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Abstract

We provide an exposition of the construction and uses of Hee-
gaard Floer homology, including applications to the structure of the
homology cobordism group. We begin with the development of the
Morse-Smale-Witten complex, proceed to discuss Lagrangian Inter-
section Floer homology, and then use these constructions to motivate
Heegaard Floer homology and its involutive variant. We outline a
proof of Furuta’s Theorem on the existence of a Z∞ subgroup of the
homology cobordism group using involutive Heegaard Floer homology.
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1 Introduction

Morse’s theory of critical points has served as a pillar of the field of topology
for decades. From the h-cobordism theorem of Smale, which gave as an
impressive corollary the Poincaré Conjecture in dimensions ≥ 5 and arguably
gave birth to the entire field of surgery theory, to the modern development
of Floer theory, which has found innumerable applications throughout low-
dimensional topology, knot theory, and symplectic topology, Morse theory
finds its way into nearly any major undertaking in geometric topology. One
such undertaking is the Heegaard Floer theory of Oszváth and Szabó. Their
construction rests heavily upon Morse theory, both in a technical sense, by
utilizing the Morse theoretic structure of 3-manifolds, and in an intuitive
sense, by modeling its chain complex on the Morse-Smale-Witten complex
which gives rise to Morse homology. In this paper, we will track just one of
the trajectories of Morse theory, from its beginnings as a method of relating
the topology of a manifold to critical points of a well-chosen function, to its
role as the foundation of the modern theory of Heegaard Floer homology.
We will also investigate some applications of Heegaard Floer homology to
the homology cobordism group, a well-studied yet still mysterious object
with an impressive range of applications, from triangulation of manifolds to
the construction of exotic smooth structures on 4-manifolds.
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1.1 Overview of Sections

Section 2 describes the fundamentals of Morse theory, up to and including
the construction of the Morse-Smale-Witten complex, with the intent of illus-
trating how the essential structure of a manifold can be elucidated through
critical point data.

Section 3 describes how to translate much of this reasoning over to the
“infinite-dimensional” case of the space of paths between two Lagrangian sub-
manifolds to determine essential information about their intersection (pack-
aged in Lagrangian Intersection Floer homology).

Section 4 specializes Lagrangian Intersection Floer homology to the case
of a certain pair of Lagrangian submanifolds extracted from the Heegaard
diagram data of a 3-manifold (a construction due to Ozváth-Szabó called
Heegaard Floer homology [OS]), and goes on to develop the “involutive”
variant due to Hendricks-Manolescu [1], which is particularly suited to treat-
ing questions about the homology cobordism group.

Section 5 discusses the homology cobordism group, and proceeds to use
Involutive Heegaard Floer homology to reprove Furuta’s Theorem on the
existence of a Z∞ subgroup (following the proof provided in [2]).

2 Morse Theory

The great insight of Morse Theory (referred to by Bott [BOTT] as “the
doctrine of critical point theory”) is that the critical point data of a well-
chosen smooth, real-valued function f on a manifold M can give one a lot
of information about the structure of M . Such “good functions” are called
Morse functions. In this section, we shall see that a Morse function provides a
CW decomposition of its domain manifoldM , and allows for the computation
of a “Morse homology” which turns out to be precisely the singular homology
of M .

2.1 Morse Functions and CW Structures on Manifolds

All manifolds are smooth (that is, having a maximal atlas of charts {(Uα, φα)}α
such that the transition functions φα◦φ−1

β are smooth of class C∞) and closed
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(compact, boundaryless) unless otherwise specified.
Let M be a manifold, and f : M → R a smooth real-valued function. A

point p ∈ M is called a critical point of f if f ◦ φ−1 : Rn → R (where (U,φ)
is a chart near p) has vanishing gradient at p (this is clearly independent of
the choice of chart). p is called a nondegenerate critical point if the Hessian,
i.e. the matrix of second partial derivatives, of f ◦φ−1 is nonsingular at p (it
is less trivial but still not difficult to verify that this is also independent of
the choice of chart). A function f with only nondegenerate critical points is
called a Morse function.

The index of a critical point is defined to be the dimension of the maximal
subspace on which the Hessian matrix is negative definite. Intuitively, one
may imagine that the index is the number of independent directions in which
the Morse function f : M → R decreases starting from p. In other words, if
we imagine the Morse function to be a “height function” for M locally near
p, then the index is the number of directions in which the manifold “slopes
downwards,” with the maximal number of directions being the dimension of
M . The following lemma makes this intuition precise:

Lemma 1. Let p be an index λ critical point of a Morse function f : Mn →
R. Then there exists a local coordinate system (x1, . . . , xn) near p such that
f can be written in the form:

f(x1, . . . xn) = f(p)− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

n.

As a corollary, it follows that the critical points of a Morse function are
isolated.

Given a Morse function f : M → R, we define a sublevel set Mc :=
f−1((−∞, c]). If c ∈ R is a regular value of f (that is, a value for which f−1(c)
contains no critical points), it follows from the implicit function theorem that
Mc is a manifold with boundary ∂Mc = f−1(c). Using the intuition of the
Morse function f as a height function for M , Mc is the part of M which lies
below height c.

Classical Morse theory is built upon the following two results, which to-
gether basically say the following: Given a Morse function f : M → R, the
manifold M does not change in between critical points, and at a critical point
of index λ, its homotopy type changes by the attachment of a λ-cell (note
that the actual attaching map is a more complicated issue which is discussed
further in the next subsection).
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Theorem 1. Let f : Mn → R be a Morse function, and suppose that there
are no critical points contained in f−1([a, b]). Then Ma = f−1((−∞, a]) is
diffeomorphic to Mb = f−1((−∞, b]).

Theorem 2. Let p be an index λ critical point of a Morse function f : Mn →
R. Then for all sufficiently small ϵ > 0, Mf(p)+ϵ is homotopy equivalent to
Mf(p)−ϵ with a λ-cell attached.

In particular (after drawing upon some homotopy theory of CW com-
plexes) these two results tell us that every (smooth, closed) manifold M is
homotopy equivalent to a finite CW complex (of dimension equal to the di-
mension of M), assuming there exists Morse function f : M → R. Luckily,
Morse functions are abundant in the space of smooth functions C∞(M), so
that every manifold has many. More precisely:

Theorem 3. The space of Morse functions is an open, dense subset of the
space of C∞ functions on any a smooth manifold M .

We can already conclude some powerful results constraining the number
of critical points of a Morse function on any manifold M – these are packaged
in the form of the Morse inequalities:

Theorem 4. Let f : M → R be a Morse function. Let ci denote the number
of critical points of index i, and let bi denote the ith Betti number of M .
Then, for each λ ≥ 0, we have the inequality:

cλ − cλ−1 + · · · ± c0 ≥ bλ − bλ−1 + · · · ± b0.

To see the power of this inequality, one may add the Morse inequality for
the case λ− 1 to the case for λ to obtain that cλ ≥ bλ, for all λ.

2.2 Gradient Flow Lines and the Morse-Smale-Witten
Complex

In the last subsection, we saw that the critical points of a Morse function
f : M → R give rise to cells in a CW complex which is homotopy equivalent
to M . In order to gain some geometric intuition about this fact, we need to
investigate the gradient trajectories of the Morse functions – that is, solutions
to the differential equation Dtγx(t) = −∇f(γx(t)), with initial condition
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γx(0) = x ∈ M . This gives rise to a smooth flow φt(x) = γx(t) on M . We
define the stable manifold of a index λ critical point p to be

W s(p) := {x ∈ M | lim
t→∞

φt(x) = p}

and the unstable manifold of p to be

W u(p) := {x ∈ M | lim
t→−∞

φt(x) = p}.

It turns out that these are both indeed smoothly embedded manifolds,
and are in fact smooth cells of dimension n−λ and λ, respectively. In analogy
with treating the Morse function f : M → R as a height function, one can
think of W s(p) as the set of points which would “fall down to” the flat point
p, and W u(p) as the set of points which would “fall directly away from” the
point p.

We will henceforth assume that our Morse functions satisfy the Morse-
Smale condition, meaning that the stable and unstable manifolds intersect
transversally.

We have the following more precise result on the CW structure of a man-
ifold M given by a Morse-Smale function f : M → R:

Theorem 5. There is a CW complex X and a homotopy equivalence g : M →
X such that, given a critical point of index λ, g(W u(p)) is contained in the
base of a unique λ-cell. In this way, g establishes a bijective correspondence
between the critical points of index λ in M and the λ cells in X.

The Morse-Smale-Witten complex of the pair (M, f) is constructed to be
chain isomorphic to the cellular chain complex of X, with boundary maps
that have a geometric interpretation in terms of the stable and unstable
manifolds of a Morse-Smale function f .

Given two critical points q, p of index λ and λ − 1, respectively, we can
consider the manifold W (q, p) := W u(q) ∩ W s(p) (which is indeed a man-
ifold by the Morse-Smale condition). The elements x ∈ W (q, p) of this 1-
dimensional manifold are precisely those which satisfy that limt→−∞ φt(x) =
q and limt→∞ φt(x) = p. It can be shown that W (q, p) ∪ {q, p} is a compact
1-dimensional manifold, with an R-action given by flowing for time t ∈ R. It
follows that M̂(q, p) := W (q, p)/R is a compact 0-dimensional manifold. Its
elements are in one-to-one correspondence with flows γ : R → M from q to p,
which can be assigned orientations in a natural way (using the orientations
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of the stable and unstable manifolds). We define n(q, p) to be a signed count

of the elements in M̂(q, p).
We define the Morse-Smale-Witten complex as follows: Let ci(f) denote

the set of critical points of index i. The chain groups of the Morse-Smale-
Witten complex are given by

Ci(M, f) := Z⟨ci(f)⟩

and the differential ∂i : Ci(M, f) → Ci−1(M, f) is defined by

∂i(q) =
∑

p∈ci−1(f)

n(q, p)p.

It turns out that ∂2
i vanishes (as the gradient flow lines cancel in pairs), so

(C∗(M, f), ∂∗) is indeed a chain complex. Its homology is called the Morse
homology of the pair (M, f).

The Morse Homology Theorem states that the Morse homology of (M, f)
is actually isomorphic to the singular homology of M – in fact, the chain
complex is indeed chain isomorphic to the cellular chain complex of X ≃ M .

A more complete discussion of the Morse-Smale-Witten complex can be
found in [3].

3 Floer Theory of Lagrangian Intersections

Morse theory has the virtue of providing constraints on the analytic proper-
ties of a manifoldM (namely, the number of critical points of Morse functions
f : M → R) using computable algebraic objects (namely, the singular ho-
mology of M). In this brief section, we will model the construction of the
Morse-Smale-Witten complex to produce an algebraic object which captures
geometric information about the intersection between two (Lagrangian) sub-
manifolds (of a symplectic manifold). This will involve the development of
an “infinite-dimensional analogue” of Morse theory, which will be applied
to the space of paths between the two submanifolds. In general, any such
infinite-dimensional Morse theory is referred to as a “Floer theory.”

Let (W,ω) be a symplectic manifold with symplectic form ω (a nonde-
generate closed 2-form).

Let L,L′ be Lagrangian submanifolds of W (half-dimensional submani-
folds on which the form restricts to 0). We consider the pathspace

P(L,L′) := {γ : [0, 1] → W | γ(0) ∈ L, γ(1) ∈ L′}

7



. The objective is to apply Morse theory to understand the structure of
P(L,L′), in such a way that the critical points are replaced by the intersection
points of L and L′.

Fixing some γ0 ∈ P(L,L′), define for any γ ∈ P(L,L′) a “path of paths”
Γ : [0, 1] × [0, 1] → W which restricts to γ0 when its second component is 0
and restricts to γ when its second component is 1.

We define an action functional Aγ0 : P(L,L′) → R by:

Aγ0(γ) =

∫
[0,1]2

Γ∗ω.

It can be shown that this is independent of the choice of Γ, and its differential
is independent of γ0.

We may treat Aγ0 like our Morse function from the previous section.
It has critical points precisely at L ∩ L′. The gradient flow lines between
intersection points are called pseudoholomorphic strips u : R × [0, 1] → W ,
and they satisfy:

∂su+ J(u)∂tu = 0, u(s, 0) ∈ L, u(s, 1) ∈ L′ for all s ∈ R.

This allows us to produce a chain complex modeling the Morse-Smale-Witten
complex, generated by intersection points L∩L′, with boundary maps given
by counting pseudoholomorphic strips. There are many technical compli-
cations in ensuring that this is well-defined – namely, the moduli space of
pseudoholomorphic strips may not be compact, and the differential may not
vanish (if it is defined at all). In the case that this is well-defined, the ho-
mology of this complex is called the Lagrangian Intersection Floer Homology,
which we’ll denote HF (L,L′). We will make use of this framework in the
following section.

4 3-Manifolds and Heegaard Floer Theory

In this section, we will employ a form of Lagrangian Intersection Floer homol-
ogy to construct a 3-manifold invariant called Heegaard Floer homology. This
construction is due to Ozsváth and Szabó [4]. We will furthermore develop
a variant called Involutive Heegaard Floer homology (due to Manolescu and
Hendricks [1]), which in recent years has been successfully applied to ques-
tions about the homology cobordism group [2] [5]. We restrict our attention
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to rational homology spheres throughout this section for simplicity. The case
b1(Y ) > 0 can be treated similarly, but some technical complications arise in
counting holomorphic disks.

4.1 Structure of 3-Manifolds

It is a classical fact that all topological manifolds of dimension ≤ 3 admit
one and only one smooth structure (up to diffeomorphism). Thus, we may
treat all 3-manifolds as smooth 3-manifolds in a unique way; in particular,
we may leverage the power of Morse theory for the study of all topological
3-manifolds.

We define a handlebody H to be a 3-dimensional manifold with boundary
obtained from the 3-ballD3 by attaching a finite number of copies ofD2×I =
D2×[0, 1] (called handles) so thatD2×0 andD2×1 are glued to disjoint disks
D2 ⊂ S2 ∼= ∂D3. The number g of handles is the genus of the handlebody.
The boundary of a genus g handlebody is the Riemann surface of genus g,
denoted here Σg.

Morse theory reveals something very important about the structure of
3-manifolds: they admit Heegaard splittings.

Theorem 6. Every closed three manifold Y is homeomorphic to the union
of two genus g handlebodies H ∪Σg H

′ glued along their boundary Σg. Such
a decomposition is called a Heegaard splitting of Y of genus g.

Proof. It is shown in [6] that one can choose a Morse function h : Y → R to be
self-indexing, meaning that given a critical point p of index λ, h(p) = λ. One
can also choose h to have exactly one index 0 and exactly one index 3 critical
point (namely, the points where f achieves its minimum and maximum,
respectively). Then H := h−1([0, 3

2
]) is a handlebody of genus g, where g is

the number of index 1 critical points of h, and h−1(3
2
) = ∂H is a Riemann

surface of genus g. Choosing f = −h+3, we obtain that f−1(3
2
) = h−1(3

2
) ∼=

Σg, so that by the same reasoning H ′ := f−1([0, 3/2]) = h−1([3/2, 3]) is also
a handlebody of genus g (note that g is also the number of index 1 critical
points of f , hence the number of index 2 critical points of h). It follows that
Y = H ∪Σg H

′, where Σg is identified with h−1(3
2
).

The information provided by a Heegaard splitting (of genus g) can be
conveniently stored in the form of a Heegaard diagram, as follows: From each
of the g handles (copies of D2× I) contained in each of the two handlebodies
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H, H ′, remove a small neighborhood of D2 × {1
2
} (say, D2 × (1

2
− δ, 1

2
+ δ)

for some small δ > 0). What remains of the handlebodies H, H ′ after this
removal are simply 3-balls B, B′. The boundary of each disc is a copy of S1.
Enumerate the copies of S1 arising from each handle in each handlebody;
typically one denotes the curves arising from one handlebody, say H, as
α1, . . . , αg, and the curves arising from the other as β1, . . . , βg. Now, onto
a drawing of the genus g surface Σg, draw the curves α1, . . . , αg, β1, . . . , βg

in the way that they are attached by the Heegaard splitting. Note that this
completely determines the diffeomorphism type of the manifold resulting
from this Heegaard splitting, as the gluing of the 3-balls B, B′ (the only
remaining step in the gluing of the handlebodies) is uniquely determined up
to isotopy. An example of a Heegaard diagram is provided below.

A genus 2 Heegaard splitting of S3. Image credit: [7].

From a Morse theoretic standpoint, if the Heegaard splitting for a Hee-
gaard diagram arises from a self-indexing Morse function h : Y → R (with
H = h−1([0, 3

2
])), then an αi curve is, up to isotopy, precisely the intersection

of the stable manifold W s(pi) for some index 1 critical point pi with the level
set Σg = h−1(3

2
). Similarly, a βj curve is the intersection of the unstable

manifold W u(qj) for some index 2 critical point qj with Σg. It follows that a
point in αi∩βj corresponds to where a gradient flow line from qj to pi passes
through Σg.

Though a Heegaard diagram completely determines the diffeomorphism
type of its corresponding 3-manifold, the converse does not hold (that is, the
Heegaard diagram of a 3-manifold Y is not unique). Indeed, any 3-manifold
admitting a genus g Heegaard splitting admits a genus k Heegaard splitting
for all k ≥ g, via a standard process of handle addition called stabilization.
Isotopy of the curves αi, βj also does not change the diffeomorphism type
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of the resulting 3-manifold. Finally, there is a method of altering the con-
figuration of the αi, βj curves called a handleslide which also does not alter
the diffeomorphism type. As it turns out, any two Heegaard diagrams for a
given 3-manifold can be related by a series of stabilizations, isotopies, and
handleslides.

4.2 Heegaard Floer Homology

Our task in this subsection is to develop a topological invariant of a 3-
manifold Y based on the data provided by its Heegaard diagram. The basic
idea is that we want to capture information about the intersection of the α
and β curves in a manner which does not depend on the chosen Heegaard
splitting of Y . Unfortunately, as we remarked at the end of the last subsec-
tion, any given 3-manifold admits many Heegaard splittings, which can often
look quite different.

In section 3, however, we used the model of Morse homology to develop
machinery for extracting an algebraic object from intersection data. We
will make use of this work here. To that end, the first step in our present
construction is to produce from the Heegaard data a symplectic manifold
with two intersecting Lagrangian submanifolds.

Assume Y is a compact, oriented 3-manifold, with a genus g Heegaard
splitting Y = H∪Σg H

′ induced by a self-indexing Morse function h : Y → R.
We define the manifold

Symg(Σg) :=

(∏
g

Σg

)
/Sg

where we are dividing by the natural action of the symmetric group Sg on
the g-fold product of Σg given by permuting the components. In other words,
Symg(Σg) consists of unordered g-tuples of points in Σg. It is not hard to
see that Symg(Σg) is a smooth manifold, as a chart C ⊂ Σg provides a chart
Symg(C) ∼= Cg−1 ⊂ Symg(Σg), where the homeomorphism Cg ∼= Symg(C) is
given by the map

(c1, . . . , cg) 7→ roots of zg + c1z
g−1 + · · ·+ cg−1z + cg.

It is not hard to show that a choice of complex structure J on Σg induces
an almost complex structure J̃ on Symg(Σg). One can show that Symg(Σg)
admits a symplectic structure (though note that this structure is not natural).
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Now, as the curves α1, . . . , αg are disjoint from one another, the action of
Sg has no effect on the torus Tα := α1 × · · · × αg ⊂

∏
g Σg (i.e. the action

identifies no distinct points), so we may consider Tα to be a submanifold of
Symg(Σg). The same reasoning applies to Tβ := β1 × · · · × βg. There is no
canonical choice of symplectic structure on Symg(Σg) which makes Tα and
Tβ Lagrangian, but as we shall see, we do not need such a structure to carry
out the construction (in fact, we will work around the “action functional”
altogether).

Assuming that αi and βj intersect each other transversally for all i, j
(which can be achieved by isotopy), it follows that Tα and Tβ intersect
transversally in Symg(Σg), and hence their intersection is a 0-dimensional
submanifold of Symg(Σg) (a discrete collection of points). A given intersec-
tion point x ∈ Tα∩Tβ is a g-tuple of points (x1, . . . , xg) with xi ∈ αi∩βπ(i) π,
where π is a permutation of {1, . . . , g}. As remarked in the last subsection,
if our Heegaard splitting is induced by a Morse function h : Y → R, then a
point in αi ∩ βπ(i) is precisely where a unique gradient flow line going from
an index 2 critical point qπ(i) to an index 1 critical point pi intersects Σg.
Thus, we can think of a point x ∈ Tα ∩ Tβ as a selection of g gradient flow
lines between distinct pairs of critical points (consisting of one index 1 and
one index 2 critical point) of the Morse function h.

Fixing a complex structure on Σg, which induces a complex structure J
on Symg(Σg), we can avoid the process of defining an “action functional” on
the space of paths P(Tα,Tβ) as we did in the case of Lagrangian Intersection
Floer homology, and jump straight to defining the “moduli spaces of gradient
flow lines” M(x,y) between intersection points x and y as follows: a map
u : R× [0, 1] → Symg(Σg) is in M(x,y) if it is J-holomorphic, i.e. it satisfies

∂su+ J(u)∂tu = 0, u(s, 0) ∈ Tα, u(s, 1) ∈ Tβ for all s ∈ R,

and moreover, we have that, identifying R×[0, 1] conformally with D\{±i} ⊂
C, u extends to a map ϕ : D → Symg(Σg) with u(−i) = x and u(i) = y.
In short, M(x,y) consists of J-holomorphic strips from x to y, just as in
Lagrangian Intersection Floer homology. We will more often refer to ϕ as an
element of M(x,y) as opposed to u itself.

The holomorphicity condition leads to M(x,y) admitting an R-action,
corresponding to the holomorphic automorphisms of D which fix i and −i
(the R-action can be seen as horizontal translation under the identification
of D \ {±i} with R× [0, 1]). We can then define the unparametrized moduli
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space
M̂(x,y) := M(x,y)/R.

A continuous map ϕ : D → Symg(Σg) which satisfies all of the require-
ments for an element of M(x,y) except for the holomorphicity requirement
(i.e. it maps −i to x, i to y, takes the left edge into Tα and the right edge
into Tβ) is called a Whitney disk. The set of homotopy classes of Whitney
disks between x and y is denoted π2(x,y). For a Whitney disk ϕ, we define
M(x,y;ϕ) to be the components of the moduli space M(x,y) which contain
elements homotopic to ϕ. To each Whitney disk ϕ, we may assign an index
µ(ϕ), called the Maslov index, which corresponds to the “expected dimen-
sion” of M(x,y;ϕ). In analogy to Morse theory, one can think of µ(ϕ) as
measuring the relative index between two “critical points” x and y (along the
disk ϕ). In constructing our chain complex for Heegaard Floer homology, we
will only count components of moduli spaces M(x,y;ϕ) for which µ(ϕ) = 1,
which is justified by the following result, due to Ozsváth and Szabó [4].

Theorem 7. If µ(ϕ) = 1 (and the genus of the Heegaard splitting is greater

than 2), then, under appropriate perturbations, M̂(x,y;ϕ) := M(x,y;ϕ)/R
is a compact, oriented, zero-dimensional manifold.

In particular, the elements of M̂(x,y;ϕ) can be counted meaningfully. At
this point, we have enough information to define a complex with generators
given by the intersection points in Tα ∩ Tβ and with boundary map ∂x

counting (with sign) the components of M̂(x,y;ϕ) over all y and all ϕ with
µ(ϕ) = 1 (c.f. the Morse-Smale-Witten complex). In essence, this is precisely
what we shall do, but more structure is needed to make the homology of the
complex a useful invariant.

4.2.1 Basepoints and Spinc structures

The first step in enriching the structure of the complex generated by elements
of the intersection Tα ∩ Tβ is to observe that the complex admits a natural
differential preserving grading by Spinc structures. More precisely, we mean
that the complex is the direct sum of summands which are indexed by Spinc

structures, such that the boundary map sends each summand into itself. We
provide a brief review of Spinc structures here, before explaining how they
grade the Heegaard Floer complex.

Recall that the tangent bundle of an oriented, closed 3-manifold Y has
structure group SO(3), which can be identified with U(2)/U(1), where U(1)
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is embedded in U(2) as the diagonal subgroup. The projection p : U(2) →
SO(3) is a principal U(1) = S1 bundle. Now, putting a Riemannian metric
on Y , we may consider the frame bundle f : Fr(Y ) → Y , a principal SO(3)-
bundle, over Y . A Spinc structure on a smooth, closed, oriented 3-manifold
Y is a lift of the frame bundle f to a principal U(2)-bundle. As such, a
Spinc structure consists of a principal U(2)-bundle F → Y such that F/U(1)
(obtained by the applying the projection p : U(2) → SO(3) fiberwise) is
isomorphic to Fr(Y ).

There is an alternative definition of a Spinc structure on an oriented,
closed 3-manifold Y . We say that two nonvanishing vector fields u and v
on Y are homologous if they are homotopic through nonvanishing vector
fields on the complement of a ball D3 ⊂ Y . Turaev [8] shows that there is
a canonical bijection between the homology classes of nonvanishing vector
fields on Y and the set of Spinc structures on Y . We henceforth define a
Spinc structure on Y to be a choice of homology class of nonvanishing vector
fields on Y . We will denote the set of Spinc structures on Y by S(Y ).

Recall that we want the differential for the Heegaard Floer complex to
essentially count holomorphic disks between elements of the intersection Tα∩
Tβ. If we partition Tα ∩ Tβ according to the equivalence relation x ∼ y if
and only if there exists a Whitney disk between x and y (i.e. if and only
if π2(x,y) ̸= ∅), then it is clear that this partition induces a differential
preserving grading on the complex. However, this is a challenging condition
to verify explicitly – we need a (slightly weaker) computable condition.

A point x ∈ Tα ∩ Tβ uniquely corresponds to a choice of g gradient
trajectories (of the Morse function inducing the Heegaard splitting) between
pairs of index 2 and index 1 critical points. This provides a 1-chain, denoted
γx, in H1(Y ). It is not hard to show that, if there is a Whitney disk between
x and y, the 1-chain γx−γy must be trivial in H1(Y ) (i.e. null-homologous).
This is explained in [7].

Now, we add a basepoint z ∈ Σg\{α1, . . . , αg, β1, . . . , βg} to our Heegaard
diagram. We define a map

sz : Tα ∩ Tβ → Spinc(Y )

from the set of intersection points to the set of Spinc structures on Y as
follows: a point x ∈ Tα ∩ Tβ specifies g gradient trajectories from index 2
to index 1 critical points, so that it “pairs up” index 2 critical points with
index 1 critical points in such a way that no point (of either index) is paired
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twice. We can remove small neighborhoods (diffeomorphic to balls) around
these trajectories, so that the only remaining points at which the gradient
vector field ∇h (where h is the Morse function generating the Heegaard
splitting) vanishes is at the minimum and maximum of h. There is exactly
one gradient flow line from the maximum (index 3 critical point) to the
minimum (index 0 critical point) passing through the chosen point z. Remove
a small neighborhood (diffeomorphic to a ball) around this trajectory, so that
what ∇h is nonvanishing on what remains of Y . Since, in each removed ball,
the sum of the indices of the critical points is 3, the vector field ∇h can be
modified in the balls to a nonvanishing vector field, say vx. We set sz(x)
to be the homology class of vx, which is well-defined since it is equal to ∇h
outside of a union of disjoint balls (note that a union of disjoint balls can
always be isotoped to fit into a larger ball). This construction has the virtue
that vx and vy are homologous if and only if γx and γy are homologous, and
thus sz(x) = sz(y) if and only if γx − γy = 0.

Thus, with a fixed choice of basepoint z, the set of Spinc structures on Y
provide a natural differential preserving grading on Z⟨Tα∩Tβ⟩ by partitioning
Tα ∩ Tβ into classes of the form s−1

z (s), iterating over all s ∈ Spinc(Y ).
Before we complete the definition of our chain complex(es), there is one

final piece of data which we want to keep track of: intersection of the holo-
morphic disks with the hypersurface {z} × Symg−1(Σg) ⊂ Symg(Σg), whose
Poincaré dual generates H2(Symg(Σg)) (for g > 1). We denote by nz(ϕ) ∈ Z
the oriented intersection number of a holomorphic disk ϕ : D → Symg(Σg)
with the hypersurface {z}× Symg−1(Σg). Note that nz(ϕ) is always nonneg-
ative for holomorphic ϕ, since {z} × Symg−1(Σg) is a complex hypersurface
(holomorphic trajectories always meet complex hypersurfaces positively, ac-
cording to the natural orientation induced by the complex structure).

4.2.2 The Heegaard Floer Chain Complexes

We are now ready to construct the “infinity” Heegaard Floer chain complex
CF∞(Y, s). We assume a fixed choice of basepoint z ∈ Σg\{α1, . . . , αg, β1, . . . , βg}.
We define CF∞(Y, s) to be the free abelian group with generators of the form
[x, i] where x ∈ s−1

z (s) ⊂ Tα ∩Tβ and i ∈ Z. We define a relative grading on
this group as follows:

gr([x, i], [y, j]) = µ(ϕ)− 2nz(ϕ) + 2(i− j)
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where ϕ ∈ π2(x,y) is any holomorphic disk between x and y. It turns out
that the number µ(ϕ) − 2nz(ϕ) is independent of the choice of holomorphic
representative, so this grading is well-defined. The differential ∂∞ is given
by

∂∞([x, i]) =
∑

y∈s−1
z (s)

∑
ϕ∈π2(x,y)|µ(ϕ)=1

n(x,y;ϕ)[y, i− nz(ϕ)]

where nz(ϕ) is a signed count of the elements in the unparametrized mod-

uli space of holomorphic representatives homotopic to ϕ, M̂(x,y;ϕ) :=
M(x,y;ϕ)/R. By work of Ozsváth and Szabó, it turns out that (∂∞)2 van-
ishes, so this is indeed a chain complex.

It is natural to consider the action U on this complex, given by

U · [x, i] = [x, i− 1].

With this in mind, we may consider CF∞(Y, s) to be a Z[U ]-module. The
homology of the complex (CF∞(Y, s), ∂∞) is denoted HF∞(Y, s). We will
refer to it as the “infinity” variant of Heegaard Floer Homology.

We can form other variants by taking advantage of the action U . Firstly,
since nz(ϕ) is always nonnegative, we have that the complex generated by
elements of the form [x, i] with i < 0 is closed under the differential ∂∞, and
thus is a subcomplex of (CF∞(Y, s), ∂∞). It is also closed under the action of
U . We obtain the “minus” Heegaard Floer chain complex, (CF−(Y, s), ∂−),
where CF−(Y, s) is considered as a Z[U ]-module, and ∂− is simply the re-
striction of ∂∞. Its homology, denoted HF−(Y, s), is the “minus” variant of
Heegaard Floer homology.

The quotient CF∞(Y, s)/CF−(Y, s) is called the “plus” Heegaard Floer
chain complex, denoted CF+(Y, s), with a corresponding “plus” variant of
Heegaard Floer homology HF+(Y, s). It is also a Z[U ]-module – in this case,
the U -action has a nontrivial kernel, generated by elements of the form [x, 0].

We call this kernel the “hat” variant of Heegaard Floer homology, ĤF (Y, s).
It can equivalently be constructed by simply considering the chain complex
generated by elements x ∈ s−1

z (s) ⊂ Tα ∩ Tβ, with differential given by
counting only the disks which do not intersect {z} × Symg−1(Σg):

∂̂(x) =
∑

y∈s−1
z (s)

∑
ϕ∈π2(x,y)|µ(ϕ)=1,nz(ϕ)=0

n(x,y;ϕ)y.
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With HF ◦ denoting any of the above variants, we write:

HF ◦(Y ) :=
⊕

s∈Spinc(Y )

HF ◦(Y, s).

Heegaard Floer homology is an umbrella term which can apply to any
of HF∞, HF−, HF+, or ĤF . Henceforth, if the particular variant is un-
specified, then it is safe to assume that the discussion applies to all four
variants.

4.2.3 Naturality of Heegaard Floer Homology

It is not at all obvious that the various Heegaard Floer homologies con-
structed above are topological invariants of the oriented, closed 3-manifold
Y . In principle, two very important choices were made: (1) a Heegaard
splitting for Y , consisting of the data (Σg, α, β, z), where α = (α1, . . . , αg),
β = (β1, . . . , βg), Σg has the orientation induced by identifying it as the level
set h−1(3

2
), and z ∈ Σg is the chosen basepoint disjoint from the α and β

curves; and (2) a complex structure on Σg.
As it turns out, as shown by Ozsváth and Szabó [4], Heegaard Floer

homology is well-defined up to isomorphism.

Theorem 8. All of the Heegaard Floer homology variants defined above are
well-defined up to isomorphism for a given oriented, closed 3-manifold Y and
spin structure s on Y .

Thus, the notation HF ◦(Y, s) (where “◦” stands in for any of ∞, +, −, or
a “hat”) is justified and unambiguous, in the sense that it refers to a single
isomorphism class of Z[U ]-modules.

However, there remains a question of naturality (or “higher-order” well-
definedness): is there a canonical choice of isomorphism induced on Hee-
gaard Floer homology for a given change in the Heegaard data (consisting of
both the Heegaard splitting information and the chosen complex structure)?
Juhász, Thurston, and Zemke [9] obtained an answer in the affirmative. In
fact, they obtained a stronger result on the chain level, which we present
below (after a clarification on notation).

If we choose a Heegaard splitting G = (Σg, α, β, z) and complex structure
J on Symg(Σg), we can notationally contain all of this data in the form of a
Heegaard pair H = (G, J). Then, we denote by CF ◦(H, s) the correspond-
ing Heegaard Floer chain complex, and by HF ◦(H, s) the corresponding
Heegaard Floer homology.
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Proposition 1. For a fixed (Y, z, s), and for any two Heegaard pairs H,
H′, there is a distinguished chain homotopy equivalence (unique up to chain
homotopy)

Φ(H,H′) : CF ◦(H, s) → CF ◦(H′, s)

and the maps given by Φ satisfy that, for any H,H′,H′′,

(1) Φ(H,H) ∼ idCF ◦(H,s),

(2) Φ(H′,H′′) ◦ Φ(H,H′) ∼ Φ(H,H′′)

where ∼ indicates chain homotopic maps.

It follows that the same result holds on the level of homology HF ◦(H, s),
but we can replace the chain homotopy equivalences with isomorphisms and
chain homotopy with equality. We say that the groups HF ◦(H, s) form a
transitive system.

Though this discussion of naturality may seem pedantic at first, it is
actually critical to the construction of involutive Heegaard Floer homology
in the subsection which follows. In fact, there are “higher order” questions
of naturality – e.g. is there a canonical choice of chain homotopy between
any two choices of Φ(H,H′) within its chain homotopy class? – which would
assist in even more powerful constructions if answered in the affirmative. See
the discussion in [1] for more detail.

4.3 The Involutive Variant

In this subsection, we will build a variant of Heegaard Floer homology by
leveraging an additional piece of information: the involution induced on the
Heegaard Floer complex by switching from the Morse function h : Y → R
which induces the Heegaard splitting to its negative −h : Y → R (to make
−h self-indexing, we need only shift it by +3; we will assume this shift in
the notation −h). We follow the original construction due to Hendricks
and Manolescu [1]. Let the Heegaard splitting induced by h be given by G =
(Σg, α, β, z). The Morse function −h induces the conjugate Heegaard splitting
G := (−Σg, β, α, z), where −Σg denotes Σg with orientation reversed. This
flipping of Morse functions also induces conjugation on the almost complex
structure J on Symg(Σg), so that the Heegaard pair H = (G, J) gets sent to
H := (G, J).
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It was shown in [10] that there is a canonical isomorphism between chain
complexes

η : CF ◦(H, s) → CF ◦ (H, s
)
.

From the previous subsection, we know that there is a distinguished chain
homotopy equivalence

Φ(H,H) : CF ◦ (H, s
)
→ CF ◦ (H, s)

We define their composition ι := Φ(H,H) ◦ η. It is shown in [1] that
this is a chain homotopy involution, meaning that ι2 ∼ idCF ◦(H,s), where ∼
denotes chain homotopy. As such, J := ι∗ : HF ◦(H, s) → HF ◦(H, s) is an
involution on the level of Heegaard Floer homology.

We define the involutive Heegaard Floer complex (of type ◦, where ◦
stands for any of +, −, ∞, or “hat”), denoted CFI◦(H, s), to be the mapping
cone complex

CF ◦(H, s)
Q(1+ι)−→ Q · CF ◦(H, s)[−1]

where Q is a formal variable with degree −1, satisfying Q2 = 0, and the
bracketed [−1] denotes a −1 grading shift. More explicitly, the complex con-
sists of a module over Z2[Q,U ]/(Q2) (note that we are using Z2-coefficients
for simplicity) given by

CF ◦(H, s)[−1]⊗ Z2[Q]/(Q2)

with differential
∂ι = ∂◦ +Q(1 + ι)

where ∂◦ is the standard Heegaard Floer differential of type ◦.
Hendricks and Manolescu show that the above chain complex is well-

defined up to quasi-isomorphism for a fixed choice of 3-manifold and Spinc

structure, and thus the homology of the complex, called the involutive Hee-
gaard Floer homology HFI◦(H, s), is well-defined up to isomorphism.

The involutive Heegaard Floer complex turns out to be particularly well-
behaved under connected sum:

Proposition 2. There is a chain homotopy equivalence

CF−(Y1#Y2, s1#s2) ≃ CF−(Y1, s1)⊗Z2[U ] CF−(Y2, s2)[−2]

such that the “conjugation” homotopy involution ι on CF−(Y1#Y2, s1#s2)
is chain homotopy equivalent to ι1 ⊗ ι2, where ι1 and ι2 are the conjugation
homotopy involutions on CF−(Y1, s1) and CF−(Y2, s2), respectively.
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4.3.1 ι-Complexes and Local Equivalence

The proposition at the end of the last section suggests a natural way to make
the set of complexes C with a chain homotopy involution ι (satisfying some
basic properties) into a group under tensor product.

We define an ι-complex to be a pair C = (C, ι), where C is a finitely
generated, free chain complex over Z2[U ] with Z-grading such that there is a
relatively graded isomorphism between U−1H∗(C) (the localization of H∗(C)
at U) and Z2[U,U

−1], and ι : C → C is grading preserving and satisfies
ι2 ≃ idC , where ≃ denotes chain homotopy. Note that (CF−(Y, s), ι), where
Y is a rational homology sphere and ι is the conjugation chain homotopy
involution, is an ι-complex.

We define an equivalence relation, called local equivalence, on the set of
ι-complexes as follows: we say two ι-complexes (C, ι), (C ′, ι′) are equivalent
if there exist chain maps f : C → C ′, g : C ′ → C which homotopy commute
with the involutions – that is, f ◦ ι ≃ ι′ ◦ f and ι ◦ g ≃ g ◦ ι′ – and which
induce isomorphisms on U−1H∗.

The motivation for this notion of equivalence comes from the following
fact:

Proposition 3. Let (Y1, s1) and (Y2, s2) be spin rational homology cobordant.
Then the ι-complexes (CF−(Y1), s1) and (CF−(Y2), s2) are locally equivalent.

The set of ι-complexes modulo local equivalence forms an abelian group,
denoted J, under tensor product:

C ⊗ C ′ :=
(
C ⊗Z2[U ] C

′[−2], ι⊗ ι′
)
.

The identity element is the class of (Z2[U ], id), with gr(1) = −2, which is
precisely the ι-complex associated to the standard 3-sphere S3 (the grading
is by convention). Inversion in J is given by [(C, ι)] 7→ [(C∗, ι∗)], where C∗ :=
HomZ2[U ](C,Z2[U ]) and ι∗ is dual to ι. The grading convention for C∗ is that
the dual generator x∗ to a generator x of C has grading gr(x∗) = −gr(x)− 4.

5 Application to the Homology Cobordism

Group

In this section, we will put involutive Heegaard Floer Homology to use in
uncovering a piece of the structure of the (3-dimensional) homology cobordism
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group Θ3
Z – the group of homology 3-spheres modulo smooth (or piecewise-

linear; they are equivalent in this case) homology cobordism.

5.1 Introduction to the Homology Cobordism Group

A Z-homology 3-sphere, or, briefly, a homology sphere, is a 3-manifold Y
satisfying H∗(Y ) = H∗(S

3). Given two homology spheres Y1 and Y2, a Z-
homology cobordism, or just a homology cobordism, between Y1 and Y2 is
a smooth (or, equivalently, PL), oriented 4-manifold with boundary W sat-
isfying ∂W = Y1 ⊔ −Y2 and H∗(W,Y1;Z) = H∗(W,Y2;Z) = 0. The set of
homology spheres modulo homology cobordism forms a group under con-
nected sum. This group is denoted Θ3

Z.
The 3-dimensional homology cobordism group is notable for the fact

that the analogous group defined in any other dimension (using PL homol-
ogy spheres and homology cobordisms) is the trivial group. Likewise, the
“topological” 3-dimensional homology cobordism group, defined using not-
necessarily-smooth homology cobordisms, is trivial (that is, every homology
3-sphere bound a topological homology ball). However, as we shall see, the
group Θ3

Z has some highly nontrivial structure. In an imprecise sense, the
3-dimensional homology cobordism group is a measure of the degree to which
the topological and smooth/PL categories diverge in dimension 4.

The first known structural fact about the homology cobordism group was
the existence of a surjective homomorphism µ : Θ3

Z → Z2, called the Rokhlin
homomorphism. The well-known Poincaré homology sphere has Rokhlin in-
variant 1, and thus is a nontrivial element of Θ3

Z.
The structure of the homology cobordism group is closely connected to

the problem of triangulating high-dimensional (≥ 5) manifolds. It was shown
by Galewski and Stern [11] that the triangulation conjecture for dimensions
≥ 5 is equivalent to the existence of a 2-torsion element Σ ∈ Θ3

Z with Rokhlin
invariant 1. In [12], Manolescu used monopole Floer theory to disprove the
triangulation conjecture by showing that such an element does not exist.

The homology cobordism group has also found applications in studying
knot concordance and smooth 4-dimensional topology.
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5.2 Homology Cobordism Invariants from Involutive
Heegaard Floer Homology

By the construction of the group J of ι-complexes modulo local equivalence,
we have a well-defined homomorphism

Θ3
Z → J

given by sending (Y, s) to the class of its ι-complex [(CF−(Y, s), ι)]. Note
that we are considering spin homology spheres (that is, homology spheres
with Spinc structures), modulo spin homology cobordism. Our objective
in this subsection is to uncover some structural aspects of J. The above
homomorphism will allow us to leverage our knowledge of the structure of J
to prove an important fact about the structure of Θ3

Z.
For an ι-complex C = (C, ι), we may consider its set of self-local equiv-

alences, which are maps f : C → C which commute with ι and induce
isomorphisms on U−1H∗. This set can be assigned a pre-order according to
containment of kernel – that is, we say f ≤ g if ker f ⊆ ker g. We then have
a notion of maximal self-local equivalence, according to this pre-order.

It is shown by Hendricks, Hom, and Lidman [2] that a maximal self-local
equivalence always exists for any ι-complex, and that, given a maximal self-
local equivalence f : C → C, f |im f : im f → im f is an isomorphism of chain
complexes. We can then define ιf := f ◦ ι ◦ (f |im f )

−1, and then (im f, ιf )
is an ι-complex which turns out to have the same local equivalence type as
C. It can be shown that two choices of maximal self-local equivalence give
homotopy equivalent ι-complexes of the form (im f, ιf ). We call this the
connected complex, denoted Cconn = (Cconn, ιconn) associated to C.

Proposition 4. Locally equivalent ι-complexes have chain isomorphic con-
nected complexes.

Thus, the connected complex is an invariant of local equivalence. Now,
given an ι-complex C, we can define the connected homology of C to be

Hconn(C) := Hred(Cconn)

where reduced homology Hred is defined by

Hred(C) := ker
(
UN : H∗(C) → H∗(C)

)
[−1]

for large N .
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We can now define the connected Heegaard Floer homology of a spin ra-
tional homology sphere (Y, s) by

HFconn(Y, s) := Hconn(CF−(Y, s), ι).

Proposition 5. Connected Heegaard Floer homology is a homology cobor-
dism invariant.

Proof. This follows immediately from the fact that the connected complex
is a local equivalence invariant and the fact that spin homology cobordant
homology spheres have locally equivalent ι-complexes.

Connected homology provides powerful insight into the structure of the
group J. In particular, it provides a filtration, as follows: Let P denote the
set of subsets of N. Let P ∈ P , and define:

FJ
P := {[C] ∈ J | Hconn(C) ∼=

⊕
i

Z2[U ]/UniZ2[U ], ni ∈ P}.

Note that the above isomorphism is ungraded.

Theorem 9. The subsets FJ
P provide a filtration of J by P; that is, each FJ

P

is a subgroup of J, and if P1 ⊆ P2, then FJ
P1

≤ FJ
P2
.

We conclude this section by defining an invariant associated to an ι-
complex which measures the nilpotence of Hconn.

ω(C) := min{n | UnHconn(C) = 0}.

This quantity satisfies the useful property that

ω(C ⊗ C ′) ≤ max{C, C ′}.

5.3 A Proof Outline of Furuta’s Theorem

In this subsection, we will outline a proof of Furuta’s Theorem, continuing
to follow Hendricks, Hom, and Lidman [2].

Theorem 10. The homology cobordism group Θ3
Z has a Z∞ subgroup.
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Proof. From the filtration on J stated in the previous subsection, along with
the homomorphism Θ3

Z → J, [Y ] 7→ [(CF−(Y ), ι)], it follows that Θ3
Z has a

filtration given by the subgroups:

FP = {[Y ] | HFconn(Y ) ∼=
⊕
i

Tai(ni) | ni ∈ P}

where Tai(ni) is, in an ungraded sense, isomorphic to Z2[U ]/UniZ2[U ], but
satisfies the grading requirement gr(1) = ai.

Our next step is to show that there is an infinite sequence of properly
nested subgroups of Θ3

Z. Consider the collection of subgroups Θ3
N generated

by {S1/n(K) | g(K) < N, n ∈ Z}; that is, generated by homology 3-spheres
obtained from surgery on a knot of genus bounded above by N > 0. It is
shown in [13] that

U g(K)+g(K)/2+1HFred(S1/n(K)) = 0

so that each Θ3
N is contained in F{1,...,3N/2}. It is shown in [2] thatHFconn(S

3
−1(K), [0]) =

T−1(V0), where V0 is the concordance invariant, and K is an L-space knot.
But there exist L-space knots with any concordance invariant value V0, so
that F{1,...,m}/F{1,...,m−1} is nontrivial for all m, and so in particular Θ3

N is a
proper subgroup of Θ3

Z for all N .
At this point, we have proven that Θ3

Z is infinitely generated. To finish
the proof of the statement, we need to produce an infinite set of linearly in-
dependent elements. We claim that the collection {S3

−1(T2,4n+1)}n is linearly
independent. It is shown in [14] that the knots T2,4n+1 have concordance in-
variant given by V0(T2,4n+1) = n. It is shown in [2] that ω(kS3

−1(T2,4n+1)) = n
for any k nonzero. Recall that the invariant ω defined in the previous sub-
section has the property that

ω
(
k1S

3
−1(T2,5))#k2S

3
−1(T2,9))# . . .#knS

3
−1(T2,4n+1))

)
≤ max

ki ̸=0
i

(where we used the fact that connected sum maps to tensor product under
the homomorphism Θ3

Z → J). If, for some n, a nontrivial sum were equal to
0, then we would obtain:

n = ω
(
−knS

3
−1(T2,4n+1)

)
= ω

(
k1S

3
−1(T2,5))#k2S

3
−1(T2,9))# . . .#kn−1S

3
−1(T2,4(n−1)+1))

)
≤ n−1

which is a contradiction. Therefore, this is a linearly independent set, and
as such it generates a Z∞ subgroup of Θ3

Z.

24



This proof, combined with the constructions of the previous subsections,
demonstrates the general strategy which has been used (with great effective-
ness) to uncover facts about the structure of the homology cobordism group:
use Floer theory to construct a map from Θ3

Z to some other object, determine
structural aspects of the other object, and then leverage the map to transfer
some of that structure over to Θ3

Z.
Though Furuta’s Theorem was originally proven using a different Floer

theory – namely, Instanton Floer homology – involutive Heegaard Floer ho-
mology provides another very useful, and in many ways more powerful, av-
enue of proof. Indeed, involutive Heegaard Floer homology, together with
the notion of local equivalence, was used by Dai, ... [DAI] to show that Θ3

Z
actually contains a Z∞ summand, which is a meaningful improvement upon
Furuta’s result. As of the writing of this paper, Heegaard Floer theory is the
only Floer theory which has been used to prove this result.

6 Next Steps in Heegaard Floer Theory

Heegaard Floer theory has proven to be both a powerful and computationally
tractable tool for low-dimensional topologists, but its development phase is
far from over. Currently, its main drawback in comparison with other Floer
theories, such as Seiberg-Witten Floer homology, is that the Heegaard Floer
chain complex is not known to possess the “higher-order naturality” which
would be necessary for constructing, for instance, a “Pin(2)-equivariant” Hee-
gaard Floer homology [1]. Establishing higher order naturality results, such
as identifying a canonical class of chain homotopy between any two repre-
sentatives of the chain homotopy equivalence Φ(H,H′) for two different sets
of Heegaard data H,H′, would be an important next step in the field.
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