
FIBONACCI RANDOM GENERATOR AND FOURIER ANALYSIS

ETHAN BOGLE, OWEN BRASS, AND OWEN SHEN

Abstract. The existing literature on the convergence efficiency of the Fibonacci

random generator Xn+1 = Xn+Xn−1+ε shows that the number of steps required

for this system to reach equilibrium is at most 5(logm)2. We first show, using

Fourier Analysis, that a sufficient number of steps is actually 1.18(logm)2. We

also identify the limiting factor in the Fourier Analysis approach, and present

a possible way to improve the result to something better than c(logm)2. This

ultimately revolves around the poorly studied distribution of Fibonacci-type se-

quences mod m. We study some aspects of the Fibonacci distribution when m

is a power of 3 and find that, even with a deeper understanding of its behavior,

the Fourier Analysis approach seems to be an insufficient tool for attaining a

bound which is of smaller order than (logm)2. We furthermore present several

computationally-supported conjectures, particularly when m is a Lucas Number,

in the hopes of spurring further research in this area. Then, we consider few

special choices of the state space and argue for some better bounds on those par-

ticular cases. Finally, we formulate some general results and conjectures, with

additional algebraic techniques, to discuss future approaches to understand this

Fibonacci random generator.

Contents

1. Introduction 2

2. Countable Markov Chain 2

3. Fourier Analysis and Convolution 3

4. Fourier Transform and Convergence Rate 5

5. The CDG Process 7

6. The Fibonacci Generator 11

7. Improvements over existing Fourier Bound 13

8. Special Case with Modulus 3k 16

9. The Fibonacci Distribution Problem 24

9.1. Definitions: Cycles in the Fibonacci Directed Graph of Ordered Pairs 25

9.2. Known Results 27

9.3. Conjectures on the Distribution of Fibonacci Numbers Modulo m 28

References 30

Code 30
1



2 ETHAN BOGLE, OWEN BRASS, AND OWEN SHEN

1. Introduction

The central goal of this paper is to discuss the convergence rate of a stochastic

system known as the Fibonacci random generator, Xn+1 = Xn + Xn−1 + εn+1, to

its limiting distribution. In particular, we want to find the upper bound of the

asymptotic convergence efficiency of this Fibonacci random generator to a uniform

random variable. The paper will be organized with the following structure: in

Section 2: Countable Markov Chain, we review certain key properties and notations

of probability theory; in Sections 3 and 4: Fourier Analysis and Convergence Rate,

we discuss how to apply Fourier transform to our existing problem; in Section

5: The CDG Process, we demonstrate how to apply the result from Sections 3

and 4 to a process known as the CDG process, Xn = 2Xn−1 + εn, which is the

precursor of the Fibonacci random generator we are interested in analyzing; in

Section 6: Fibonacci Random Generator, we will present the existing results and

its proof strategies of said generator; in Section 7: Improvement Over Existing

Fourier Bound, we will introduce our first result on how to improve the existing

bound for the Fibonacci system from 5(logm)2 to 1.18(logm)2; in Section 8: Special

Case with Modulus 3k, we consider the state spaces whose size is a power of three

and discuss how we may gain a deeper understanding of the Fibonacci distribution

on such spaces, but ultimately find that such this understanding is insufficient

to give a bound which is of a smaller order than (logm)2; finally, in Section 9:

The Fibonacci Distribution Problem, we contextualize our problem into the larger

algebraic literature of Fibonacci Distribution and discuss its implications. Section 9

is developed in a more general framework so that its understanding does not require

the rest of the paper.

2. Countable Markov Chain

Let us review few propositions of countable Markov Chains and go through our

choice of notations for this paper. The countable Markov Chain is a stochastic

process on a countable state space that satisfies the Markov Property illustrated

below:

P {Xt+1 = y | Xi = xi, i < t} = P {Xt+1 = y | Xt = x} = P (x, y).

Here, we use the standard notation of the transition kernel P (i, j) of a finite state

space Markov Chain on the state space (i, j, k, · · ·) which we shall call X . In this

paper, we focus on the state space of Zm, the integers mod m. The transition kernel

is not only encoding the transition probability but is also a matrix, so it makes sense

to write P t(i, j) for some integer t. We can check that

Px {Xt = y} = P t(x, y).

That is, the probability of moving in t steps from x to y is given by the (x, y) -th

entry of P t. We call these entries the t -step transition probabilities.

Two often used conditions on countable markov chain are the irreducibility and

the aperiodicity. Irreducibility means for any pair of (x, y) ∈ X ×X , there exists an
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integer t such that P t(x, y) is nonzero. Intuitively, it means every state of the chain

is accessible from any point, provided with sufficient time. To define aperiodicity,

let us first consider the return period as T (x) := {t ≥ 1 : P t(x, x) > 0}. Hence, the

period of the whole chain is the greatest common divisor of T (x) for all x ∈ X .

Aperiodicity in this context means the period is one. Aperiodicity is important in

the context of mixing. Let us consider the simple example of a simple random walk

of Xi =
∑i

j=1 ξj on a group of even order, say 10, where ξ(1) = ξ(−1) = 0.5. Then,

this chain will not converge well to, say a uniform, because we may check that the

states accessible from even steps are disjoint from the states accessible from odd

steps.

Another important concept of Markov Chain is its stationary distribution, for

which we use the natural notation π for the stationary (equilibrium ) distribution.

The matrix definition is that π is the vector that satisfies π = πP . The equivalent

definition is that

π(y) =
∑
x∈X

π(x)P (x, y) for all y ∈ X .

Hence, once the chain hits the stationary distribution, the chain will stay at the

stationary distribution. The natural question to ask is whether such a stationary

distribution exists and whether the existence is unique. Then, let us briefly sum-

marize few propositions about those three concepts, irreducibility, aperiodicity, and

stationary distribution and address our concerns here.

Proposition 2.1. If P is aperiodic and irreducible, then there is an integer r0 such

that P r(x, y) > 0 for all x, y ∈ X and r ≥ r0.

Proposition 2.2. Let P be the transition matrix of an irreducible Markov chain.

There exists a unique probability distribution π satisfying π = πP .

The concept of stationary distribution is central to the discussion of this paper.

3. Fourier Analysis and Convolution

In this section, we will cover all of the background materials of Fourier Analysis

needed to understand the strategies in the subsequent sections. Let us first review

some basics about Fourier transforms on finite groups.

Definition 3.1. The Fourier transform of f : Zm → C in the frequency k ∈ Zm is

given by

f̂(k) =
m−1∑
t=0

f(t)e−2πikt/m.

The Fourier transform represents the original function in a frequency domain, where

the analysis of the function may be easier. An often used simplification is that, for

θ 6= 0, we have
m−1∑
t=0

eitθ =
1− eimθ

1− eiθ
. (3.1)
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We can compute the Fourier transform of a uniform distribution π on Zm as

π̂(0) =
m−1∑
t=0

1

m
e−2πi0t/p =

m−1∑
t=0

1

m
= 1

and

π̂(k) =
m−1∑
t=0

1

m
e−2πikt/m =

1

m

1− eimθ

1− eiθ
=

1

m

1− e−2πki

1− e−2πik/m
= 0.

Intuitively, the closer a random variable is to the uniform, the more the Fourier

transform tends to have a peak in zero state and a small value in non-zero state.

For the singular distribution δs at s ∈ Zm, we have

δ̂s(k) = e−2πiks/m.

Hence, to sum up the intuitive interpretation of Fourier transform, if the random

variable has a peak only at zero, then its Fourier transform behaves more like

uniform. If it has peaks everywhere, its transform behaves more like singular. The

power of discrete Fourier transform is that it is universally applicable:

Proposition 3.2. Any function f : Zm → C has the following Fourier expansion:

f(t) =
1

m

m−1∑
k=0

f̂(k)e2πikt/m, t ∈ Zm.

The reverse operation to the Fourier transform is the Inverse Fourier Transform

denoted by g : Zm → C and defined by

ǧ(t) :=
1

m

p−1∑
k=0

g(k)e2πikt/m, t ∈ Zm.

So we should expect the following proposition:

Proposition 3.3. If f : Zp → C, then̂̌g(t) = ˇ̂g(t) = g(t).

One very nice property of the Fourier transform is that it preserves the norm:

Proposition 3.4. (Plancherel’s Theorem) If f, g : Zp → C, then

〈f, g〉 =
1

p
〈f̂ , ĝ〉.

In particular, the L2 norm can be expressed as

‖f‖2 =
1
√
p
‖f̂‖2.

The Fourier transform is often used in conjunction with the convolution, which

is defined by:

Definition 3.5. The convolution operator ∗ of two functions f and g is given by

(f ∗ g)(t) :=

∫ ∞
−∞

f(τ)g(t− τ)dτ.
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One can quickly check that the convolution is commutative. Since we are only

interested in the discrete case, we can naturally replace the definition by summation

instead. The reason for using the convolution along with the Fourier transform is

the following:

Proposition 3.6. (Convolution Theorem) If f, g : Zp → C, then

f̂ ∗ g = f̂ ĝ.

Thus far we have reviewed some important properties of the Fourier transform

and the convolution. In the next section we will see how to apply some of the ideas

in the context of convergence rate.

4. Fourier Transform and Convergence Rate

In this section, we will show how to apply the results established above in the

context of stochastic variables. In particular, we will identify an upper bound

theorem ( 4.1) which will be the foundation of the sections which follow.

Theorem 4.1. Let µ : Zm → [0, 1] be a probability distribution and π is the uniform.

Then for all n ∈ N we have

1

2

√
1

m

∑
k∈Zm\{0}

|µ̂(k)|2n ≤ ‖µ∗n − π‖TV ≤
1

2

√ ∑
k∈Zm\{0}

|µ̂(k)|2n.

The reason for writing µ∗n is that after n steps the chain’s distribution is just the

convolution of µ n times. Let us prove the theorem.

Proof. To prove the upper bound, we may first write the total variation in terms of

the summation:

4 ‖µ∗n − π‖2TV =

(
m−1∑
t=0

|µ∗n(t)− π(t)|

)2

Since π(t) = 1/m for all t ∈ Zp, we have(
m−1∑
t=0

|µ∗n(t)− π(t)|

)2

= m2

(
m−1∑
t=0

π(t) |µ∗n(t)− π(t)|

)2

.

Now, we can use the inner product by defining

f(t) := π(t), and g(t) := |µ∗n(t)− π(t)| , t ∈ Zp,

Then, we use Cauchy-Schwartz Inequality to obtain(
m−1∑
t=0

π(t) |µ∗n(t)− π(t)|

)2

= |〈f, g〉|2 6 ‖f‖22‖g‖22. (4.1)

Now, we can compute the `2 norms as

‖f‖22 =
∑
t∈Zm

π(t)2 =
∑
t∈Zm

m−2 = m−1,
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and by definition of g :

‖g‖22 =
∑
t∈Zm

|µ∗n(t)− π(t)|2 .

Hence we have proved

4 ‖µ∗n − π‖2TV 6 m
∑
t∈Zm

|µ∗n(t)− π(t)|2 = m ‖µ∗n − π‖22 .

Now, here is the place we want to demonstrate the power of fourier transform and

its ability to preserve the norm: by Plancherel’s Theorem, we have that

m ‖µ∗n − π‖22 =
∥∥∥µ∗̂ − π∥∥∥2

2
=
∥∥∥µ̂∗n − π̂∥∥∥2

2
=

m−1∑
k=0

∣∣∣µ̂∗n(k)− π̂(k)
∣∣∣2 .

Since we know the Fourier transform of the uniform is

π̂(k) =

{
1, k = 0

0, k 6= 0

On the other hand, as µ∗n is a probability distribution, the Fourier transform

µ̂∗n(0) =
∑
t∈Zp

µ∗n(t) = 1.

Hence the difference

µ̂∗n(k)− π̂(k) =

{
0, k = 0

µ̂∗n(k), k 6= 0

Moreover, by the Convolution Theorem we have

µ̂∗n(k) = µ̂(k)n.

Thus
m−1∑
k=0

∣∣∣µ̂∗n(k)− π̂(k)
∣∣∣2 =

∑
k∈Zm\{0}

|µ̂(k)|2n.

Hence, the upper bound follows. To prove the lower bound, we only need to modify

equation (4.1) and the rest should be the same. In particular, it suffices to show

4 ‖µ∗n − π‖2TV ≥
∑
t∈Zm

|µ∗n(t)− π(t)|2 = ‖µ∗n − π‖22 ,

which is equivalent to show(
m−1∑
t=0

|µ∗n(t)− π(t)|

)2

≥
∑
t∈Zm

|µ∗n(t)− π(t)|2 .

A direct observation would confirm above inequality. Hence, we can conclude that

1

2

√
1

m

∑
k∈Zm\{0}

|µ̂(k)|2n ≤ ‖µ∗n − π‖TV ≤
1

2

√ ∑
k∈Zm\{0}

|µ̂(k)|2n.

�
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Let us now consider a concrete example of how to apply these bounds. Here,

we illustrate a simple random walk on a group as Xn+1 ≡ Xn + εn(mod m) where

εn = 0, 1, or −1, each with probability 1
3
, and X0 = 0. Let us call the distribution

of each step as εi ∼ µ(·). We want to show that e−αn/m
2 ≤ ‖Pn − π‖TV ≤ e−βn/m

2

where π is the uniform distribution and Xn ∼ Pn.

First, we may compute the Fourier transform as follows:

µ̂(j) =
∑
k

qkjµ(j) =
1

3
+

2

3
cos

2πj

m
.

Then, by Theorem 4.1, we can write it as

‖Pn − π‖2TV = ‖µ∗n − π‖2TV ≤
1

4

∑
j 6=0

µ̂2n(j) =
1

4

∑
j 6=0

(
1

3
+

2

3
cos

2πj

m

)2n

.

Then, the upper bound can be achieved by using

1

3
+

2

3
cosx ≤ e−2x

2/9 for 0 ≤ x ≤ π/2.

For the lower bound, we can use Proposition 4.1 with the choice as

f(j) = cos
2πj

m
.

We can verify that π(f) = 0. In addition, we can write

P (f) =
∑
j

Pn(j)f(j)

=
∑
j

Pn(j) cos
2πj

m

= Re
∑
j

Pn(j)e
2πj
m

= Re P̂n(1) =

(
1

3
+

2

3
cos

2π

m

)n
.

To conclude, we use exponential approximation of cosine again to have

‖Pn − π‖ ≥
1

2

(
1

3
+

2

3
cos

2π

m

)n
≥ e−αN/m

2

,

where α is some constant. To summarize, we have showed e−αn/m
2 ≤ ‖Pn − π‖TV ≤

e−βn/m
2

for a simple random walk on a finite group.

In the following section, we will consider a more complex example of applying

this Fourier analysis strategy.

5. The CDG Process

In this section, we will focus on bounding the convergence rate of the system

2Xn = Xn−1 + εn to the uniform as defined by the total variation distance with

the idea of Fourier transform. This system, known as the CDG process, is the
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precursor of our Fibonacci random generator, and we are interested in knowing,

in the following sections, if the strategies applying to this CDG process can be

similarly applied to our Fibonacci random generator. Before that, let us consider

the important theorem as an application of the Fourier transform approach. The

theorem we are going to prove in this section is the following:

Theorem 5.1. Suppose Xn satisfies

Xn+1 ≡ 2Xn + εn(mod m), X0 = 0, c > 1/ log 9,

where εn = 1, 0,−1 with equal probability of 1/3. Then for N ≥ c logm log logm,

we have ‖PN − U‖ → 0 as p→∞. In particular, the convergence rate is

‖PN − U‖2 ≤
1

2

(
e9
−d − 1

)
.

In this context, we call that c logm log logm would be ”sufficient”. This will be

the terminology used for the rest of the paper.

Proof. Let us first write the Xn in a more compact form:

XN ≡
N−1∑
a=0

2N−1−aεa(modm).

Then, recall the addition of random variables is the convolution. We may denote

µ(a)(0) = µ(a) (−2a) = µ(a) (2a) =
1

3
, 0 ≤ a ≤ N − 1,

so that

XN = µ(1)(·) ∗ µ(2)(·) · · · µ(N)(·).
This convenient expression allows up to apply the convolution theorem that simpli-

fies the Fourier transform:

P̂N =
N−1∏
a=0

µ̂(a).

Then, according to our upper bound theorem identified in the previous section, we

should next bound our total variation distance by the Fourier transform:

‖PN − U‖2 ≤
1

4

∑
k 6=0

|P̂ (k)|2

=
1

4

∑
k 6=0

N−1∏
a=0

(
1

3
+

2

3
cos

2π2ak

m

)2

.

Hence, all that is left is to bound the last term. There are different ways to do

the approximation, and here we will use the idea of binary expansion introduced

by Chung, Diaconis, and Graham [CDG] for this type of random process. Let us

define two functions,

g(x) :=

(
1

3
+

2

3
cos 2πx

)2
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and the function h : [0, 1]→ R by

h(x) =

{
1
9
, if x ∈

[
1
4
, 3
4

)
,

1, otherwise.

Function g(x) is exactly the term we are trying the bound for the total variation

distance. Our goal is to bound g(x) by h(x). Indeed, g(x) ≤ h(x) for 0 ≤ x ≤ 1.

Then, with {x} denoting the fractional part of x, we have

‖PN − U‖2 ≤
1

4

∑
k 6=0

N−1∏
a=0

h

({
2ak

m

})
. (5.1)

If we write x ∈ [0, 1) in its binary expansion

x = α1α2α3, . . . , αi = 0 or 1 (where αi = 0infinitely often)

then

h(x) =
1

9
if and only if α1 6= α2.

For we can check that under binary expansion 10, 01 mean x is between [1/2, 1/2 +

1/8] and [1/4, 1/4 + 1/8] respectively. The reason for this binary expansion is that

we have an exponential term with base 2 in equation (5.1). Thus, if Ax(N) denotes

the number of ”alternations” in the first N binary digits of x, i.e.,

Ax(N) := |{1 ≤ i < N : αi 6= αi+1}| ,

then
N−1∏
a=0

h

({
2ak

m

})
= 9−Ak/m(N+1).

Let us define the integer t to satisfy

2t−1 < m < 2t.

We shall choose N to be of the form rt for a large integer r = r(t) to be specified

later. Then we want to partition the binary digits. Let us consider the first N = rt

digits of the binary expansion of

k/p = α1α2 · · ·αtαt+1 · · ·α2t · · ·αrt · · · .
Then, we partition this string into r disjoint blocks Bki, 1 ≤ i ≤ r, each of length t,

by defining

Bki = α(i−1)t+1α(i−1)t+2 · · ·αit
Let A (Bki) denote the number of alternations in the block Bki. Thus,

N−1∏
a=0

h

({
2ak

m

})
≤

r∏
i=1

9−A(Bki). (5.2)

The inequality sign holds because we ignore the possible alternations between each

partitioned string and we only use the first N digits of the sequence. Now, let us

observe that for any k ranging over Zm\{0}, the blocks Bk1 should all be distinct.

Moreover, for any k ∈ Zm\{0}, Bk1 must have at least one alternation.
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Therefore, all Bk1 have at least one alternation. Since (2t,m) = 1 coprime for any

t ∈ N0, the set of blocks {Bki : 1 ≤ k ≤ m− 1} is the same as {B2ik1 : 1 ≤ k ≤ m− 1}.
By a similar argument, the set {B2ik1 : 1 ≤ k ≤ m− 1} must be distinct, and each

element must contain at least one alternation. Moreover, since there are only

m − 1 possible combinations of Bj1 for any j that is not a multiple of m, then

{Bki : 1 ≤ k ≤ m− 1} is a permutation of {Bk1 : 1 ≤ k ≤ m− 1}. In other words,

the two sets contain the exact same elements. Now by (5.1) and (5.2), we can write

‖PN − U‖2 ≤
1

4

∑
k 6=0

r∏
i=1

9−A(Bki)

Let us observe the algebraic inequality that if a ≤ a′, b ≤ b′, and 0 < γ < 1 then we

have

γa+b
′
+ γa

′+b ≤ γa+b + γa
′+b′ .

In our context, each ai corresponds to A(Bki) and γ corresponds to 1/9. Then, since

{Bki : 1 ≤ k ≤ m− 1} are all indentical in i, we want to rearrange them so that

every copy of A(Bk1) is grouped together. In other words, we have, by successively

interchanging pairs of exponents A (Bki) , A (Bk′i)∑
k 6=0

r∏
i=1

9−A(Bki) ≤
∑
k 6=0

9−rA(Bk1). (5.3)

Then, we want use the fact that for each element in {Bki : 1 ≤ k ≤ m− 1}, such

element has at least one alternation. In particular, the right-hand side of (5.3)

is upper-bounded by summing over all blocks B of length t having at least one

alternation:

{9−rA(Bk1), 1 ≤ k ≤ m− 1} ⊂ {9−rA(B), |B| = t, A(B) > 0}

so that ∑
k 6=0

9−rA(Bk1) ≤
∑

length B=t
A(B)>0

9−rA(B). (5.4)

As a result, the right hand term of (5.4) can be approached by the combinatorics

method. Let M(j) denotes the number of blocks of length t with exactly j alterna-

tions. Then

M(j) ≤ 2

(
t− 1

j

)
≤ 2

(
t

j

)
.

Here, we can apply the combinatorics fact that

t∑
j=1

(
t

j

)
xj = (1 + x)t − 1 ≤

(
etx − 1

)
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and we can summarize everything so far by letting x = 9−r:

‖PN − U‖2 ≤
1

4

∑
k 6=0

9−rA(Bk1)

≤ 1

4

∑
length B = t

A(B) > 0

9−rA(B)

≤ 1

4

t∑
j=1

M(j)9−rj

≤ 1

2

t∑
j=1

(
t

j

)
9−rj

=
1

2

{(
1 + 9−r

)t − 1
}

≤ 1

2

(
et9
−r − 1

)
.

Since the choice of r is at out disposal here, we can make

r ≥ log t

log 9
+ d

so that

‖PN − U‖2 ≤
1

2

(
e9
−d − 1

)
.

The last inequality would establish the convergence result as well as the upper

bound on convergence rate.

�

In the next section, we will transition to the discussion of Fibonacci random

generator of the form Xn+1 = Xn + Xn−1 + εn+1. The generator was originally

studied by Diaconis and Chatterjee in [2], who proved that the sufficient number of

steps for this generator is 5(logm)2 by a five-step argument. The next section will

briefly summarize this five-step strategy from [2], and discuss how to improve this

strategy to yield a better result.

6. The Fibonacci Generator

Let us first briefly go through the five-step arguments provided by Chatterjee and

Diaconis [CD] that concluded an upper bound of 5(logm)2.

(i) The Fibonacci random number generator takes the following form: define a

process X0, X1, . . . on Zm by X0 = 0, X1 = 1 and

Xk+1 = Xk +Xk−1 + εk+1 (modm)
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where εi are independent, taking values 0,1 and −1 with equal probabilities. Let

Pn(j) := P (Xn = j) and U(j) := 1/m for j ∈ Zm. The reason that this stochastic

process is a Fibonacci random number generator is that if we represent the sequence

in the explicit form, the chain can be written as

Xn = Fn + Fn−1ε2 + Fn−2ε3 + · · ·F1εn (modm)

with Fk the usual Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . (so F5 = 5).

(ii) Then, we want to Fourier transform this generator

P̂n(a) = E
(
e2πiaXk/m

)
= e2πiaFn/m

n−1∏
b=1

(
1

3
+

2

3
cos (2πaFb/m)

)
.

And bound the distance by such Fourier transform, according to the upper bound

result identified by Theorem 4.1:

4 ‖Pn − U‖2TV ≤
m−1∑
a=1

n−1∏
b=1

(
1

3
+

2

3
cos (2πaFb/m)

)2

. (6.1)

(iii) The third step would be to identify the interval of the form A = [1/3, 2/3].

Hence, if x ∈ A, then cos(2πx) ∈ [−1,−1/2]; so if Fb/n ∈ A, then

1

3
+

2

3
cos (2πaFb/n) ∈ [−1/3, 0].

In other words, in the cases where Fi ∈ A, we can bound the trigonometry function

of (6.1) by 9−1; in the other case, we can bound the function by 1. Therefore, we

are interested in knowing how many times we can apply this bound of 9−1.

(iv) The next step would be to find the frequency of the occurrences in such an

interval. The proposition for this frequency proved by Diaconis and Chatterjee is

the following:

Proposition 6.1. Take any m such that at least one xi is not divisible by m. Let

bn be the remainder of xn modulo m. Then, for any j, there is some j ≤ n ≤
j + 8 + 3 log3/2m such that bn ∈ [m/3, 2m/3].

(v) With this frequency, one will have that, if we let m′ = 8 + 3 log3/2m, then

we get that at least [(n− 1)/m′] among aF1, . . . , aFk−1 are in [m/3, 2m/3] modulo

m. Combining this with the upper bound lemma, Diaconis and Chatterjee have

established that

4 ‖Pn − U‖2TV ≤ n9−(n−1)/m
′
.

After simplification and some numerical calculations, those five steps lead to the

following theorem:

Theorem 6.2. For any m ≥ 22 and n = 5 [(logm)2 + c logm], ‖Pn − U‖TV ≤
1.6e−c/2.
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Therefore, the number of steps required is (5 + ε)(logm)2, where ε > 0.

There are not many ways one can improve this bound. Over the five steps, step

one and step two are essentially to establish the setting of the strategy. Step five

is to combine previous steps using upper bound lemma. The only places one can

potentially improve the bound by using this strategy is to improve step three and

step four. In particular, one wants to find an optimal choice of interval A and an

optimal upper bound on the functions (6.1) formed by the Fourier transform. In

the next section, we will show how exactly can we improve this result by focusing

on step three and step four.

7. Improvements over existing Fourier Bound

In this section, we will employ a similar argument to Diaconis and Chatterjee’s

proof [CD] in above section, and conclude with a better bound of 1.18(logm)2 steps.

In particular, we will consider to bound the trigonometry function by multiple

intervals. Let us go through few notations here. The set A is of the form [m/2 −
dm/2,m/2+dm/2] where d ≥ 1/3. Then, let us denote left-of-A as Al := [0,m/2−
dm/2), and right-of-A as Ar := (m/2− dm/2, 1]. It is convenient to write

β = sup
x∈A

(
1

3
+

2

3
cos(

2πx

m
)

)2

.

In this section, we use the classical bound on Fibonacci that Fn ≥ (3/2)n, n ≥ 11.

The basic idea of this demonstration is that since Diaconis and Chatterjee identified

the worst number of steps taken from any point to reach some interval A, we can

potentially improve the bound a little if we consider more intervals and run a similar

argument more carefully. The main result of this section is that the strategy we

follow is able to show 1.18(log n)2 steps would be sufficient, where the existing

bound is of 5(log n)2.

Proposition 7.1. Let us use bj denote the Fj mod m. With intervals Ar and Al so

defined above, if two consecutive bi and bi+1 are in the same interval, that is bi, bi+1 ∈
Ar or bi, bi+1 ∈ Al, at least some for some i+ 1 ≤ j ≤ i+ 11 + log3/2(m/2− dm/2)

we have bj ∈ A.

Proof. Let us observe that by symmetry, a point x ∈ A if and only if x−1 ∈ A.

Therefore, it suffices to consider only Al. Let us recall that since the size of A, or

dm, is at least m/3, so a Fibonacci sequence of any starting points cannot jump

over the inverval A. Therefore, the index of the next point bj will be bounded

according to the classical bound on Fibonacci we identified above. In other words,

at least some for some i+ 1 ≤ j ≤ i+ 11 + log3/2(m/2− dm/2).

�

Proposition 7.2. Whenever bi ∈ Ar and bi+1 ∈ Al, at least for some

i+ 1 ≤ j ≤ i+ 12 + log3/2(m/2− dm/2)



14 ETHAN BOGLE, OWEN BRASS, AND OWEN SHEN

we have either bj, bj+1 ∈ Ar or bj, bj+1 ∈ Al. Similarly, whenever bj ∈ Ar and

bi+1 ∈ Al, at least some for some

i+ 1 ≤ j ≤ i+ 12 + log3/2(m/2− dm/2)

we have bj, bj+1 ∈ Ar or bj, bj+1 ∈ Al.

Proof. Intuitively, this proposition determines the number of steps taken to have two

consecutive elements falling in the same interval, either in Ar or Al. By symmetry, it

suffices to consider only one case, namely that bi ∈ Ar and bi+1 ∈ Al. In particular,

it suffices to express the problem in some Fibonacci distance problem and use the

classical bound on Fibonacci we identified above.

Let us denote ε1 as n − 1 − bi and ε2 as bi+1. Intuitively, epsilons denote the

distance to the boundary. In particular, one distance to the left boundary and one

distance to the right boundary. In general, εk as n− 1− bi+k−1 and εk+1 as bi+k−1,

where k is odd. The goal is to find for some consecutive points in the future, one

distance becomes negative and the other distance remains positive. In that case,

we would have two consecutive points on the same interval, either in Ar or Al.

Indeed, let us first observe that ε3 can be expressed as ε1− ε2 so that ε1 = ε2 + ε3.

By inductive reasoning, we have εm = εm+1 + εm+2. Therefore, the distance declays

according to Backwards Fibonacci. Since our goal is to find the worst bound such

that this Backwards Fibonacci reaches negative, we consider the longest path from

0 to max{ε1, ε2} ≤ (m/2 − dm/2), which would take i + 11 + log3/2(m/2 − dm/2)

steps. We add one to this expression for we take consecutive points. As a result,

we can conclude that if bi ∈ Ar and bi+1 ∈ Al, at least some for some i + 1 ≤ j ≤
i+ 12 + log3/2(m/2− dm/2) we have bj, bj+1 ∈ Ar or bj, bj+1 ∈ Al.

�

Proposition 7.3. Whenever bi ∈ Ar, at least some for some

i+ 1 ≤ j ≤ i+ 23 + 2 log3/2(m/2− dm/2)

we have bj ∈ A.

Proof. This would follow from previous two propositions, for two steps after i, the

worst case would be either bi ∈ Ar and bi+1 ∈ Al, or bj ∈ Ar and bi+1 ∈ Al. So the

result follows.

�

Finally, let us note that the index for the first element in A is surely bounded

by 23 + 2 log3/2(m/2 − dm/2), and we are ready to conclude the result. After an

identical argument according to the strategy in previous section, we have

4 ‖Pn − U‖2TV ≤ mβ[(n−1)/m′],

where m′ = 23 + 2 log3/2(m/2− dm/2).

In the case where A = 1/3, which is the original choice by Diaconis and Chatter-

jee, we have

4 ‖Pn − U‖2TV ≤ m9−[(n−1)/m
′].
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where m′ = 23 + 2 log3/2(m/3). From this expression, one can numerically verify

that 2.9(logm)2 steps would be sufficient.

A different choice of d would be 1/2. The nice property about this choice is that

whenever a Fibonacci sequence arrivies at A from either Ar or Al, the sequence

would stay in A for at least two consecutive elements. Therefore, we can derive a

similar bound by using

4 ‖Pn − U‖2TV ≤ mβ[2(n−1)/m′],

where m′ = 24 + 2 log3/2(m/4) and β = supx∈[1/4,3/4](1/3 + 2/3 cos(2πx))2 = 1/9.

We double the coefficient of (k − 1) because the occurrence in A of this particular

choice of d will at least appear in pairs; we add one to m′ because we shift the

index when adding two elements instead of one in A. From this expression, one can

numerically verify that 1.4(logm)2 steps would be sufficient.

One can also test a different value of d, say d = 5/6. Then whenever a Fibonacci

sequence arrives at A from either Ar or Al, the sequence would stay in A for at

least three consecutive elements. Therefore, we can derive a similar bound by using

4 ‖Pn − U‖2TV ≤ mβ[3(n−1)/m′],

where m′ = 25+2 log3/2(m/12) and β = supx∈[1/12,11/12](1/3+2/3 cos(2πx))2 < 0.83.

Roughly 10.5(logm)2 steps would be sufficient.

Of course, we can test different values for d and find the optimal choice of d.

Moreover, one can combine several di and form an even tighter bound. For example,

one can count the number of occurrences in [1/4, 3/4], then count the number

of occurrences in [1/12, 11/12] − [1/4, 3/4]. In general, for a given sequence of

d1 < d2 < d3 · ··, the bound can be expressed as

4 ‖Pn − U‖2TV ≤ m

(
j∏
i=1

βi
[αi(n−1)/mi]−αi−1(n−1)/mi−1]

)
where αi denotes the number of consecutive occurences in Ai guaranteed by the

choice of di, βi = supx∈[1/2−d/2,1/2+d/2](1/3 + 2/3 cos(2πx))2, and mi = 22 + αi +

2 log3/2(m/2−dim/2). Here we have to manually define α0 = 0, for there is nothing

to subtract from the first interval d1.

In the example of combing d1 = 1/3, d2 = 1/2, we get

4 ‖Pn − U‖2TV ≤ m(
1

9
)[2(n−1)/m1](0.83)[3(k−1)/m2]−[(n−1)/m2],

where m1 = 24 + 2 log3/2(m/12) and m2 = 25 + 2 log3/2(m/12). It could be verified

numerically that 1.18(logm)2 steps would be sufficient:

Theorem 7.4. For a Fibonacci random generator, if n ≥ 1.18(logm)2, we have

‖Pn − U‖TV → 0 as m→∞.

Of course one may pursue a more complicated argument that combines more di
and potentially result in an coefficient that is smaller than 1.18. However, we will

not pursue further for we believe the actual bound is much smaller than the order of
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(logm)2 and combining more di would not help improving such order. To summa-

rize, the strategy proposed here allows us to improve the efficiency from 5(logm)2,

as suggested originally in Diaconis and Chaterjee, to 1.18(logm)2, and it is very

possible to even push this coefficiency beyond the threshood of 1(logm)2. However,

to look for a much better bound, one should probably take an alternative approach

or focus on few nicer cases. Those alternative approaches and the consideration of

special cases will be the focus on the remainder of this paper.

8. Special Case with Modulus 3k

In proving their upper bound on the mixing time of the Fibonacci process, Chat-

terjee and Diaconis [2] made use of the following estimate:

‖Pn − U‖2 ≤
1

4

∑
a6=0

n−1∏
b=0

(
1

3
+

2

3
cos

(
2πFba

m

))2

≤ 1

4
m

(
1

9

)(n−1)/(10 logm)

.

Note that the 10 logm comes from their estimate that it takes at most 10 logm

steps for any given Fibonacci sequence to enter the middle interval [m/3, 2m/3].

Certainly, something on the order of logm steps is necessary for some starting

points of the Fibonacci sequence, seeing as Fibonacci growth with x0 = 0, x1 = 1 is

approximately exponential after sufficiently many steps, and m/3 grows linearly in

m. On the other hand, if we can say that, for sufficiently many a, the sequence aFb
(mod m) will reliably enter the middle interval in a smaller number of steps, then

a better bound might be possible by breaking up the sum into “efficient” a and

“inefficient” a. In fact, gathering more detailed information about the Fibonacci

distribution on Z/mZ seems to be the only method by which the Fourier analysis

estimate approach can provide a bound on the mixing time which is better than

some quantity on the order of (logm)2.

Given this perceived potential for improvement, our goal in this section is to

estimate, given x0, x1 ∈ Z/mZ (not both 0), how many iterations it takes for the

Fibonacci sequence defined by xi+1 = xi + xi−1 to enter the interval [m/3, 2m/3].

Proposition 6.1, due to Chatterjee and Diaconis [2], provides a universal bound on

this quantity, but we believe it would be worthwhile to gain a deeper understanding

of the distribution. It will be shown in this section that, although a deeper under-

standing may be attainable, it seems to be insufficient to prove a bound of smaller

order than (log p)2 on the mixing time of the Fibonacci process using the Fourier

analysis approach.

We restrict ourselves to moduli of the form m = 3k throughout this section;

nonetheless, with some modification, one should be able to adapt the arguments

which follow to general m. We want to re-frame the Fibonacci sequence {xi} on

Z/mZ as a sequence {vi} on (Z/mZ)2 by defining:

v0 = (x0, x1), vi+1 = (v
(2)
i , v

(1)
i + v

(2)
i )



FIBONACCI RANDOM GENERATOR AND FOURIER ANALYSIS 17

Thus, our starting conditions will be completely determined by v0 ∈ (Z/mZ)2.

Now, observe that, using base-3 expansion, given any v ∈ (Z/mZ)2, we may write

out v uniquely in the form

v = a13
k−1 + a23

k−2 + · · ·+ ak−13 + ak

where a1, . . . , ak ∈ {0, 1, 2}2. We may identify {0, 1, 2}2 with (Z/3Z)2 in order to

make use of its ring structure; note that we may maintain the uniqueness of the

representation by restricting ourselves to writing out elements of Z/3Z only using

the representatives 0, 1, and 2.

Now, suppose that v is the starting point of our Fibonacci recursion (that is,

v0 = v). Consider the Fibonacci recursion on (Z/3Z)2:

...→ (0, 1)→ (1, 1)→ (1, 2)→∗ (2, 0)→ (0, 2)→ (2, 2)→∗ (2, 1)→∗ (1, 0)→ ...

The transitions marked with →∗ indicate steps where the corresponding Fibonacci

recursion {xi} on Z/3Z reaches the end of {0, 1, 2} and “wraps back around” in

Z/3Z. Each aj undergoes this cycle as the Fibonacci process is applied iteratively

starting at v0 = v; however, observe that they do not do so independently of one

another. When aj (for j > 1) reaches a transition marked by→∗, it follows that the

term 3k−jaj adds 3k−j+1 to the sum in the formula for xi, and hence it adds 1 to the

second component of aj−1, pushing it to a different position in the cycle. We will

call the process of aj adding 1 to the second component of aj−1 “incrementing one

below.” Another way in which aj could “increment one below” is if aj acquires a 2

in the second component after step i due to its natural cycle, and aj+1 “increments

one below” at step i, thus adding 1 to 2 in the second component of aj, and making

it so that the Fibonacci recursion in the jth slot “wraps back around” in Z/3Z.

Note that, in a single step, aj can at most increment 1 above, and no more (since it

can only wrap around at most once in a single step by the nature of the Fibonacci

recursion).

Note that this process of “incrementing one below” makes it so that another

possible state is added to the above cycle for aj on (Z/3Z)2, assuming j < k: in

the case that aj reaches (0, 2) at the ith step, and aj+1 increments one below, we

get that aj takes on the value (0, 0). It will stay in this state exactly until aj+1

increments one below again, at which point aj will take on the value (0, 1).

Our goal is to determine how many steps it takes for a1 to acquire a second com-

ponent equal to 1, as this is equivalent to the corresponding Fibonacci sequence {xi}
on Z/mZ entering the “middle third” [m/3, 2m/3]. Note that, without the process

of “incrementing one below,” meaning that if all of the aj’s simply independently

cycled through the standard Fibonacci sequence on (Z/3Z)2, it would take at most

5 steps for this to occur. In other words, we need to understand the process of “in-

crementing one below” in order to grasp what might prevent a1 from undergoing its

natural cycle and reaching a state with second component equal to 1 very quickly.

To this end, we define the following notion: A restricted orbit is a nonempty or-

dered collection u1, u2, . . . , up ∈ (Z/3Z)2 such that none of u1, u2, . . . , up have 1 in

the second component, and it is possible for a certain aj (for j sufficiently smaller
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than k) to take on the values, in order,

u1 → u2 → · · · → up → u1 → u2 → · · · → up;

that is, it is possible for aj to cycle through the list u1, u2, . . . , up twice in a row.

We may, without loss of generality, limit our attention to restricted orbits which do

not consist of the same list repeated multiple times.

Intuitively, the only way that a1 will be prevented from acquiring a 1 in its

second component is if it is inside of a restricted orbit (there are only two possible

next values for a given aj whose current value is known, and only finitely many

possible values; thus, if it stays away from values with 1 in the second component

for sufficiently many steps, then it will necessarily traverse a restricted orbit). The

problem then reduces to classifying the possible restricted orbits (of which there are

far fewer than might be expected), analyzing how many starting points allow a1 to

get stuck in such an orbit, and estimating how long it takes for a1 to escape each

type of restricted orbit.

Proposition 8.1. The only restricted orbits (up to repetition and ordering) are:

(1) (0, 0)

(2) (2, 2)

(3) (2, 0), (0, 2)

Proof. Firstly, we will show that all three of these are indeed restricted orbits. We

use the notation (aj)i to mean aj at step i. We may assume that j < k. Suppose

that (aj)i = (0, 0). Moreover, suppose that (aj+1)i = (0, 0). In the next step,

there are two options: either aj+2 does not increment one below, in which case

(aj+1)i+1 = (0, 0), and (aj)i+1 = (0, 0), or aj+2 increments one below, in which

case (aj+1)i+1 = (0, 1), but aj+1 still does not increment one below, and hence

(aj)i+1 = (0, 0). In any case, we see that it is possible to have (aj)i = (0, 0) and

(aj)i+1 = (0, 0). By definition, (0, 0) is a restricted orbit.

Now, suppose that (aj)i = (2, 2), and suppose that (aj+1)i = (2, 2). In the next

step, suppose that aj+2 increments one below. In this case, (aj+1)i+1 = (2, 1) (and

in particular hits a transition marked by→∗), so aj+1 increments one below. At the

same time, the “natural” transition for aj is to obtain the value (2, 1), but aj+1 has

incremented one above, so it instead re-obtains the value (aj)i+1 = (2, 2). We see

that it is possible to have (aj)i = (aj)i+1 = (2, 2). By definition, (2, 2) is a restricted

orbit.

Now, suppose that (aj)i = (aj+1)i = (aj+2)i = (2, 0). In the next step, sup-

pose that aj+3 does not increment one below. Then, we would have that all three

of aj, aj+1, aj+2 maintain their “natural” cycles, and hence (aj)i+1 = (aj+1)i+1 =

(aj+2)i+1 = (0, 2). Now, suppose that in the next step, aj+3 does increment one

below. The natural cycle for aj+2 would be to take on the value (2, 2) next, but

when it gets incremented by aj+3, it instead takes on the value (2, 0) and increments

one below. By the same logic, the same occurs for aj+1 and aj+2, so that we return

to (aj)i+2 = (aj+1)i+2 = (aj+2)i+2 = (2, 0). Finally, if in the next step aj+3 does
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not increment one below, we again obtain (by the same reasoning as in the first

step) (aj)i+3 = (aj+1)i+3 = (aj+2)i+3 = (0, 2). Note that we can repeat this process

over and over again so long as aj+3 continues alternating between incrementing one

below and not incrementing one below (it may be seen that the only way for this

to be possible is if aj+3 is stuck in the same restricted orbit (2, 0), (0, 2)). Thus, we

have that aj has, in order, taken on the values

(2, 0)→ (0, 2)→ (2, 0)→ (0, 2)→ (2, 0).

By definition, (2, 0), (0, 2) is a restricted orbit (and as is (0, 2), (2, 0)).

Now, we will show that these are all of the restricted orbits. A restricted orbit

must be nonempty, and hence must include at least one element of (Z/3Z)2. Suppose

that it includes (0, 0). The only possible next values for aj after (0, 0) are (0, 0) (in

the case that aj+1 does not increment one below) and (0, 1) (in the case that aj+1

does increment one below). But (0, 1) cannot be in a restricted orbit, because it

has 1 in the second component. Therefore, inductively, any restricted orbit which

contains (0, 0) must consist only of (0, 0)’s (as we must be able to go through the

orbit twice without reaching an element with a 1 in the second component). Since

we are limiting to restricted orbits which do not consist of the same list repeated

multiple times, we conclude that the only restricted orbit containing (0, 0) is the

list consisting only of (0, 0).

Suppose that the restricted orbit includes (2, 2). The only possible next values

for aj after (2, 2) are (2, 1) (in the case that aj+1 does not increment one below)

and (2, 2) (in the case that aj+1 does increment one below). But (2, 1) cannot be

in a restricted orbit. Therefore, the only restricted orbit containing (2, 2) is the list

consisting only of (2, 2).

Suppose that the orbit includes (2, 0). The only possible next values for aj after

(2, 0) are (0, 2) (in the case that aj+1 does not increment one below) and (0, 0) (in

the case that aj+1 does increment one below). But we already know that (0, 0)

cannot be in any restricted orbit other than the list (0, 0) itself, so we must have

that (0, 2) is next in the restricted orbit. The only possible next values for aj after

(0, 2) are (2, 2) (in the case that aj+1 does not increment one below) and (2, 0) (in

the case that aj+1 increments one below). As with (0, 0), we already know that

(2, 2) cannot be in any restricted orbit other than the list (2, 2) itself, so we must

have that (2, 0) is next in the orbit. By the same reasoning as before, we must then

return to (0, 2), and so on. This shows that the only restricted orbit containing

either (2, 0) or (0, 2) is (2, 0), (0, 2) (or (0, 2), (2, 0)).

It is clear that no restricted orbit can contain either (1, 0), (1, 2), since, in order

take on these values in one step, aj would have to start at a value with 1 in the

second component, and no such element can be a part of a restricted orbit. Of

course, by definition, none of (0, 1), (1, 1), or (2, 1) are in a restricted orbit. We

conclude that (0, 0), (2, 2), and (2, 0), (0, 2) are (up to repetition and ordering) the

only possible restricted orbits.

�
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Observe that the only way out of restricted orbit (1) (i.e. (0, 0)) for aj is to be

iterated by aj+1 and forced to go to (0, 1), so we know that, if a1 = (0, 0) initially,

then the number of steps it takes for a1 to acquire a second component equal to 1 is

precisely the number of steps required to escape orbit (1). Similarly, the only way

out of orbit (2) (i.e. (2, 2)) for aj is for aj+1 to fail to iterate one below so that aj
proceeds naturally to (2, 1). Thus, if a1 = (2, 2) initially, then the number of steps

it takes for a1 to acquire a second component equal to 1 is precisely the number of

steps required to escape orbit (2).

Meanwhile, in the case of restricted orbit (3) (i.e. (2, 0), (0, 2)), there are two

ways by which aj could escape the orbit: one option is that aj has value (2, 0),

and in the next step aj+1 increments one below, so aj acquires the value (0, 0) (and

hence falls into orbit (1)); the other option is that aj has value (0, 2), and in the

next step aj+1 fails to increment one below, so aj acquires the value (2, 2) (and

hence falls into orbit (2)).

Some important (though imprecise) observations about each orbit is the following:

(1) In order for aj to remain stuck in orbit (1), aj+1 needs to be consistently

failing to increment one below at every step, which only happens for many

steps on end if aj+1 is itself stuck in orbit (1);

(2) In order for aj to remain stuck in orbit (2), aj+1 needs to be consistently

incrementing one below at every step, which only happens for many steps

on end if aj+1 is itself stuck in orbit (2);

(3) In order for aj to remain stuck in orbit (3), aj+1 needs to be consistently

alternating between incrementing one below and failing to increment one

below (in the right order), which only happens for many steps on end if aj+1

is itself stuck in orbit (3) (at the same position as aj).

Inductively, these observations imply that aj remains “stuck” in a restricted orbit

if and only if aj+r is stuck in the same orbit for all r ∈ {1, . . . , R} (for some R ≥ 1),

where the number of steps increases with increasing R. We make this intuition

precise with the following propositions.

Proposition 8.2. Suppose that, for v = v0 written out in the form

v = a13
k−1 + a23

k−2 + · · ·+ ak−13 + ak,

we have that a1 = (0, 0). Let t be the smallest index such that at 6= (0, 0). Then

it will take at least 2(t − 2) + 1 and at most 3(t − 2) + 4 steps of the Fibonacci

recursion for the sequence {xi} ⊂ Z/3kZ corresponding to {vi} ⊂ (Z/3kZ)2 to enter

the interval [m/3, 2m/3].

Proof. By the minimality of t, we know that (aj)0 = (0, 0) for all j ∈ {1, . . . , t− 1}.
Note that no incrementation will occur on any aj (for j ∈ {1, . . . , t − 2}) without

first occurring on aj+1; thus, our analysis will begin at at and work downwards to

a1. Since (at)0 6= (0, 0), one may check that it will take at most 4 steps for at
to “increment one below” (4 is the largest number of steps possible before hitting
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a transition in the “natural cycle” on (Z/3Z)2 marked with a →∗, and being in-

cremented by at+1 could only possibly decrease the number of steps necessary for

at to “increment one below”). We will denote by `t ∈ [1, 4] the number of steps

required for at to increment one below. When at increments one below, at−1 will

acquire a value of (0, 1); that is, we have that (at−1)`t = (0, 1). Since the transi-

tion (0, 0)→ (0, 1) induces no increment below, we have that (aj)`t = (0, 0) for all

j ∈ {1, . . . , t− 2}.
Referring again to the “natural Fibonacci cycle” on (Z/3Z)2, we see that it will

take at most 3 additional steps for at−1 to increment one below (exactly 3 if at
does not increment one below during those steps); on the other hand, it will take

at least 2 steps, since the first additional step after step ` will send at−1 naturally

to (1, 1) (which causes no increment below), or, if at increments one below, to (1, 2)

(which again causes no increment below). Thus, no matter what, we must have

that (at−2)`t+1 = (0, 0) (and, of course, likewise for all j ∈ {1, . . . , t− 3}). We will

denote by `t−1 ∈ [2, 3] the number of additional steps it takes for at−1 to increment

one below.

Thus, we have that (at−2)`t+`t−1 = (0, 1), and (aj)`t+`t−1 = (0, 0) for all j ∈
{1, . . . , t − 3}. By the same logic as above, the number of additional steps `t−2 it

takes for at−2 to increment one below will lie inside of [2, 3].

We repeat this process for at−3, at−4, . . . , a3, a2, finding at each step that the num-

ber of additional steps `j required to increment one below lies inside of [2, 3]. Ulti-

mately, we obtain that the first step n where (a1)n 6= (0, 0) (and hence, necessarily,

where (a1)n = (1, 0)) is given by:

n = `t + `t−1 + · · ·+ `2.

Since `t ∈ [1, 4] and `j ∈ [2, 3] for all j ∈ {2, . . . , t− 1}, it follows that

n ∈ [2(t− 2) + 1, 3(t− 2) + 4],

as claimed. The statement is proven. �

We obtain a similar result for the case where a1 = (2, 2).

Proposition 8.3. Suppose that, for v = v0 written out in the form

v = a13
k−1 + a23

k−2 + · · ·+ ak−13 + ak,

we have that a1 = (2, 2). Let t be the smallest index such that at 6= (2, 2). Then

it will take at least 2(t − 2) + 1 and at most 3(t − 2) + 4 steps of the Fibonacci

recursion for the sequence {xi} ⊂ Z/3kZ corresponding to {vi} ⊂ (Z/3kZ)2 to enter

the interval [m/3, 2m/3].

Proof. The proof is nearly identical to that for Proposition 8.2. �

From Proposition 8.2, we obtain the following corollary.
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Corollary 8.4. For 2 ≤ q ≤ k = log3m, a proportion of at least
(
1
9

)q
of all

possible starting points in (Z/mZ)2 produce a corresponding Fibonacci sequence

{xi} ⊂ Z/mZ which fails to enter [m/3, 2m/3] within 2(q − 2) + 1 steps.

Proof. Starting points v ∈ (Z/mZ)2 with a1 = (0, 0) account for exactly 1
9

of all

starting points. Furthermore, given that a1 = (0, 0), exactly 8
9

of all such elements

have a2 6= (0, 0) (so that 2 is the smallest t with at 6= (0, 0)). Similarly, exactly
8
9
· 1
9

of all elements with a1 = (0, 0) have a2 = (0, 0) and a3 6= (0, 0) (so that 3 is

the smallest t with at 6= (0, 0)). In general, a proportion of exactly 8
9
·
(
1
9

)t−2
of all

elements with a1 = (0, 0) have aj = (0, 0) for all j ∈ {1, . . . , j − 1} and at 6= (0, 0).

We know from Proposition 8.2 that, given that a1 = (0, 0), the only elements which

could enter [m/3, 2m/3] within 2(q − 2) + 1 steps are those for which the minimal

t with at 6= (0, 0) is at most equal to q. Thus, we have that an upper bound on

the proportion of starting points with a1 = (0, 0) which enter [m/3, 2m/3] within

2(q − 2) + 1 steps is given by:

8

9

(
q−2∑
j=0

(
1

9

)j)

=
8

9

(
1−

(
1
9

)q−1
1− 1

9

)

= 1−
(

1

9

)q−1
.

Therefore, a lower bound on the proportion of starting points with a1 = (0, 0) which

fail to enter [m/3, 2m/3] within 2(q−2)+1 steps is
(
1
9

)q−1
. Since v ∈ (Z/mZ)2 with

a1 = (0, 0) account for 1
9

of all starting points, it follows that at least a proportion of(
1
9

)q
of all possible starting points in (Z/mZ)2 produce a corresponding Fibonacci

sequence {xi} ⊂ Z/mZ which fails to enter [m/3, 2m/3] within 2(q − 2) + 1 steps.

The statement is proven. �

Note that, using Proposition 8.1, similar results may be obtained for other start-

ing values of a1 (besides (0, 0) and (2, 2)). However, Corollary 8.4 is sufficient to

explain why it seems likely that the Fourier analysis approach will not be able to

give a bound on the mixing time of the Fibonacci generator which is of a smaller

order than (logm)2. We recall the estimate given by the Fourier upper bound

theorem (Theorem 4.1):

‖Pn − U‖2 ≤
1

4

∑
a6=0

n−1∏
b=0

(
1

3
+

2

3
cos

(
2πFba

m

))2

.

We make the assumption that the sequences aFb with a < m
3

have starting points

which are representative of the set of all starting points in the first third [0,m/3]

(this is in fact conservative, since the first starting point for all such sequences is

0, so there is in fact a higher likelihood is having a larger number of (0, 0)’s for

the aj’s). We want to break up the sum between “efficient” a and “inefficient” a
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(where “efficient” a correspond to sequences aFb which enter the middle interval

more frequently). Let g(m) be the number of steps (in terms of m) which it takes

for “efficient” sequences to enter the middle interval, and let n(m) be the mixing

time (in terms of m). We know from Corollary 8.4 that the number of “inefficient”

a, say Q, will be bounded below as follows

Q ≥ m

3

(
1

9

) g(m)+3
2

Note that this lower bound is quite conservative, since we have only accounted for

the “inefficient” a inside of the first third. We will assume (generously) that Q is

fairly close to this lower bound, so that in particular (for large m), Q is much smaller

than m. Moreover, since the Fibonacci sequence grows approximately exponentially

after sufficiently many steps, we know that some starting points of the Fibonacci

sequence will require something on the order of logm steps to reach the middle

interval, so we will assume that 1 in C1 logm (for C1 a constant) is the frequency

of entering the middle interval for the “inefficient” sequences. Thus, we may break

up the sum as follows:

1

4

∑
a6=0

n(m)−1∏
b=0

(
1

3
+

2

3
cos

(
2πFba

m

))2

≤ 1

4

(
(m−Q)

(
1

9

)n(m)
g(m)

+Q

(
1

9

) n(m)
C1 logm

)
In order for this expression to converge to 0 as m→∞, we must have that n(m) is

at least sufficiently large to cancel out g(m) and (m−Q) ≈ m from the first term

and sufficiently large to cancel out C1 logm and Q from the second term. Thus,

with C2, C3 > 0 being some constants, we must have that:

n(m) = C2g(m) log(m) = C3 log(m) log(Q)

≥ C3 log(m) log

(
m

3

(
1

9

) g(m)+3
2

)
.

Solving for g(m), we have:

C2

C3

g(m) ≥ log

(
m

3

(
1

9

) g(m)+3
2

)

e
C2
C3
g(m) ≥ m

3

(
1

9

) g(m)+3
2

3g(m)+4e
C2
C3
g(m) ≥ m

e(log 3+C2/C3)g(m)+4 log 3 ≥ m

g(m) ≥
(

1

log 3 + C2/C3

)
logm− 4 log 3

log 3 + C2/C3

.
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Plugging this back into the mixing time n(m), we obtain that

n(m) ≥
(

C2

log 3 + C2/C3

)
(logm)2 −

(
4 log 3

log 3 + C2/C3

)
logm

which is still on the order of (logm)2. Thus, we see that, even equipped with more

knowledge about the behavior of Fibonacci sequences on Z/mZ (and some generous

assumptions), the Fourier analysis approach still fails to give an upper bound on

the mixing time of the Fibonacci random process of order smaller than (logm)2. As

such, it seems advisable that the Fourier analysis strategy be abandoned in future

research with the aim of improving this particular bound.

Nevertheless, the results of this section and the section which follows may be of

more general interest to those studying the distribution of Fibonacci sequences on

Z/mZ.

9. The Fibonacci Distribution Problem

Chung, Diaconis, and Graham’s [3] study of the systemXn+1 = 2Xn+εn (mod m)

using Fourier analysis exploited similarities in the base-2 expansions of a/m, as a

ranged from 1 tom−1. When Chatterjee and Diaconis [2] attempted to use the same

technique to study the Fibonacci system Xn+2 = Xn+1 + Xn + εn (mod m), they

needed information about the long-term behavior of (deterministic) Fibonacci-type

sequences modulo m. This is not well-studied, which forced them to make do with

a worst-case scenario result, namely Proposition 6.1. We have somewhat improved

upon their result with our results in Section 7.

In the present section, therefore, we concern ourselves with the purely number-

theoretic general question:

Aim. What is the long-term behavior, modulo m, of any sequence x0, x1, x2, . . .

obeying the Fibonacci relation

xn+1 = xn + xn−1.

As this is a purely number-theoretic question, this section is independent of all

prior sections.

While a great deal is known about the periodicity of Fibonacci-type sequences

modulo m, the Fibonacci Distribution Problem (i.e. the distribution of those ele-

ments mod m), does not appear to be well-studied, at least as we have formulated

it. We first present a useful and visually descriptive reformulation of the problem by

associating to each modulus m a cycle-disjoint graph on m2 vertices. We will also

present a review of known results, which almost exclusively deal with the length of

said cycles.

Computational experiments allowed us to formulate a number of reasonable-

sounding conjectures, but even the simplest ones proved unexpectedly difficult to

prove. These conjectures and associated questions will be listed, and we hope that

the proofs or refutations of some or all of them will not be too difficult for future

investigators to unearth.
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9.1. Definitions: Cycles in the Fibonacci Directed Graph of Ordered

Pairs. Observe that knowing the values of xn and xn−1 mod m completely de-

termine the entire future and past of the Fibonacci-type sequence x0, x1, x2, . . .

modulo m. Therefore, if the same sequence of two values xn−1, xn ever repeats, the

entire sequence will be periodic mod m. Since there are only m2 possible pairs of

values xn−1, xn, a pair of successive values is bound to reappear within m2 steps, so

every Fibonacci-type sequence is periodic modulo m.

This can be formalized as follows: Define the map

f : Zm × Zm → Zm × Zm, (a, b) 7→ (a+ b, a)

Then observe that both the first and second components of fn(a, b) (where the

exponent denotes repeated function composition) satisfy the Fibonacci relation as

n increases. Of course, letting the elements of Zm×Zm be a vertex set, we can define

the graph representation G(m) of the Fibonacci iterator f by defining G(m) to be

the directed graph on Zm × Zm having directed edges (a, b) → f(a, b). This gives

us a very quick way to visualize the action of the Fibonacci recursion on Zm ×Zm.

For example, G(4) and G(6) are:

Several patterns are immediately apparent and easily proven:

Fact. Each ordered pair (a, b) has exactly one successor, namely (a + b, a), and

exactly one predecessor, namely (b, a − b). Therefore, G(m) consists of disjoint

directed cycles. Moreover, (0, 0) is the only ordered pair that maps to itself, hence

the only one-element cycle.

This basic groundwork naturally prompts three inquiries:

(1) Given m, what is the set of cycle lengths that make up the graph G(m)?

(2) Given a starting ordered pair (a, b), how long is the cycle containing it?

(3) Given a starting ordered pair (a, b) and δ ∈ [0, 1/2], how many elements of

the cycle containing (a, b) lie in [δm, (1− δ)m]?
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The language used to state (3) is not rigorously defined. We remedy this.1

Definition 9.1. The Fibonacci Iteration Function f and the Fibonacci GraphG(m)

are defined as above. Moreover:

(1) Given an ordered pair (a, b) ∈ Zm × Zm, the set of all ordered pairs in the

same cycle as (a, b) in G(m) is denoted Cm(a, b), or C(a, b) if m is clear from

context.

(2) Naturally, |Cm(a, b)| denotes the length of said cycle. This function is com-

monly known as the Pisano Period, especially if the starting pair is (1, 0).

Usually, the Pisano Period is written with the notation π(m) = |Cm(1, 0)|,
or more generally π(a,b)(m) = |Cm(a, b)|. Most results about cycle length are

expressed using this notation, and due to its compactness, we will use it as

well.

(3) If a set C ⊆ Zm × Zm just happens to represent a cycle of G(m), we freely

abuse notation by writing C ∈ G(m).

(4) We say that an ordered pair (a, b) ∈ Zm × Zm lies in the interval [c, d] ⊆
[0,m], where 0 ≤ c ≤ d ≤ m, if a is equivalent to2 an element of [c, d], or

alternatively if
a

m
−
⌊ a
m

⌋
∈
[
c

m
,
d

m

]
.

We freely abuse notation and write (a, b) ∈ [c, d] in this case.

(5) If C is a cycle, we define

χδ(C) = |{(a, b) ∈ C : (a, b) ∈ [δm, (1− δ)m]}| and χδ(a, b) = χδ(C(a, b)).

That is, χδ counts the number of elements of a cycle falling within the

associated “middle interval”.

(6) If C is a cycle, then we define

κδ(C) =
|χδ(C)|
|C|

and κδ(a, b) = κδ(C(a, b)).

That is, κδ measures the ratio of cycle elements in the middle interval

[δm, (1− δ)m] to the total number of cycle elements.

(7) We define Mδ(m) to be the minimum value of κδ over all cycles, or equiva-

lently over all ordered pairs. That is:

Mδ(m) = min
C∈G(m)

κδ(C) = min
(a,b)∈Zm×Zm

κδ(a, b).

1As this appears to be a new area of inquiry, this notation is by no means standardized. There
may exist better notation. The use of f and G for the iteration function and graph, respectively,
should be clear. C stands for “cycle”, of course. Although closely related, we defined χδ and
κδ as separate entities because, while χδ is a direct count, and probably easier to work with
mathematically, κδ captures the idea of long-term behavior better. Since both are counts or
closely related to counts, and C and c are already in use, we chose the c-sounding Greek letters χ
and κ to represent these functions.
2We thus treat a as the “observed value” of the ordered pair (a, b), though in theory we could
treat b as the observed value instead and all the same results would hold.
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With these definitions in hand, it will now be possible to efficiently state known

results and conjectures.

9.2. Known Results. The majority of known results pertain to the the value

of π(m) = |Cm(1, 0)| for various values of m, or more generally to π(a,b)(m) =

|Cm(a, b)|. The website [4] provides a more complete list of results, but we list some

of the most interesting and potentially relevant here:

Theorem 9.2 (Listed in Renault). Bounds and Particular Values of π(m),m =

2, 3, 4, . . . :

(1) Parity: π(2) = 3, and π(m) is even otherwise.

(2) Upper Bound: π(m) ≤ 6m. Equality holds exactly when m = 2 · 5k, k =

1, 2, 3, . . . .

(3) Lower Bound: If Lk ≤ m, then π(m) ≥ 2k. Equality can hold, for example

if m = Lk and k ≥ 3 is odd.

(4) Fibonacci Number Moduli: If k ≥ 4 is even, then π(Fk) = 2k. If k ≥ 5 is

odd, then π(Fk) = 4k.

(5) Lucas Number Moduli: If k ≥ 3 is odd, then π(Lk) = 2k. If k ≥ 4 is even,

then π(Lk) = 4k.3

(6) Fixed Points: π(m) = m if and only if m = 24 · 5k for k = 1, 2, 3, . . . .

Theorem 9.3 (Listed in Renault). Computing π(m):

(1) π(lcm(m,n)) = lcm(π(m), π(n)). Consequently, n | m implies π(n) | π(m)

and if pe11 p
e2
2 · · · p

ek
k is the prime factorization of m, then

π(m) = lcm(π(pe11 ), π(pe22 ), . . . , π(pekk )).

(2) If p is a prime, then π(pe) = pe−1π(p) unless π(p) = π(p2), in which case p is

called a Wall-Sun-Sun prime. No Wall-Sun-Sun primes are known to exist

(i.e. any prime you can physically write down has already been confirmed

not to be a Wall-Sun-Sun prime).

(3) If p is a prime, then π(2) = 3, π(5) = 20, π(p) | p− 1 if p ≡ ±1 (mod 10),

and π(p) | 2p+ 2 if p ≡ ±3 (mod 10).

Theorem 9.4 (Listed in Renault). Assume throughout that gcd(a, b,m) = 1. In

the case that gcd(a, b,m) > 1, the system can be reduced to a smaller one by dividing

all numbers by gcd(a, b,m). Moreover, define D = b2 − ab− a2.

(1) π(a,b)(m) | π(m).

(2) If gcd(D,m) = 1, then π(a,b)(m) = π(m).

(3) Theorem 9.3(1) holds with π(a,b) in place of π.

(4) π(a,b)(2
e) = π(2e).

(5) π(a,b)(5
e) = π(5e) unless 5 | D, in which case π(a,b)(5

e) = (1/5)π(5e).

(6) If p ≡ ±3 (mod 10) is prime, then π(a,b)(p
e) = π(pe).

3Though stated to be a well-known result on Wikipedia, we have been unable to find a reliable
source for this particular result. We proved most of this result independently as just a matter of
algebra, however, and have no reason to doubt it.
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(7) Suppose p ≡ ±1 (mod 10) is prime. If π(pe) ≡ 0 (mod 4), then π(a,b)(p
e) =

π(pe). If π(pe) ≡ 2 (mod 4), then either π(a,b)(p
e) = π(pe) or π(a,b)(p

e) =

(1/2)π(pe), and there are ordered pairs (a, b) producing both values.

Remark 9.5. The results above are quite extensive without being completely exhaus-

tive, almost completely answering question (2) from the beginning of this section.

With a little interpretation, these results might go a long ways towards providing

a complete characterization of the cycle lengths for various moduli m and thereby

answering question (1) from the beginning of this section.

Remark 9.6. It should be noted that the cycle lengths can go as low as around log(m)

steps (for example if m is a Lucas or Fibonacci number) or as high as 6m steps.

Since the CDG convergence theorems described in the rest of this paper assume only

taking somewhere between O(logm) and O((logm)2) steps, merely answering the

questions asked in the beginning of this section will not be sufficient to determine

the mixing time of the Fibonacci CDG process except when the maximum cycle

length is known to be O(logm) (or maybe slightly worse).

Remark 9.7. There is one paper we could find that dealt more directly with the

Fibonacci Distribution Problem (problem (3) formulated above), by Bundschuh

and Bundschuh [1]. They gave a rather comprehensive description of the residues

of the Fibonacci and Lucas numbers when m is a power of 3, but it it not intuitive

and would take some work to translate into an answer for question (3). We therefore

omit it here and encourage the reader to check out the original paper.

Having summarized what is known about the answers to questions (1) and (2),

we now turn to question (3).

9.3. Conjectures on the Distribution of Fibonacci Numbers Modulo m.

We now present a series of conjectures that seem to be true based on computational

evidence. Almost all of these deal specifically with Lucas Number moduli, which

seem to be even nicer than Fibonacci Number moduli in many respects.

Conjecture 9.8. For all k ≥ 3 and a, b ∈ ZLk , (a, 0) and (b, 0) are not in the same

cycle (i.e. CLk(a, 0) 6= CLk(b, 0)) unless k is even and a ≡ −b (mod Lk), in which

case they are.

This seems like a matter of algebra to prove, or could fall out from a more

thorough treatment of cycle types and cycle lengths specifically targeted at Lucas

Number moduli. A similar uniqueness does not appear to hold for the Fibonacci

numbers (or more general numbers). For example (1, 0) is in the same cycle as (5, 0)

in G(8). Nevertheless, studying which of the set of pairs (1, 0), (2, 0), . . . , (m− 1, 0)

tend to show up in the same cycles would likely be vital to a fuller understanding

of the cycle decomposition of G(m). Note, however, that there are usually cycles

that do not include any 0s at all, and hence no pairs of the form (a, 0) or (0, a).

Conjecture 9.9. For all k ≥ 3, κ1/3(Lk) = 1
2k

. Moreover, if Lk < m < Lk+1, then

κ1/3(Lk) >
1
2k

.
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Here is a graph of M1/3(m) for 2 ≤ m ≤ 125 and beside it a graph of the running

minimum value of M1/3.

It can be checked that the points at which M1/3 attains a new low are precisely the

Lucas Numbers, and the rest of the conjecture can be checked to correspond to the

computational data.

This conjecture does not appear to be directly generalizable to all δ. For example,

when δ = 1/4, the values of m at which a new minimum value of M1/4(m) are

obtained are m = 5, 7, 9, 11, 13, 17, 29, 47, 72, 123, which as of this writing do not

line up with any known sequences according to the OEIS. The actual value of

M1/4(m) at these points also does not follow a recognizable pattern.

Conjecture 9.10. For all sufficiently large k, Mδ(Lk) = κδ(CLk(1, 0)). That is,

the starting pair (1, 0) gives the lowest fraction of cycle elements in the middle

interval. In particular, M1/3(Lk) = κ1/3(CLk(1, 0)) for all k ≥ 3, and M1/4(Lk) =

κ1/4(CLk(1, 0)) for all k ≥ 4.

Although this has been observed to hold in certain small cases, this particular

conjecture is mainly inspired by wishful thinking. If this were true, then we would

only have to restrict ourselves to the Fibonacci sequence itself to identify the worst-

case behavior of κδ across all starting pairs whenever m is a Lucas Number. It is

also possible this conjecture could be extended to Fibonacci Number moduli.

Conjecture 9.11. For sufficiently large k, the value of χδ(CLk(1, 0)) is dependent

only on δ and whether k is odd or even. In particular, for k ≥ 3,

χ1/3(CLk(1, 0)) =

{
1 k is odd

2 k is even

and for k ≥ 4,

χ1/4(CLk(1, 0)) =

{
3 k is odd

6 k is even

If true, this conjecture quantifies how strongly the Fibonacci sequence tends to

“cluster” around the edges (i.e. close to 0) rather than in the middle (i.e. close to

m/2). The intuition is rather simple: we are trying to find the solutions n of the

inequality

δ ≤ Fn
Lk
−
⌊
Fn
Lk

⌋
≤ (1− δ).
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For small n, the middle term is close to ϕn−k/
√

5 (where ϕ is the golden ratio),

and taking logs reveals that there are a fixed number of solutions regardless of k.

However, making this formal, even in the δ = 1/3 case, has proved quite difficult.

For one, the error
Fn
Lk
− ϕn−k√

5
grows exponentially with n, so we will probably need to intentionally restrict to

small n (which is okay given periodicity) in order to keep the error manageable.

Even so, the error still causes problems to the argument. The situation is further

complicated by the fact that Fk
Lk
→ 1√

5
as k →∞, implying that the size of k needed

to ensure stability in the value of χδ may blow up as δ approaches 1√
5
.

Although the line of inquiry above has taken us quite far from the original topic

of this paper, it is quite interesting in its own right. As a means to slightly tie the

above inquiries back to the Fibonacci Random Generator question, we present one

last conjecture:

Conjecture 9.12. Consider the (m− 1)× (n− 1) array of numbers
F1 F2 · · · Fn−1
2F1 2F2 · · · 2Fn−1

...
...

. . .
...

(m− 1)F1 (m− 1)F2 · · · (m− 1)Fn−1

 .

Then for m,n ≥ 5, at least 2/7 of these numbers are in [m/3, 2m/3] mod m and

2/5 of these numbers are in [m/4, 3m/4] mod m.

As n and m increase, there appears in both cases to be some limiting behavior

to a number greater than 2/7ths and 2/5ths, respectively. This is hard to visualize

without 3D interactivity, however. If true, then at least an appreciable fraction of

the factors in the Fourier Series bounding expression are “small.”
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Code

Here, we include Mathematica code critical to generating some of the conjectures

and diagrams.

The Fibonacci Iteration Function was implemented as follows:

f [{i , j }, p ]:=Mod[{i+ j, i}, p];f [{i , j }, p ]:=Mod[{i+ j, i}, p];f [{i , j }, p ]:=Mod[{i+ j, i}, p];
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This is the graphing function used to generate the graphs in the text:

graphNoHighlights[p ]:=graphNoHighlights[p ]:=graphNoHighlights[p ]:=

Graph[Graph[Graph[

Normal[AssociationMap[f [#, p]&,Flatten[Table[{i, j}, {i, 0, p− 1}, {j, 0, p− 1}], 1]]],Normal[AssociationMap[f [#, p]&,Flatten[Table[{i, j}, {i, 0, p− 1}, {j, 0, p− 1}], 1]]],Normal[AssociationMap[f [#, p]&,Flatten[Table[{i, j}, {i, 0, p− 1}, {j, 0, p− 1}], 1]]],

VertexLabels→ “Name”]VertexLabels→ “Name”]VertexLabels→ “Name”]

It can be made easy to spot patterns in the distribution of the numbers by defining

a variant function that adds the option

VertexStyle->{{n /;Between[n,{p/3,2p/3}]}->Red}VertexStyle->{{n /;Between[n,{p/3,2p/3}]}->Red}VertexStyle->{{n /;Between[n,{p/3,2p/3}]}->Red}

to the arguments of Graph[]Graph[]Graph[]. This particular example will highlight in red any

ordered pair (a, b) with a ∈ [p/3, 2p/3] (the code uses p instead of m for the modulus,

with the same meaning). The chosen interval can also be changed by modifying the

code.

The following code defines a function for the value of M1/3(p) as defined in Section

9:

findMinFraction[p ]:=Module[{cyclelist = FindCycle[graph[p], Infinity,All]},findMinFraction[p ]:=Module[{cyclelist = FindCycle[graph[p], Infinity,All]},findMinFraction[p ]:=Module[{cyclelist = FindCycle[graph[p], Infinity,All]},

Min
[
Table

[
Count[First/@First/@cycle,n /;Between[n,{p/3,2p/3}]]

Length[cycle]
, {cycle, cyclelist}

]]]
Min

[
Table

[
Count[First/@First/@cycle,n /;Between[n,{p/3,2p/3}]]

Length[cycle]
, {cycle, cyclelist}

]]]
Min

[
Table

[
Count[First/@First/@cycle,n /;Between[n,{p/3,2p/3}]]

Length[cycle]
, {cycle, cyclelist}

]]]
This code is easily altered to accommodate any choice of δ.

The following code, together with Theorem 9.2(5), can be used to test Conjecture

9.11:

Table[Table[Table[

Count[Count[Count[

NestList[Mod[{First[#] + Last[#],First[#]},LucasL[k]]&, {0, 1}, 4k]NestList[Mod[{First[#] + Last[#],First[#]},LucasL[k]]&, {0, 1}, 4k]NestList[Mod[{First[#] + Last[#],First[#]},LucasL[k]]&, {0, 1}, 4k]

, n /;Between[First[n], {1LucasL[k]/3, 2LucasL[k]/3}]], n /;Between[First[n], {1LucasL[k]/3, 2LucasL[k]/3}]], n /;Between[First[n], {1LucasL[k]/3, 2LucasL[k]/3}]]

, {k, 3, 300}], {k, 3, 300}], {k, 3, 300}]

Department of Mathematics, Stanford University, Stanford, CA, USA

Email address: ebogle@stanford.edu

Department of Mathematics, Stanford University, Stanford, CA, USA

Email address: obrass02@stanford.edu

Department of Mathematics, Stanford University, Stanford, CA, USA

Email address: owenshen@stanford.edu


	1. Introduction
	2. Countable Markov Chain
	3. Fourier Analysis and Convolution
	4. Fourier Transform and Convergence Rate
	5. The CDG Process
	6. The Fibonacci Generator
	7. Improvements over existing Fourier Bound
	8. Special Case with Modulus 3k
	9. The Fibonacci Distribution Problem
	9.1. Definitions: Cycles in the Fibonacci Directed Graph of Ordered Pairs
	9.2. Known Results
	9.3. Conjectures on the Distribution of Fibonacci Numbers Modulo m

	References
	Code

