only finitely many integral solu-
tions (a, b) (implying that there are only finitely many m that satisfy Equation
7.5), we need to show that the right-hand side of Equation 7.6 is irreducible.
To see this, set b = 1 and apply the transformation a → a − 1, so that the
right-hand side of Equation 7.6 becomes

(e)a3 + (3c− 6e)a2 + (−9c+ 9e)a+ 3(2c− e). (7.7)

By construction, 3 - e, and by the second bullet point, 3 - 2c− e. Hence the
above polynomial is Eisenstein at 3, so the right-hand side of Equation 7.6 is
indeed irreducible, and there are only finitely many possibilities for r = qm in
this case.

Otherwise, m + 3ω,m + 3ω2 are not relatively prime. Then the norm of
their greatest common divisor is a multiple of 3, so that 3|m, 3|n. Writing
m = 3m′, n = 3n′, we have

(m′)2 −m′ + 1 = (m′ + ω)((m′ − 1)− ω) = 3q(n′)3. (7.8)

We know that 9 - (m′)2−m′+1, and 3 = (−1+ω)(−1+ω2) = (−1+ω)(−2−ω),
so m′ + ω divides either −1 + ω or −2 − ω, and (m′ − 1) − ω divides the
other. Note that after this division, the two quotients are coprime. Futhermore,
m′ 6= 0,±1,±2 as the left-hand side of Equation 7.8 divides both 3 and the prime
q ≡ 1 mod 3, so each of the four possible quotients has nonzero ω component,
even after multiplying each by −ω. Then one of the four possible quotients
(possibly adjusting by −ω) is equal to (c+eω)(a+bω)3 with q = c2−ce+e2, 3 - e.
By the same argument as above, this case only gives finitely many possibilities
for r = 3qm′.

The final possibility is that N(d) is a power of 3. Then write r = 3m and
c = 3n, so that m2 −mq + q2 = 3n3. Going through the possibilities, we find
that 9 - m2 −mq + q2, so we may finish as in Case 1. So this case only gives
finitely many possibilities for r.

Case 3: q = 3. Then N(d)|27q2 is a power of 3. Thus r2 − 3rq + 9q2 =
r2 − 9r+ 81 is a multiple of 3, whereupon we write r = 3m and c = 3n, so that

m2 − 3m+ 9 = 3n3. (7.9)

From this we see that 3|m, which makes the left-hand side of Equation 7.9 a
multiple of 9, implying 3|n. Writing m = 3m′, n = 3n′, we obtain (m′)2 −m′ +
1 = 9(n′)3. But this is a contradiction, as the left-hand side never divides 9. So
this case does not give any possibilities for r.

Combining the results of cases 0, 1, 2, and 3 (i.e. zero or finitely many
possibilities for r in each), we obtain Theorem 7.3.

We end with a natural generalization of Theorem 7.3:

Theorem 7.8. For any nonzero integer c0, p(x) = x3 + c1x+ c0 does not have
Galois group S3 for only finitely many integers c1.

Proof. This proof relies on more advanced machinery—in particular, results on
elliptic curves. See Example 2.5, [8].
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[14] Tchebychev, P. Mémoire sur les nombres premiers. Journal de
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