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Abstract. Hat-guessing games are combinatorial puzzles in which people try to guess the
colors of their own hats. In the variant we study, each person is assigned 1 of q possible
hat colors and is placed at the vertex on a graph G. Players can only see the hat colors
of the people at adjacent vertices, but not their own. The players simultaneously guess
the colors of their own hats. What is HGpGq, the largest q for which the players on G
can devise a strategy that guarantees at least one person guesses correctly? We find the
exact values of HGpGq for the following graphs. HG pK3,3q “ 3. For windmill graphs,

HGpWdpk, nqq “ 2k ´ 2 for n ě log2p2k ´ 2q. For book graphs, HG pBd,nq “ 1 `
řd

i“1 i
i

for sufficiently large n. Finally, we determine the hat-guessing number for all 5-vertex
undirected graphs.
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1. Introduction

Hat-guessing games are combinatorial puzzles in which people try to guess the colors of
their own hats. In the variant we study, presented by Butler, Hajiaghayi, Kleinberg, and
Leighton [3], each person is assigned 1 of q possible hat colors and is placed at the vertex on
a graph G. Players can only see the hat colors of the people at adjacent vertices, but not
their own. The players can communicate to design their collective strategy only before the
hats are assigned by their adversary. Then, the players simultaneously guess the colors of
their own hats. The players collectively win if they can form a strategy that guarantees at
least one person guesses correctly. Note that we identify a vertex with the player on that
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vertex. In this paper, we only consider games on undirected graphs, although other variants
of the game allow for directed edges vi Ñ vj corresponding to vi seeing vj, but not vice versa.

Definition 1.1. The hat-guessing number of the graph G, denoted HGpGq, is the largest
number of hat colors q for which the players on G can win.

Consider the traditional example when n players can all see each other, popularized by
Winkler [11]. Then, HG pKnq “ n. The strategy which wins on n colors is as follows: label
the hat colors t0, 1, ¨ ¨ ¨ , n´ 1u and the people tp0, ¨ ¨ ¨ , pn´1u. Then pi guesses the hat color
that makes the sum of everyone’s hat colors i mod n. Since the actual sum of everyone’s hat
colors must be some value x mod n, exactly one person, px, will guess correctly. Probabilistic
proofs show that the players on Kn cannot win with n` 1 colors, and furthermore, the only
graph with n vertices that can win with n colors is Kn.

Previous works on hat guessing have only explicitly classified the hat-guessing number of
a small number of families. First, we have the folklore result that HG pKnq “ n. For any
tree T with at least 2 vertices, HGpT q “ 2 [3]. Finally, Szczechla showed that for all n,
HG pCnq ă 4, with HG pCnq “ 3 if and only if n “ 4 or n ” 0 mod 3 [10]. Most previous
results prove bounds on the hat-guessing number of various graph families. The most general
result states that for any graph G, HGpGq ă e∆ where ∆ is the maximum degree of G. The
probabilistic proof for this folklore result uses the Lovász Local Lemma. However, based on
all known hat-guessing numbers, it is conjectured that HGpGq ď ∆ ` 1. It is also evident
that if H is a subgraph of G, HGpHq ď HGpGq.

The complete bipartite graph Km,n is a popular graph family to study for this problem.
Initially, it was proved that for large n, HG pKn,nq “ Ωplog log nq [3]. Later, Gadouleau
and Georgiou [5] proved that HG pKm,nq ď minpm,nq ` 1 and that HG

`

Kq´1,pq´1qq´1

˘

ě q,
implying n` 1 ě HG pKn,nq “ Ωplog nq. Most recently, Alon, Ben-Eliezer, Shangguan, and

Tamo explored complete multipartite graphs [1]. They proved thatHG pKn,n,...,nq ě n
r´1
r
´op1q

for the complete r-partite graph with all parts sized n, which implies that HG pKn,nq “

Ω
´

n
1
2
´op1q

¯

. However, HG pKn,nq was only explicitly known in the cases n “ 1 and n “ 2;

since K1,1 “ K2, HGpK1,1q “ 2; for K2,2 “ C4, a linear strategy proves that HG pK2,2q “ 3.
Our first major result in this paper, discussed in Section 3, solves the problem for n “ 3.

Theorem 1.2. HG pK3,3q “ 3.

This is the first n for which HG pKn,nq ă n` 1 .
Next, in Section 4, we consider the family of windmill graphs Wdpk, nq, defined as n copies

of Kk glued together at a central vertex. These graphs generalize the complete graph Kk.
At first glance, it seems that only the center vertex in a windmill graph Wdpk, nq has more
information compared to the complete graph Kk, so HG pWdpk, nqq cannot be very large
compared to HG pKkq. Surprisingly, the copies of Kk in a windmill graph can collaborate to
win with almost twice as many colors as Kk alone, disproving a conjecture by Bosek, Dudek,
Farnik, Grytczuk, and Mazur [2] that the hat-guessing number of a graph is at most the size
of its largest clique minor.

Theorem 1.3. For n ě log2p2k ´ 2q, HGpWdpk, nqq “ 2k ´ 2.

We also prove the following general theorem about windmill graphs.

Theorem 1.4. For any n, d P N, HGpWdpdn ´ dn´1 ` 1, nqq “ dn.
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In Section 5, we explore the family of book graphs Bd,n, defined as a clique of size d
with n vertices adjacent exactly to each vertex in the clique. The d-clique is called the
spine of Bd,n and the n vertices are called its pages. Gadouleau [4] proved that for any G,

HGpGq ď 1`
řτpGq
i“1 ii, where τpGq is the size of G’s minimum vertex cover. Since the d-clique

is the minimum vertex cover of a book, Gadouleau’s result implies HG pBd,nq ď 1`
řd
i“1 i

i.
Bosek, Dudek, Farnik, Grytczuk, and Mazur [2] reduce finding HG pBd,nq to an equivalent
geometric problem, using it to show HGpBd,nq ě 2d for sufficiently large n. By extending
their approach, He and Li [7] improve the lower bound to HG pBd,nq ě pd`1q! for sufficiently
large n. By solving the equivalent geometric problem exactly, we further improve the lower
bound, matching Gadouleau’s upper bound for sufficiently large n.

Theorem 1.5. For sufficiently large n, HG pBd,nq “ 1`
řd
i“1 i

i.

Previous results, together with our result that HGpWdp3, 2qq “ 4, solve the hat-guessing
problem for all but three 5-vertex undirected graphs. In Section 6, we determine the hat-
guessing numbers exactly for these remaining graphs.

2. Preliminaries

In this section, we discuss how vertices choose their guessing strategies and define concepts
necessary for later proofs.

2.1. How to Strategize. The only specific guessing strategy described above is for Kn,
involving modular arithmetic. Here, we motivate more general guessing strategies.

Recall that the players win if one of them guesses correctly, and that everyone knows
everyone else’s strategy. This means that each vertex can assume that the hat assignment
makes all other vertices guess incorrectly, and guess accordingly.

As an example, we use the Kn game with n colors. Say that vertex p0 has already decided
to guess the hat color that makes the sum of everyone’s hat colors 0 mod n. Then, vertex
p1 knows that if the actual hat assignment makes the sum 0 mod n, p0 will already guess
correctly, and everyone wins, regardless of what p1 guesses. Thus, p1 will want to take care
of hat assignments in which p0 does not already guess correctly. That is, p1 will want to
guess a hat color that makes the sum of everyone’s hat colors not 0 mod n. Thus, without
loss of generality, it guesses that the sum of everyone’s hat colors is 1 mod n. Then, p2
guesses that the sum is neither 0 nor 1 mod n, and so forth. For other classes of graphs, the
strategies are more complicated, but the principle of assuming other players guess wrong to
deduce info about one’s own hat remains.

2.2. Definitions and Notations.

Notation 2.1. We use rqs to denote the set of colors t0, 1, . . . , q ´ 1u.

Definition 2.2. We say that G is partially q-solvable with a set S of hat assignments if the
vertices can win with q colors as long as they know their hat assignment is in S.

Note that a graph G with n vertices is partially q-solvable with S “ rqsn if and only if
HGpGq ě q.

Definition 2.3. If G is partially q-solvable with a set of hat assignments S, we say that S
is a solvable set of G on q colors, or simply a solvable set if G and q are clear from context.
We denote the maximum size of S as HpG, qq.
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Definition 2.4. We say that a point contained in n sets is an n-intersection (e.g. a point
contained in two sets is a two-intersection). We say a point is a multiple-intersection if it
is an n-intersection for some n ě 2.

Definition 2.5. Given a base set S, a maximal packing of n subsets in S is a choice of
S1, . . . , Sn Ă S that satisfies the following condition. It maximizes the number of elements
in S which are contained in exactly k Si, where k is taken from the following list ordered in
decreasing priority: t1, n, n´ 1, . . . , 3, 2u.

Definition 2.6. Given a base set S that can be represented as a matrix and subsets S1, . . . , Sn,
an intersection matrix for S is defined as follows: the entry in a point is the number of sets
Si that contain it.

Definition 2.7. A big Hamming ball around point p, denoted bHbppq, is the set of points
which share at least one coordinate with p.

3. The Bipartite Graph K3,3

Here we prove Theorem 1.2, that HG pK3,3q “ 3.

Proof of Theorem 1.2. Since HG pK2,2q “ 3 and it is a subgraph of K3,3, HG pK3,3q ě 3.
Since HG pKm,nq ď minpm,nq` 1 [5], we know that HG pK3,3q ď 4. It remains to show that
HG pK3,3q ‰ 4.

Suppose for the sake of contradiction that HG pK3,3q “ 4. The big Hamming ball interpre-
tation of hat guessing on complete bipartite graphs tells us the following [1]: HG pK3,3q “ 4
if and only if there are three partitions of a 4 ˆ 4 ˆ 4 cube into four parts each, such that
removing a part from each partition leaves behind a set contained in a big Hamming ball.
This condition is equivalent to the complementary condition that the union of a part from
each partition must always contain a 3 ˆ 3 ˆ 3 combinatorial cube (i.e., a set of the form
tpuc ˆ tquc ˆ truc, for p, q, r P r4s).

We will denote the three partitions of r4s3 as P , Q, and R, and denote their respective
parts with subscripts from 1 to 4. First, we pick the smallest part from P and call it P1,
so |P1| ď 16. Then choose the part Qi P Q that minimizes |QizP1| and call it Q1. By the
pigeonhole principle, |Q1zP1| ď 12, so |P1YQ1| ď 28. It must be that P1YQ1YRi contains
a cube for 1 ď i ď 4. Therefore, there must be four cubes that multiple-intersect in at most
28 points (see Definition 2.4).

Claim 3.1. The multiple-intersection of four cubes with at most 29 points can only have one
of two forms. The structure of the multiple-intersection must either be a cube (27 points),
or a cube missing a point (26 points).

Proof. Suppose we have four cubes C1 “ bHbpp1q, C2 “ bHbpp2q, C3 “ bHbpp3q, and C4 “

bHbpp4q. We can assume without loss of generality that p1 “ p0, 0, 0q. Further, if pi “ pj
with i ‰ j, then the multiple-intersection is either a cube or contains at least 31 points (a
cube with at least 4 extra multiple-intersections), which is in accordance with our claim. We
now assume that no two of the four points are equal.

First, suppose two of the four points have a Hamming distance of 1 between them. With-
out loss of generality, this occurs when p2 “ p1, 0, 0q. If all the points have a Hamming
distance of 1 from p1, then the multiple-intersection is a cube missing a point, so we can
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then assume that p3 has at least 2 non-zero coordinates. So without loss of generality,
p3 P tp0, 1, 1q, p1, 1, 0q, p2, 1, 0q, p1, 1, 1q, p2, 1, 1qu. We consider the cases in turn. (Several
of these cases require exhaustively considering the possibilities for p4, although symmetries
make the task easier.)

First, if p3 “ p0, 1, 1q, then we can create a multiple-intersection of 30 by setting p4 “
p0, 1, 0q, but one can see that no other choice of p4 achieves a smaller multiple-intersection.

Second, if p3 “ p1, 1, 0q, then it is possible to achieve a multiple-intersection of 26 by
setting p4 “ p1, 0, 1q, and this is the cube missing a point as desired. Further, we can
get a multiple-intersection of 30 by setting p4 “ p0, 0, 1q or p4 “ p1, 1, 1q, but no smaller
multiple-intersections are possible besides the cube missing a point.

Third, if p3 “ p2, 1, 0q, this case can easily be dismissed because the multiple-intersection
is already 30.

Fourth, if p3 “ p1, 1, 1q, then a multiple-intersection of 30 is possible with p4 “ p1, 1, 0q,
but no smaller multiple-intersection is possible.

Fifth, if p3 “ p2, 1, 1q, we can do a multiple-intersection of size 32 with p4 “ p0, 1, 0q, but
no smaller multiple-intersection is possible, which is not difficult to see once one notes that
the size of the multiple-intersection is already 26 after adding the third cube.

Thus, we have handled the case where two points have a Hamming distance of 1 between
them. We now suppose that all pairs of points have a Hamming distance of at least 2 between
them. We take the perspective of considering the four 4 ˆ 4 layers that make up the entire
cube. Each combinatorial cube is a combinatorial square repeated on three of the four layers
(a combinatorial square is a set of the form tpuc ˆ tquc, for p, q P r4s). By the condition we
impose on Hamming distances, all four cubes must be made up of distinct squares.

One can verify that within a layer, 2 squares must multiple-intersect in at least 4 points,
and 3 squares must multiple-intersect in at least 8 points. Although not as obvious, one can
also verify that 4 distinct squares must multiple-intersect in at least 12 points (the minimal
multiple-intersection is achieved with the squares defined by the points p0, 0q, p1, 0q, p0, 1q,
p1, 1q).

With four cubes each composed of a square repeated on three layers, there are five ways the
squares can be distributed across the layers, without loss of generality: p0, 4, 4, 4q, p1, 3, 4, 4q,
p2, 2, 4, 4q, p2, 3, 3, 4q, and p3, 3, 3, 3q (here, the ith coordinate within the tuple is the number
of squares on the ith layer). Using the facts from the previous paragraph, this gives us a lower
bound for the total number of multiple-intersection points for each of these arrangements.

Arrangement Number of multiple-intersections
p0, 4, 4, 4q ě 3 ¨ 12 “ 36
p1, 3, 4, 4q ě 2 ¨ 12` 8 “ 32
p2, 2, 4, 4q ě 2 ¨ 12` 2 ¨ 4 “ 32
p2, 3, 3, 4q ě 12` 2 ¨ 8` 4 “ 32
p3, 3, 3, 3q ě 4 ¨ 8 “ 32

Since for all of these cases, the number of multiple-intersections is at least 30, none of
these cases can be a counterexample to the claim, so the claim is proved. �

By the previous claim, |P1 Y Q1| ě 26, and so |Q1zP1| ě 10. Then we can apply the
pigeonhole principle again to pick a Qi such that |QizP1| ď 12; call this part Q2. If |Q1zP1| ě

11 or |Q2zP1| ě 11, we can apply the pigeonhole principle a third time to get a Qi such that
|QizP1| ď 13, which we will call Q3. Thus, we have two cases to consider: the case where Q1,

5



Q2, and Q3 each have at most 13 points outside of P , and the case where Q1 and Q2 have
exactly 10 points outside of P . The first case implies that there are three distinct cubes or
cubes missing a point that multiple-intersect in at most 16 points.

Claim 3.2. Three 3ˆ3ˆ3 cubes in r4s3 must multiple-intersect at a minimum of 20 points.

Proof. Call the cubes C1 “ bHbpp1q, C2 “ bHbpp2q, and C3 “ bHbpp3q, where p1, p2, p3 P r4s
3.

Let x, y, and z represent the number of distinct x-, y-, and z-coordinates among p1, p2, and
p3, respectively. By inclusion-exclusion,

|multiple-intersection of C1, C2, C3| “ |C1 X C2|` |C2 X C3|` |C1 X C3|´ 2|C1 X C2 X C3|
We see that a point is in C1 X C2 X C3 if and only if none of its coordinates is used by p1,
p2, or p3. Thus |C1 X C2 X C3| “ p4´ xqp4´ yqp4´ zq.

Let d1 “ dpp1, p2q, d2 “ dpp2, p3q, and d3 “ dpp1, p3q be the Hamming distances between
each pair of points. Then, in an x-, y-, or z-coordinate where p1 and p2 agree, a point in
C1XC2 has 3 options since it must only avoid the one option p1 and p2 use. In a coordinate
where p1 and p2 disagree, a point in C1 X C2 has 2 options since it must avoid both options
that p1 and p2 use. Thus |C1 XC2| “ 33´d12d1 . By the same argument, |C2 XC3| “ 33´d22d2

and |C1 X C3| “ 33´d32d3 .

|multiple-intersection of C1, C2, C3| “
3
ÿ

i“1

33´di2di ´ 2p4´ xqp4´ yqp4´ zq

“ 27
3
ÿ

i“1

ˆ

2

3

˙di

´ 2p4´ xqp4´ yqp4´ zq

ě 27 ¨ 3 ¨

ˆ

2

3

˙pd1`d2`d3q{3

´ 2p4´ xqp4´ yqp4´ zq by AM-GM

We now perform a change of variables so a1 “ #tx, y, z “ 1u, a2 “ #tx, y, z “ 2u, and a3 “
#tx, y, z “ 3u. Then, we see that d1`d2`d3 “ 2a2`3a3 and p4´xqp4´yqp4´ zq “ 3a12a2 .
Substituting gives

|multiple-intersection of C1, C2, C3| ě 27 ¨ 3 ¨

ˆ

2

3

˙p2a2`3a3q{3

´ 3a12a2`1.

Conditioned on ai P Z, a1 ` a2 ` a3 “ 3, and 0 ď ai ď 3, calculating all cases shows the
minimum of the right hand side is 20, attained when a1 “ 0, a2 “ 3, and a3 “ 0. �

We now know three cubes must multiple-intersect in at least 20 points. Removing one
point can subtract at most 1 from the multiple-intersection. Thus it is impossible for three
cubes missing a point to multiple-intersect at fewer than 17 points. Thus the first case is
impossible, and |Q1zP1| “ |Q2zP1| “ 10. Furthermore, we use this claim about three cubes
to show that |P1| “ 16, implying the partitions are balanced.

Claim 3.3. The partitions are balanced; that is, all of the parts are of size 16.

Proof. Let P1 be the smallest part in P and assume for sake of contradiction that |P1| ď 15.
Then, since |P1 YQ1| ě 26 and |P1 YQ2| ě 26, we see that |Q1zP1| ě 11 and |Q2zP1| ě 11.
Then, |pQ3 Y Q4qzP1| ď 64 ´ 15 ´ 11 ¨ 2 “ 27, so |Q3zP1| ď 13. Then, |P1 Y Q3| ď 28 so
we have that P1 YQ3 must be either a cube or a cube missing a point. By the lower bound
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on the multiple-intersection of three sets that are either cubes or cubes missing a point, it
is impossible for the sets Q1, Q2, and Q3 to exist. Thus, |P1| “ 16. Since |Pi| ě |P1| for
i P t2, 3, 4u and

ř4
i“1 |Pi| “ 64, |Pi| “ 16 for all i and P is a balanced partition. This

argument is symmetric for all partitions P , Q, and R. �

We now know |P1| “ 16. Then, since |P1 YQ1| “ |P1 YQ2| “ 26, P1 is a set of 16 points
such that adding two disjoint sets of 10 points, Q1zP1 and Q2zP1, creates two distinct sets
that are cubes missing a point.

Claim 3.4. P1 has the structure of a 2ˆ 3ˆ 3 prism missing two points.

Proof. P1YQ1 “ C1zp1 and P1YQ2 “ C2zp2 for some 3ˆ 3ˆ 3 cubes C1 and C2 and points
p1 and p2. They multiple-intersect precisely at P1. To think about pP1 YQ1q X pP1 YQ2q “

pC1zp1qX pC2zp2q “ P1, consider the possible structures of C1XC2. This is either a 2ˆ2ˆ2
cube, a 2ˆ 2 ˆ 3 prism, or a 2 ˆ 3 ˆ 3 prism. Since |P1| “ 16, and removing p1 and p2 can
only make the multiple-intersection smaller, we see that the 2ˆ 2ˆ 2 and 2ˆ 2ˆ 3 options
are too small. The 2ˆ 3 ˆ 3 option is large enough as 18 ě 16, and we see that the p1 and
p2 must be removing distinct points. �

Furthermore, since the partitions are balanced, the argument is symmetric and we see
that every Pi P P has the structure of a 2ˆ 3ˆ 3 prism missing two points.

Claim 3.5. It is impossible for four sets Pi of the form of a 2 ˆ 3 ˆ 3 prism missing two
points to partition r4s3.

Proof. Consider four sets of the form of a 2 ˆ 3 ˆ 3 prism. We simplify this to four sets
Ti “ Si ˆ tpu

c where Si is some set with 6 points. Then, we examine the four Si’s using an
intersection matrix with maximal packing of four sets of size 6 (Figure 1). Note that in an
intersection matrix, the value at px, yq corresponds to how many sets contain it.

1 1 1 1
1 1 1 1
1 1 1 3
1 1 4 4

Figure 1. Max packing four sets of size 6

Claim 3.6. Any point px, yq that is marked with a 3 or 4 in an intersection matrix must be
a multiple-intersection point of the Ti in at least 3 layers.

Proof. Assume for sake of contradiction that px, yq is marked with a 3 or 4 in the intersection
matrix but is only a multiple-intersection point in at most 2 layers A and B. At least 3 sets
(without loss of generality, S1, S2, and S3) contain px, yq. This implies that T1, T2, and T3
contain px, yq across 3 layers. Say T1 contains px, y, Aq, px, y, Bq, px, y, Cq, and T2 contains
px, y, Aq, px, y, Bq, px, y,Dq. Then T3 can only contain px, y, Aq and px, y, Bq since the others
are not multiple-intersection points, a contradiction. �

Claim 3.7. Any point px, yq marked with a 2 in an intersection matrix must be a multiple-
intersection point in at least 2 layers.
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Proof. Assume for sake of contradiction that px, yq is marked 2 in the intersection matrix
for layer A and 1 in the other 3 layers. Then, 2 sets (without loss of generality, S1 and S2)
contain px, yq. This implies T1 and T2 contain px, yq across 3 layers. Say T1 contains px, y, Aq,
px, y, Bq, and px, y, Cq. Then T2 can only contain px, y, Aq and px, y,Dq, a contradiction. �

Thus, each of the px, yq points containing 3’s and 4’s in the matrix imply multiple-
intersections at px, yq in at least 3 layers. By convexity, the maximal packing has the
smallest number of multiple-intersections. Thus there are at least 9 multiple-intersections
with four sets of the form of a 2ˆ 3ˆ 3 prism. Since every Pi is actually a 2ˆ 3ˆ 3 prism
missing two points, and each missing point can subtract at most one from the number of
multiple-intersections, we can subtract at most 2 ¨ 4 “ 8 but we still have at least 9´ 8 “ 1
multiple-intersection with four sets of the form of 2ˆ 3ˆ 3 prisms missing two points. Thus
it is impossible for four sets of the form of 2 ˆ 3 ˆ 3 prisms missing two points to partition
r4s3, as parts in a partition must be disjoint. �

�

On the basis of this theorem, we conjecture the following generalization.

Conjecture 3.8. For n ě 3, HG pKn,nq ď n.

4. Windmills

In this section, we discuss the windmill graph family, defined below. In particular, we
prove Theorems 1.2 and 1.3.

Definition 4.1. A graph G is the windmill graph Wdpk, nq if it is formed by joining n copies
of Kk at a single universal vertex. For example, Wdp3, 2q is the bow tie.

For some of the upper bounds, we require the following lemma.

Lemma 4.2. If q ě n, then HpKn, qq “ nqn´1.

Proof. First, we show that HpKn, qq ď nqn´1. This follows from a counting argument. Let fi
be the guessing function of the ith person. The configurations in which at least one person is
correct are of the form pf1px2, x3, ..., xn´2q, x2, x3, ..., xnq, px1, f2px1, x3, ..., xnq, x3, ..., xnq, etc.,
where xi has q possibilities. Thus, each element in the list encompasses qn´1 configurations,
and there are n such elements in that list (corresponding to the fact that n different people
can win). Thus, it is impossible for them to guarantee a win if there are more than nqn´1

configurations they can be in.
Next, we show that HpKn, qq ě nqn´1. Let the set of configurations be all of those for

which the sum of the hat colors is between 0 and n´ 1 mod n. If we index the players from
0 to n ´ 1, then each player guesses that its hat color is the one that will make the sum of
all their hat colors equal to its index modulo q. �

4.1. Proving Theorem 1.3. Now, we prove Theorem 1.3. Recall the statement: for n ě
log2p2k ´ 2q,

HGpWdpk, nqq “ 2k ´ 2.

This follows from the two lemmas immediately below.

Lemma 4.3. For n ě log2p2k ´ 2q, HGpWdpk, nqq ě 2k ´ 2.
8



Proof. First consider the problem with 2k´ 2 hat colors. We can think of Wdpk, nq as being
n copies of Kk´1 that each see a single vertex.

Take the perspective of a particular Kk´1. Among the p2k ´ 2qk´1 configurations for
Kk´1, there is a partition of this set into two parts such that each part is solvable by Kk´1.
Namely, in the k´ 1 dimensional hypercube representing the possible color assignments, we
take one part to be a set consisting of 2k´2 subhypercubes with side length k ´ 1 stationed
at non-adjacent corners of the hypercube. More explicity, for v P t0, 1uk´1 we define the
subhypercube Cv P t0, ..., 2k ´ 3uk´1 to be tx | if vi “ 0, xi ă k ´ 1; if vi “ 1, xi ě k ´ 1u.
Then let C be the union of each Cv such that v has an odd number of 1s, and C its
complement. If Kk´1 is restricted to either of these sets of configurations, it can guarantee
a win. This is because because given k ´ 2 coordinates, each vertex can determine which
subhypercube of side length k ´ 1 it is in by the aforementioned parity constraint, and any
set of configurations in a hypercube of side length k ´ 1 is solvable by Kk´1, because the
problem is equivalent to the problem on Kk´1 with k ´ 1 colors. In other words, Kk´1 is
partially 2k ´ 2-solvable with respect to both C and C.

Then, the middle vertex’s strategy is a partition of the configurations of all the other
vertices. After the removal of one of these parts, one of the copies of Kk´1 needs to be able
to guarantee a win. The middle vertex can make 2n partitions as follows:

C ˆ C ˆ ...ˆ C

C ˆ C ˆ ...ˆ C

...

C ˆ C ˆ ...ˆ C,

where each line is the Cartesian product of n terms.
If 2n ą 2k ´ 2, then it can merge the p2k ´ 2qth part with everything after it to make

2k´2 parts in total. The result is a partition, because the parts are exhaustive and disjoint.
Further, both C and C are complements of winning sets of configurations for Kk´1, so
removing any of those Cartesian products leaves behind a set of configurations in which
at least one of the copies of Kk´1 is restricted to a set of winning configurations. Thus,
removing any one of the parts allows one of the copies of Kk´1 to guarantee a win. �

Lemma 4.4. For n ě log2p2k ´ 2q, HGpWdpk, nqq ă 2k ´ 1.

Proof. Suppose HGpWdpk, nqq ě 2k´ 1. for the sake of contradiction. Then, we would still
need the middle vertex to partition the configurations of all other vertices such that removing
any one part always left one of the copies of Kk´1 with a set of winning configurations. In
other words, we need each part to contain the Cartesian product of the complements of
winning configurations for Kk´1.

With 2k ´ 1 colors, the largest winning sets of configurations for Kk´1 are of size pk ´
1qp2k ´ 1qk´2 by Lemma 4.2, which is less than half the size of the total set of p2k ´ 1qk´1

configurations for Kk´1. Thus, the complement of a winning set of Kk´1 is always larger
than half the total set of configurations for Kk´1, so any two such complements must overlap.
If Ai intersects Bi for some i, then

ś

Ai intersects
ś

Bi. Thus, forming two disjoint parts
for the center vertex’s partition that each contain such a complement in a particular term in

9



a Cartesian product is impossible. Therefore, there is no adequate set of partitions for the
middle vertex that will suffice with more than 2k ´ 2 colors. �

Corollary 4.5. Let Kn,...,n,1 be the r-partite graph with r ´ 1 parts of size n and 1 part of
size 1. Then if n ě log2p2r ´ 2q, HGpKn,...,n,1q ě 2r ´ 2.

Proof. Since Wdpr, nq is a subgraph of Kn,...,n,1, the corollary follows from Theorem 1.3. �

4.2. Proving Theorem 1.4. Recall that the statement of Theorem 1.4 is as follows:

HGpWdpdn ´ dn´1 ` 1, nqq “ dn.

To prove the theorem, we require this definition.

Definition 4.6. Consider the sets of residues A1, ..., An. We say that these sets have no
more than a single intersection under translation if for all pc1, ..., cnq, |

Şn
i“1 pAi ` ciq | ď 1.

Note that this condition is equivalent to
Şn
i“1 pAi ´ Aiq “ H, for there are multiple

intersections under some translation if and only if there are elements with the same difference
in each set.

Now, we prove the theorem.

Proof. First we show HGpWdpdn´ dn´1` 1, nqq ď dn. Suppose for the sake of contradiction
that HGpWdpdn´ dn´1` 1, nqq ě dn` 1. Note that Wdpdn´ dn´1` 1, nq has a single point,
the center, whose strategy partitions the hat configurations of n cliques of size dn´dn´1 into
dn`1 parts. Removing a part leaves on average dn

dn`1
pdn`1qpd

n´dn´1qn configurations for the
other vertices, so removing a particular part leaves at least this many configurations. Thus,
we require that dn

dn`1
pdn ` 1qpd

n´dn´1qn ď HpnKdn´dn´1 , dn ` 1q. We claim the following:

Lemma 4.7. Let nKk´1 be n disconnected copies of Kk´1. Then HpnKk´1, qq “ qpk´1qn ´
pqk´2pq ´ k ` 1qqn.

Assuming this lemma, which will be proved after completing the proof of the theorem, the
requirement is not satisfied. (In fact, for dn colors, the sides of the inequality are equal, so
any strategy with dn colors is ”perfect.”)

Next, we show HGpWdpdn ´ dn´1 ` 1, nqq ě dn. Every player except the vertex in the
middle will guess that for the clique on dn´dn´1`1 vertices it belongs in, the sum of the hat
colors on that clique is some value modulo dn, distinct from all guesses of the sum by other
vertices in the same clique. Thus, we can represent their strategies by n sets of residues of
Z{dnZ, where the i’th set consists of elements not guessed by anyone in the i’th dn ´ dn`1

sized clique (excluding the person in the middle); thus each set contains dn´1 elements.
By assuming every other player guesses wrong, the center vertex will deduce for each

clique that its hat color is one of dn´1 colors, a translation of one of the sets of residues. If
the intersection of all of these translated sets contains at most one element, then the center
vertex can deduce its hat color. In other words, it has a strategy if these sets have no more
than a single intersection under translation. We now assume the following lemma, proved
later in this section.

Lemma 4.8. If our residues are elements of Z{dnZ for some d P N, then there are n sets
of size dn´1 residues that have no more than a single intersection under translation.

Then, the theorem follows. �
10



We now prove Lemma 4.7, whose statement is as follows: let nKk´1 be n disconnected
copies of Kk´1. Then HpnKk´1, qq “ qpk´1qn ´ pqk´2pq ´ k ` 1qqn.

Proof of Lemma 4.7. Recall that by Lemma 4.2, HpKk´1, qq “ pk ´ 1qqk´2. Then, nKk´1

wins on a set of configurations in exactly one of two ways: one set of n´1 cliques wins, or that
set loses and the last clique wins. The first case provides qk´1Hppn´1qKk´1, qq configurations
and the second case provides pqpn´1qpk´1q ´ Hppn ´ 1qKk´1, qqqHpKk´1, qq configurations.
Thus, we have the recurrence

HpnKk´1, qq “ qk´1Hppn´ 1qKk´1, qq ` pq
pn´1qpk´1q

´Hppn´ 1qKk´1, qqqpk ´ 1qqk´2

We omit the computations, but the solution to the recurrence is HpnKk´1, qq “ qpk´1qn ´
pqk´2pq ´ k ` 1qqn. �

Before proving Lemma 4.8, we must introduce some definitions.

Definition 4.9. We define ddpx, iq to be the ith digit of x in base d, where ddpx, 0q is the
least significant digit; that is ddpx, iq “ t x

di
u.

Definition 4.10. We define rdpxq to be the number of trailing 0s in the base d representation
of x.

We now prove Lemma 4.8, which states that if our residues are elements of Z{dnZ for some
d P N, then there are n sets of size dn´1 residues that have no more than a single intersection
under translation.

Proof of Lemma 4.8. We construct our sets as follows, indexing them from 0 ď i ď n ´ 1:
Ai “ tx | ddpx, iq “ 0u. We claim that for each 1 ď a ď dn´ 1, a R

`

Ardpaq ´ Ardpaq

˘

. Indeed,
for any x, y P Ardpaq, if ddpx, rdpaqq “ ddpy, rdpaqq “ 0, it is impossible for ddpx´ y, rdpaqq “ 0
unless ddpx´ y,mq ‰ 0 for some m ă rdpaq, in which case a ‰ x´ y. Thus, the sets Ai have
no more than a single intersection under translation. �

The windmill graph Wdp4, 3q has hat guessing number 6, disproving the conjecture that
all planar graphs have hat guessing number at most 4 from [2]. He and Li [7] previously gave
another planar graph with a hat guessing number of 6, namely B2,n for sufficiently large n.
On the basis of these examples, we put forward the following revised conjecture.

Conjecture 4.11. If G is planar, HGpGq ď 6.

5. Books

We call a graph G a book graph Bd,n if the graph has n copies of Kd`1 with a shared Kd.
We say the book has n pages with the shared d-clique as the spine. In this section, we prove
Theorem 1.5, which states that for sufficiently large n, HG pBd,nq “ 1`

řd
i“1 i

i.
Finding HGpBd,nq for sufficiently large n reduces to a geometric problem about hpNdq,

which is the largest t such that every subset of size t of Nd can be covered by picking at most
one point from every axis-aligned line [2]. He and Li [7] showed that for any d ě 1 and n

sufficiently large, HG pBd,nq “ hpNdq ` 1. We prove below that hpNdq “
řd
i“1 i

i, implying
Theorem 1.5.

Theorem 1.5 follows immediately from Lemmas 5.1 and 5.3 below.

Lemma 5.1. hpNdq ď
řd
i“1 i

i
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Proof. First, it is evident that hpNq “ 1.
Next, we show the theorem inducting on d ě 2 with a particular recursive construction Sd

of size dd ` |Sd´1| “
řd
i“1 i

i ` 1 that is not coverable in Nd. The construction is as follows:
consider the hypercube rdsd, which has a covering picking dd´1 points in every hyperplane-
aligned direction. Then, we place Sd´1 ”on top” of the hypercube. Suppose x1, x2, . . . , xd
are the d directions to cover in the hypercube rdsd. Without loss of generality, we say that
the resulting set Sd should be a subset of rdsd´1 ˆ rd` 1s where the pd` 1q component is in
the xd direction. Formally, Sd “ rds

d Y pSd´1 ˆ td` 1uq.
Now, let πipT q be the projection of the set T in the xi direction. For the base case, consider

the 2ˆ 3 set S2, or a 2ˆ 2 square with S1, which we define to be a 2ˆ 1 set, on top. S2 is
not coverable in two dimensions because we can pick at most |π1pS2q| ` |π2pS2q| “ 2` 3 “ 5
points from it.

We now do the inductive step. Assume Si is not coverable in Ni for i ď d ´ 1. From the
above construction of Si, we know that Sd´1 Ă rd ´ 1sd´2 ˆ rds Ă rdsd´1. Thus it is indeed
possible to put Sd´1 ”on top” of the hypercube rdsd. Therefore, Sd Ă rds

d´1 ˆ rd ` 1s. We
know that Sd´1 is not coverable by the first d´1 dimensions, so after covering the maximum
set possible in directions x1, . . . , xd´1 in Sd´1 ˆ td ` 1u, there is at least one point p left
uncovered. To cover all of Sd, we must cover this point p in Sd´1ˆtd`1u, and we must pick
it using the xd direction. However, since |πdpSdq| “ dd´1, we can now only cover dd´1 ´ 1
points in the xd direction in the hypercube rdsd. On the other hand, it still remains true that
|πiprds

dq| “ dd´1 for i P t1, . . . , d´1u, so we can pick at most dd´1 points of the hypercube in
each of the first d´ 1 dimensions. Thus we can cover at most dd´ 1 points in the hypercube
rdsd, so we cannot cover all of Sd. �

Remark 5.2. The above lemma has been proven before independently by Gadouleau [4].
However, we include this alternative proof for completeness as Gadouleau uses very different
notation.

Lemma 5.3. hpNdq ě
řd
i“1 i

i

Proof. We say that a set S is numerically coverable if
řd
i“1 |πipSq| ě |S|, where πipSq is the

projection of S orthogonal to the ith axis. It is clear that every coverable set is numerically
coverable, and so are all its subsets. We claim the converse is also true.

Claim 5.4. If every subset of S is numerically coverable, then S is coverable.

Proof of Claim 5.4. We use Hall’s Marriage Theorem [6], which states that a bipartite graph
G on sets U and V contains a perfect matching from U to V if every subset U 1 of U has at
least |U 1| total neighbors in V . Let U be the points in S and V be the axis-parallel lines
intersecting S, with an edge pu, vq on the graph if and only if line v intersects point u. If
every subset of S is numerically coverable, then the conditions of Hall’s Marriage Theorem
are satisfied. Thus, a perfect matching between points and axis-parallel lines exists, which
is to say that S is coverable. �

Thus, to prove Lemma 5.3, it suffices to show that every set of size at most
řd
i“1 i

i is
numerically coverable in Nd.

First, we need to show the following weaker claim.

Claim 5.5. All sets of size at most dd are numerically coverable. That is, if |S| ď dd, then
řd
i“1 |πipSq| ě |S|.

12



Proof of Claim 5.5. We use the Loomis-Whitney inequality [9]:

|S|d´1 ď
d
ź

i“1

|πipSq|.

Apply the AM-GM inequality and the inequality above implies

|S|d´1 ď p
1

d

d
ÿ

i“1

|πipSq|q
d

d|S|
d´1
d ď

d
ÿ

i“1

|πipSq|,(1)

If we have |S| ď dd, then it is equivalent to say |S| ď d|S|
d´1
d . By plugging the equivalent

condition in (1), we have |S| ď
řd
i“1 |πipSq| as desired. �

Now, it remains to show the following claim.

Claim 5.6. For all S with |S| ď
řd
i“1 i

i, it is true that |S| ď
řd
i“1 |πipSq|.

Proof of Claim 5.6. We already know the claim holds for |S| ď dd. Thus, we now focus on

all S with dd ă |S| ď
řd
i“1 i

i.
For d “ 1, S must be the set with one point, and it holds that |S| ď |π1pSq|.
Assume for sake of contradiction that the claim does not hold for all d P N. Then, there

must be some minimal d ą 1 for which it does not hold. That is, there is some S with
dd ă |S| ď

řd
i“1 i

i, such that |S| ą
řd
i“1 |πipSq|. It is sufficient to assume that S minimizes

řd
i“1 |πipSq| among all sets of the same size |S|. Lev and Rudnev [8] show that in that case,

we may assume that S contains the hypercube rdsd and that Szrdsd lies in one hyperface
adjacent to the hypercube. Without loss of generality, say that it lies in the hyperface with
xd “ d ` 1. This implies that πipSq “ πi

`

rdsd
˘

` πi
`

Szrdsd
˘

for i P t1, . . . , d ´ 1u and that

πdpSq “ πd
`

rdsd
˘

.
Then,

|S| ą
d
ÿ

i“1

|πipSq|

ˇ

ˇrdsd
ˇ

ˇ “

d
ÿ

i“1

|πi
`

rdsd
˘

|

|S| ´
ˇ

ˇrdsd
ˇ

ˇ “ |Szrdsd| ą
d
ÿ

i“1

|πipSq| ´
d
ÿ

i“1

|πi
`

rdsd
˘

|

|Szrdsd| ą
d
ÿ

i“1

`

|πipSq| ´ |πi
`

rdsd
˘

|
˘

|Szrdsd| ą
d´1
ÿ

i“1

πi
`

Szrdsd
˘
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Since |S| ď
řd
i“1 i

i, we see |Szrdsd| ď
řd´1
i“1 i

i. This shows that the claim does not hold for
d´ 1, contradicting the minimality of d. �

This finishes the proof of Theorem 1.5. �

6. 5-Vertex Graphs

There are three 5-vertex undirected graphs for which the hat-guessing number is not trivial
given results from previous literature or theorems above (all undirected graphs with fewer
vertices are already trivial). Each contains a triangle and is not complete, so its hat-guessing
number is either 3 or 4. We determine the hat-guessing numbers of all three graphs explicitly.

B2,3 Broken Wheel House

Proposition 6.1. HGpB2,3q “ 4.

Proof. We illustrate the strategies of the three pages with three 4ˆ 4 grids, where each axis
is the color of one of the two vertices in the spine, and the number is the guess a given page
will make.

0 0

00

1 1

11

2 2

2 2

3 3

3 3

0 0

00

1 1

11

2 2

22

3 3

33

0

0 0

01

1 1

1

2

2 2

23

3 3

3

If one of the pages guesses correctly, then we are done. Otherwise, both of the vertices
in the spine will assume that all three pages guess wrong. Thus, they can remove one part
from each of the three partitions according to the hat colors of the pages. The vertices in
the spine have a winning strategy if the set of remaining configurations is coverable in N2

for all choices of the three parts.
Without loss of generality, we can remove part 0 from the first partition. No matter how

the last two parts are chosen, there will be no more than 7 points remaining in the grid.
Any set of size 7 has an axis-parallel line that only intersects one point, so this point can be
removed without affecting the coverability of the set. Thus, the only sets of size at most 7
that are not coverable are those containing a set of the form ta, buˆ tc, d, eu. One can easily
verify that removing any part from the third partition excludes this possibility. �

Proposition 6.2. HGpbroken wheelq “ 3.

Proof. Assume for the sake of contradiction that HGpbroken wheelq “ 4. The broken wheel
has two independent vertices each partitioning the possibilities of K1 Y K2 into 4 parts.

14



Then, the remaining configurations after removing one part from each partition must be
either solvable by K2 or by K1. The solvable set of K1 is tpu and a solvable set of K2 is a
set C which has at most one point with each x-coordinate and at most one point with each
y-coordinate. This implies C has at most 8 points in r4s2. Thus, the solvable set of K1YK2

is pCˆr4sqYpr4s2ˆtpuq. This means the union of one part from each partition must always
contain the complement of a solvable set of K1 YK2.

Lemma 6.3. The union of one part from each partition must always contain Ccˆ tpuc, the
complement of pC ˆ r4sq Y pr4s2 ˆ tpuq.

We will first focus on the smallest part P1 of v1’s partition, which contains no more than
16 elements. If we call the four parts of v2’s partition Q1, Q2, Q3, and Q4 then we need
P1 Y Q1, P1 Y Q2, P1 Y Q3, and P1 Y Q4 to each contain some set of the form Cc ˆ tpuc.
Furthermore, since Qi is disjoint from Qj for i ‰ j, there will be at most 16 points (the size
of P1) that are shared by any two or more of the four sets P1 Y Q1, P1 Y Q2, P1 Y Q3, and
P1 YQ4 (which we call multiple-intersections, per Definition 2.4).

Since Cc has some structure to it that complicates the problem, we will weaken it to S,
any set with 8 points. (Since |C| ď 8 points and the total number of K2 configurations is
42 “ 16, |Cc| ě 8.)

Lemma 6.4. Four sets that each contain a set of the form S ˆ tpuc (for any choice of S
and p) must have at least 17 points of multiple-intersection.

Having a larger set S can only increase the size of the multiple-intersection. Thus, given
the lemma, it is impossible for four sets that contain Cc ˆ tpuc to have at most 16 points
of multiple-intersection, and thus the sets P1 Y Q1, P1 Y Q2, P1 Y Q3, and P1 Y Q4 cannot
exist. �

We now prove Lemma 6.4.

Proof of Lemma 6.4. It suffices to consider four sets T1 “ S1 ˆ tp1u
c, T2 “ S2 ˆ tp2u

c,
T3 “ S3 ˆ tp3u

c, and T4 “ S4 ˆ tp4u
c, which equal rather than contain Si ˆ tpiu

c, because
having more points cannot result in fewer multiple-intersections.

We refer to each 4ˆ 4 square corresponding to one color of K1 as a ”layer.” The x and y

colorpK1q “ 0 colorpK1q “ 1 colorpK1q “ 2 colorpK1q “ 3

Figure 2. Layers

directions within the 4ˆ 4 square correspond to the colors of the first and second vertices of
K2 respectively.

We ignore the color of K1 for now and focus on one 4ˆ 4 square (called the ”K2 square”),
observing how the sets Si fit inside. When considering one 4 ˆ 4 square that contains four
sets of size 8 (the Si), since there are 8 ¨ 4 “ 32 elements and only 16 points, the sets
must multiple-intersect in some points px, yq. With maximal packing (having all four sets
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multiple-intersect in one px, yq point as many times as possible), we see that we must have
at least 6 px, yq points of multiple-intersection. This is shown as follows: the entries in the
matrix correspond to how many sets Si contain that point px, yq. We refer to such matrices
as ”intersection matrices” per Definition 2.6.

1 1 1 1
1 1 2 4
1 1 4 4
1 1 4 4

Figure 3. Max packing, 4 sets

By Claims 3.6 and 3.7, each point px, yq marked 2 in the K2 square’s intersection matrix
contributes at least 2 points of multiple-intersection px, y, zq across all four layers, and each
point px, yq marked 3 or 4 contributes at least 3 points of multiple-intersection px, y, zq. That
is, given an intersection matrix for the K2 square,

#ptotal multiple-intersection pointsq ě 2 ¨ p#2q ` 3 ¨ p#3`#4q.

Thus, if we have one intersection matrix with maximal packing (Figure 3), we will have
at least 5 ¨ 3` 2 ¨ 1 “ 17 ą 16 points of multiple-intersection total.

We can reformulate the inequality as follows: we have a1, . . . , a16 P t0, 1, 2, 3, 4u where
ř

ai “ 32. We wish to find the minimum of
ř

fpaiq where fp0q “ fp1q “ 0, fp2q “ 2, and
fp3q “ fp4q “ 3. We assume that ai ‰ 0 for all i, because having a 0 is worse than having
a 1 when our goal is to minimize

ř

fpaiq. Then, by convexity, we see that the minimum
is achieved by having the highest number of 1’s. This tells us that the maximal packing is
optimal, and others do worse. Thus it is impossible for T1, T2, T3, and T4 to multiple-intersect
in at most 16 points. �

Corollary 6.5. HGphouseq “ 3.

Proof. Since the house is a subgraph of the broken wheel, the former also has hat guessing
number 3. �

This completes the classification of 5-vertex undirected graphs.
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