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Background

We consider polynomially convex sets, a generalization of convex sets.
Definition. For any compact Y ⊂ Cn, we define the polynomial hull of Y to be

Y ∧ =
{

x ∈ Cn : |p(x)| ≤ sup{|p(y)| : y ∈ Y } for all polynomials p
}

.

We say Y is polynomially convex if Y = Y ∧.
In particular, a convex set is polynomially convex.

Our research focuses on the disjoint union the following objects:

sphere = {z ∈ Cn : |z1 − a1|2 + ... + |zn − an|2 ≤ r2}
polydisk = {z ∈ Cn : |z1 − a1| ≤ r1, ..., |zn − an| ≤ rn}
generalized super-ellipsoid (GSE) = {z ∈ Cn : |z1 − a1|k + ... + |zn − an|k ≤ r k}
for some exponent k ≥ 2, which we call the degree of the GSE

Characterizing Polynomial Convexity in C

Theorem. A compact set Y ⊂ C is polynomially convex if and only if the
complement C \ Y is connected.

The forward direction follows from the maximum modulus principle.
The reverse direction follows from a clever application of Runge’s theorem.

Example. By the theorem, the following (blue) set is not polynomially convex.

Important Results from Kallin

Kallin’s paper [1] forms the basis of our work, providing us with:

A method for proving polynomial convexity of the disjoint union of several objects,
called the separation lemma.
A method for generating a counterexample to show the disjoint union of sevearl
objects is not polynomially convex.

Using the Separation Lemma to Prove Polynomial Convexity

Separation Lemma. If X1, X2 ⊂ Cn compact and f is a polynomial such
that (f [X1])∧ ∩ (f [X2])∧ = ∅, then (X1 ∪ X2)∧ = X∧

1 ∪ X∧
2 .

The proof arises from Runge’s theorem.

Important Results from Kallin (continued)

Theorem (Kallin). The disjoint union of any three balls S1, S2, S3 are
polynomially convex in Cn.

Two balls are polynomially convex so it suffices to separate S1 from S2 and S3.
Scale the balls such that the largest ball S1 has radius 1.
Choose coordinates and rotate the balls such that S1 has center (0, 0), S2 has
center (γ, 0) with γ ∈ C and S3 has center (α, β) with α, β ∈ R.
The polynomial f (z) = z2

1 + z2
2 will separate S1 from S2 and S3.

Using the Maximum Modulus Principle to Find Counterexam-
ples

Theorem (Kallin). There exists a collection of three disjoint polydisks that
is not polynomially convex in C3.

Define a surface cut out by z1z2 = 1, z3(1 − z1) = 1. On the surface, take the
curves |z1| = M, |z2| = M, |z3| = M for some M > 2.
Basic idea: the polynomial hull of the three curves contains the part of the
surface bounded by the three curves. If we can fit three (disjoint) polydisks over
each of the three curves, then their polynomial hull will also contain this section
of the surface.

Projections of the three curves when M = 2.2.
The polydisks of radius M, centered at (−M + 1

M , 0, M + M
M+1) and (M + 1 −

1
M , M + M

M+1 , 0) and (0, −M + 1
M , −M + 1

M+1) satisfy this condition.

Three Polydisks in C2

Theorem. The disjoint union of any three polydisks P1, P2, P3 are polyno-
mially convex in C2.

By the same argument as Kallin’s three spheres, it suffices to separate one poly-
disk from the other two.
Any two disjoint polydisks can intersect in at most one coordinate projection. (If
they intersect in both projections, they are no longer disjoint.)

Three GSEs in Cn

Question. If we could slowly stretch a sphere into a polydisk, at what point in this
process would the intermediate shape become not polynomially convex?
To answer this, we came up with the idea of GSEs, noting that a GSE with k = 2
is simply a sphere, and as k → ∞, the GSE approaches a polydisk.

Theorem. When the degree k ≥ 18.121, the disjoint union of three GSEs
E1, E2, E3 is not polynomially convex in C3.

We use Kallin’s surface cut out by z1z2 = 1, z3(1 − z1) = 1, and on the surface,
take the curves |z1| = M, |z2| = M, |z3| = M for some M > 2.
We center E1, E2, E3 at (−M + 1

M , 0, M + M
M+1) and (M + 1 − 1

M , M + M
M+1 , 0)

and (0, −M + 1
M , −M + 1

M+1) respectively, with radii r1, r2, r3.
Two GSEs cannot intersect, allowing us to bound the radii from above.
E1, E2 and E3 must contain the curves |z1| = M, |z2| = M, |z3| = M, allowing us
to bound the radii from below.
The difference between our two bounds (which are in terms of M and k) must be
positive in the worst case. Choose M ≈ 4, then the condition holds k ≥ 18.121.

A 3-real-dimensional analog of a GSE with k = 2, k = 19 and k = ∞.

Conclusion and Future Work

Despite being a natural generalization of convexity, much less is understood about
the idea of polynomial convexity. As our research demonstrates, even simple shapes
fail to admit intuitive solutions. In the future, some problems we would like to
explore include:

Finding a separating polynomial to prove that three GSEs with degree 2 < k <
18.121 are polynomially convex
Using the Fubini-Study metric to show that k ≥ 18.121 cannot be improved by
raising the dimension
Improving the bound of k ≥ 18.121 by finding a more optimal surface and curves
Determining if four polydisks are polynomially convex in C2 using surfaces in
projective space
Finding new techniques for proving and disproving polynomial convexity to tackle
questions like the four spheres problem
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