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Abstract

A classic problem in physics asks what positions of N electrons on the
circle constitute equilibria, ai.e. positions of minimal potential energy.
In this physical case, the potential energy is (proportional to) a sum of
inverse squares of distances. We consider a similar problem with potential
as the inverse of the product of distances, i.e. what positions of N points
on the circle minimize

E = −
∑
i 6=j

log |zi − zj |.

Such sequences are known as Leja sequences. It is known that an equi-
librium is achieved exactly when the N points lie at the vertices of a
regular N -gon, and as such the density of points approaches the uniform
distribution as N →∞. The problem becomes more interesting when one
greedily chooses points to minimize the energy, fixing all previous points.
Such sequences are known as Leja sequences. We generalize this notion to
closed bounded sets K ⊂ C, and demonstrate analogous results to existing
literature, exhibiting an application to Leja sequences on the interval.

1 Introduction

Consider a sequence of points (xn)∞n=1 in [0, 1]. We say such a sequence is
equidistributed if for any [a, b] ⊂ [0, 1] the limit as N → ∞ of the fraction of
the first N points lying in [a, b] is b − a, i.e. each interval has its proportional
share of points. An example equidistributed sequence is xn = {n

√
2}, where {·}

denotes taking the fractional part.
Quantitatively, to see how quickly a sequence becomes “well-distributed,”

we might consider the discrepancy of the first N points:

DN = sup
[a,b]⊂[0,1]

∣∣∣∣#{1 ≤ n ≤ N : xn ∈ [a, b]}
N

− (b− a)

∣∣∣∣ ,
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Intuitively, this is how badly (xn)∞n=1 fails at being equidistributed after N
points. The star discrepancy D∗N is defined in the same way with a = 0 fixed
for the supremum. The bound D∗N ≤ DN ≤ 2D∗N tells us that their behaviours
are always of the same order of magnitude. There is particular interest in low-
discrepancy sequences, as they are well-distributed not only in the limit, but
also well-distributed even if you stop “placing points” at any point in time.

We note that having the discrepancy going to zero precisely tells us that

1

N

N∑
i=1

χ[a,b](xi)→
∫ 1

0

χ[a,b](x)dx = (b− a)

In fact, since we may approximate Riemann-integrable functions by sums of
characteristic functions, this is equivalent to

1

N

N∑
i=1

f(xi)→
∫ 1

0

f(x)dx

Weyl’s famous equidistribution theorem tells us that it suffices to check this
condition on the functions fn(x) = e2πinx, since these form a basis for L2(T),
where T := R/Z is the circle.

It is a result of Schmidt in [3] that for any sequence (xn)∞n=1 in [0, 1], there
is a fixed C such that for infinitely many N ,

D∗N ≥ C
logN

N
,

implying the best we can hope for is a sequence with D∗N = O(logN/N). Two
optimal constructions are known which achieve this. The first is the Kronecker
sequence, which is defined as xn = {γn}, where γ is any irrational. The second
is the van der Corput sequence, which has xn defined in binary as 0.a1a2 · · · an
where a1a2a3 · · · is the reversed binary expansion of n. Such sequences are
well-studied; see e.g. [4] for a complete treatment.

We can generalize discrepancy and star discrepancy to [0, 1]d by considering
a supremum over the fraction of points lying in rectangles [a1, b1]×· · ·× [an, bn]
minus their areas. Remarkably, for d ≥ 2, no tight bound is known for D∗N .
Roth, in [1], showed that for any C,

D∗N ≥ C
(logN)d/2

N

for infinitely many N , but current conjectures from empirical data expect much
tighter bounds, i.e. d instead of d/2 in the exponent (see [6]).

Until recently, the only low-discrepancy sequences known for d ≥ 2 were
simple generalizations of Kronecker and Van der Corput sequences, and it is
unclear whether these are optimal. This suggests exploring new constructions
is of use.
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A recent construction is this: in [6], Steinerberger demonstrated that for a
special class of functions f : [0, 1] → R, we can take an “energy” on n points
x1, · · · , xn as

E =
∑
i,j=1
i 6=j

f(xi − xj).

Steinerberger showed that starting with a single point x1 and iteratively greedily
choosing xn to minimize E tends to yield fairly regular sequences.

In particular, one intuitive f to consider is this: sending points in [0, 1] to
their images on the circle T, we might consider the distance between points when
T is identified with the unit circle. Then, taking f as measuring the negative
log distance between two such points, i.e.

f = − log (2 sinπ|x|) ,

E then becomes the negative log of product of distances. This construction
satisfies favorable bounds on D∗N for all d.

Recently, in [8] Steinerberger rephrased his energy-based construction for
d = 1 in terms of Leja sequences: for some choice of points z1, · · · , zm on the
complex unit circle, take pm(z) =

∏m
k=1(z − zk), and iteratively define

pN+1(z) = pN (z)(z − z∗) where z∗ = arg max
|z|=1
|pN (z)|.

The choices of z∗ form the desired sequence: by taking their argument and
scaling to [0, 1], we recover the original greedy energy-based sequence.

In this paper, we consider a new notion of generalized Leja sequences on
connected closed subsets K ⊂ C. In particular, we consider the sequence formed
by placing a single point in K and then greedily placing additional points in
K to minimize the product of pairwise distances between points. The following
section provides some details about generalized Leja sequences, and introduces
our approach via optimal distributions. In the third section, we demonstrate
some results regarding special cases (namely, K as the closed disk and K as
the interval) and provide a framework for generalizing to arbitrary K, and
lastly pose an open question whose resolution would allow for a much deeper
understanding of the topic. Finally, in the appendix, we give empirical results
for the case of the interval.

2 Preliminaries

2.1 Generalized Leja sequences

We first begin with the definition of our object of study:

Definition 2.1. A generalized Leja sequence (zn)∞i=1 on a closed connected set
K ⊂ C is the sequence iteratively constructed by choosing z1 ∈ ∂K and then
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afterward greedily choosing zn+1 to maximize the product of distances between
points, i.e. we take

zn+1 = arg max
z∈∂K

n∏
i=1

|z − zi|.

One important detail central to our exploration is this:

Proposition 2.2. A generalized Leja sequence on the closed connected set K ⊂
C lies entirely within ∂K.

Proof. By induction. z1 ∈ ∂K by definition. If we have z1, · · · , zn ∈ ∂K, then
since

∏n
i=1 z − zi is holomorphic in z, the maximum modulus principle implies∣∣∣∣∣

n∏
i=1

z − zi

∣∣∣∣∣ =
n∏
i=1

|z − zi|

is maximized in ∂K ⊂ K, meaning zn+1 ∈ ∂K.

In particular, if we take K ⊂ C homeomorphic to the disc, we merely only
need understand generalized Leja sequences on choices of ∂K homeomorphic to
the circle.

2.2 Relaxing on the circle

One observation we make is that in general, the first n points in a generalized
Leja sequence will not minimize the product of pairwise distances. Indeed, as
one might expect,

Proposition 2.3. For z1, · · · , zn with |zk| = 1

N∏
i,j=1

|zi − zj |

is minimized when a regular n-gon.

Proof. Recall that the square Vandermonde matrix

V =


1 α1 α2

1 · · · αn−11

1 α2 α2
2 · · · αn−12

...
...

...
. . .

...
1 αn α2

n · · · αn−1n


has determinant

det(V ) =
∏

1≤j<k≤n

(αk − αj).

This can be seen e.g. by row reduction of V . Moreover, Hadamard’s inequality
states that for a complex matrix N with elements |Njk| ≤ B

|det(N)| ≤ Bnnn/2.
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Taking these together, we note that when |αk| = 1, we have∏
1≤j<k≤n

|αj − αk| ≤ nn/2

and moreover this upper bound is achieved when αk = e2πik/n, as these are
precisely the roots of unity, i.e. the roots of xn−1 = (x−α1)(x−α2) . . . (x−αn).

Thus, the product of the distances from each root to a fixed root αk is∣∣∣∣xn − 1

x− αk

∣∣∣∣
evaluated at x = αk. By symmetry, we may take αk = 1, since distance is
preserved under rotation, to get∣∣∣∣∣∣

∏
1≤k<n

(1− e2πik/n)

∣∣∣∣∣∣ = lim
x→1

∣∣∣∣xn − 1

x− 1

∣∣∣∣ = 1 + x+ x2 + · · ·+ xn−1 = n

Thus, the product is

∏
1≤j,k≤n

|αj − αk| =

∣∣∣∣∣∣
∏

1≤k≤n

(1− e2πik/n)

∣∣∣∣∣∣
n

= nn

If we count each pair once instead of twice, we get that the product is nn/2,
so a regular polygon does indeed achieve this maximum.

It is clear that because Leja sequences are greedily constructed, there is no
way to have them form a n-gon at each step. Note, however, that even though
Leja sequences aren’t optimal in this sense, it is useful to consider the above
“non-greedy” problem–indeed, for any n, the first 2n points from a Leja sequence
from a single point will lie on a 2n-gon.

2.3 Optimal distributions

One major feature of this is that as N → ∞, the points spread evenly about
the circle: in fact, they approach a uniform distribution.

We can make one more relaxation to our problem which will be useful:
considering the problem in the continuum limit. Note that maximizing the
product of distances is the same as minimizing the negative log sum of distances,
so it is natural to consider

Econt = −
∫
|z|=1

∫
|z′|=1

f(z)f(z′) log|z − z′| dz dz′.

Indeed, the above expression weights pairs of points according to their density,
and replacing f with an indicator function on a discrete set, we recover the
previous problem. We seek a L2 function f(z) with unit integral for |z| = 1
such that Econt is minimized. First, we recall a crucial definition:
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Definition 2.4. A positive-definite function h : T → R is a L2 function for
which the kth Fourier coefficient

ĥ(k) =

∫ 2π

0

h(θ)e−2πikθ dθ

is non-negative for all k ∈ Z.

As a side note, most literature defines this property differently (in terms of a
matrix of h applied to differences of points, hence the name), but our definition
is known to be equivalent. Additionally,

Lemma 2.5. If a function h is positive-definite, the quadratic form∫ 1

0

∫ 1

0

g(θ)g(θ′)h(θ − θ′) dθ dθ′

for an L2 function g with unit integral is minimized by g constant.

Proof. We note ∫ 1

0

∫ 1

0

g(x)g(x′)

(∑
k∈Z

ĥ(k)e2πik(x−x
′)

)
dx dx′

=
∑
k∈Z

ĥ(k)

∫ 1

0

∫ 1

0

g(x)g(x′)e2πik(x−x
′) dx dx′

=
∑
k∈Z

ĥ(k)

∣∣∣∣∫ 1

0

g(x)e2πikx dx

∣∣∣∣2
=
∑
k∈Z

ĥ(k) |ĝ(−k)|2

≥ ĥ(0)

where we can swap the sum and integral in the first step due to Fubini’s theo-
rem applied on a counting measure, given that the expression converges. The
inequality is tight iff g is constant.

Lastly, we replicate an argument from Steinerberger in [7]. First, C.-S. Lin
in [5] gives the following result:

Proposition 2.6 (C.-S. Lin). For any x /∈ πZ,

log |sinx| = − log 2−
∞∑
k=1

cos(2kx)

k
.

Using this, Steinerberger thus observes that

− log |2 sinx| =
∞∑
k=1

cos(2kx)

k
=

∑
k∈Z\{0}

1

2k
e2πikx
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meaning all Fourier coefficients of h(x) = − log |2 sin(πx)| are non-negative and
thus h(x) is positive-definite.

Proposition 2.7. Over all f with unit integral, f constant minimizes Econt.

Proof. We parametrize our integrals with z = e2πix and z′ = e2πix
′
, which yields

|z − z′| = |e2πix − e2πix
′
|

= |1− e2πi(x−x
′)|

=
√

(1− cos(2π(x− x′))2 + (sin(2π(x− x′)))2

=
√

2− 2 cos(2π(x− x′))
= 2|sin(π(x− x′))|

and thus

Econt = −
∫ 1

0

∫ 1

0

g(x)g(x′) log|2 sin(π(x− x′))| dx dx′.

where g(x) = f(e2πix). Since h(x) = − log |2 sin(πx)| is positive-definite, the
result holds.

Thus, we have relaxed Leja sequences on the circle to non-greedy choices of
n points. In general, since the points of a generalized Leja sequence always lie
on the boundary of a given K, we can nicely define

Definition 2.8. An optimal distribution on K is an L2 function g : ∂K → R≥0
which minimizes

EK,cont = −
∫
∂K

∫
∂K

g(x)g(x′) log|x− x′| dx dx′.

The above shows that the lone optimal distribution for the disk is f = 1.
While this problem has been significantly relaxed from the original question of
generalized Leja sequences, optimal distributions appear to strongly inform the
behavior of generalized Leja distributions, and as we will see transform nicely
under conformal equivalences.

2.4 Conformal equivalences

Recall that a conformal equivalence is a bijection which preserves angles be-
tween tangent vectors of curves: in particular, conformal equivalences in C are
biholomorphisms. We motivate the idea that conformal equivalences can help
us determine optimal distributions on various choices of K.

In [2], Goluzin describes the concept of the transfinite diameter of a closed
bounded infinite set K: effectively the limit of a function of the product of
distances (as in section 2.2) between a minimizing set of points in K.
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He then considers the limit γ of the constant term in the Green’s function
of a set of domains approaching the component of the complement of K con-
taining ∞, and denotes e−γ the capacity of K. After, he demonstrates that the
transfinite diameter and capacity are equal.

Next, when K is connected, he demonstrates that the Green’s function on
K is such that the capacity equals the conformal radius, defined as the radius
R for which the complement of K maps conformally via some F onto |z| > R,
fixing infinity with F ′(∞) = 1.

Definitionally, the conformal radius is thus invariant under conformal equiv-
alences on the exterior of K to the exterior of another closed bounded simply
connected K ′, implying via the previous that K and K ′ share a transfinite
diameter.

The transfinite diameter encodes information regarding the limiting behavior
on the product of distances between points as we add arbitrarially many points,
and thus it would seem that conformal equivalences on the exteriors of sets K
as chosen preserve information about equilbria. In particular, from empirical
data as well as this motivation, we believe that conformal equivalences on the
exteriors of such K preserve optimal distributions:

Question 2.9. Does a conformal equivalence between the exteriors of two simply
connected closed bounded sets K,K ′ ⊂ C send optimal distributions of K to
optimal distributions of K ′?

We strongly believe the answer to this question is yes, or at least yes for
similar conditions on K, but do not as yet have a proof of this statement.
Special cases we have considered are given in the results section, and empirical
results for the interval are given in the appendix.

If this statement holds, then we obtain optimal distributions of a large set
of possible sets K as follows: if the exterior of K is given by applying 1/z to
the interior of K with the interior nonempty, then using a conformal equiva-
lence intK → intD given by the Riemann mapping theorem and composing
on both sides 1/z yields a conformal equivalence from the exterior of K to the
exterior of D as desired. Moreover, any such K will then have a unique opti-
mal distribution: the image of the constant function on D under this conformal
equivalence.

As a last detail, we note that knowing the optimal distribution on a large
number of Ks is useful, but to truly understand generalized Leja sequences on
such a K in the mode of Steinerberger, it is crucial to have an analogue of
Fourier analysis. We return to this point in two subsections, stopping briefly to
understand Steinerberger’s methodology first.

2.5 Positive definite functionals

Steinerberger in [6] takes an arbitrary positive-definite real-valued function f
with average value 0, (e.g. − log |2 sinx|), and shows that a greedy sequence on a
torus Td which at each point minimises f results in a well-distributed sequence,
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giving explicit bounds for the discrepancy. We will outline the results in one
dimension for simplicity.

Steinerberger’s argument consists of two key steps. The first is that using
Fourier analysis to rewrite f as a Fourier series with Fourier coefficients ak, the
total energy Etotal after adding N points becomes:

Etotal =
∑
k∈Z

akN
2
∣∣WeylN−1(k)

∣∣2 where WeylN−1(k) =
1

N

N−1∑
j=1

e2πikxj

Recalling Weyl’s equidistribution theorem, we see that if WeylN (k) → 0, then
our sequence is well-distributed. Furthermore, by the Erdős–Turán inequality,
better bounds on these sums give us better distributed sequences. Therefore it
suffices to control this energy to see how well distributed our sequence is.

The second key step is to get a bound on Etotal. Steinerberger does this by
bounding the minimum increase in energy at each step by the average increase
in energy. This gives us a bound on Etotal of the form a0N

2 +CN . We subtract
off the a0N

2 on both sides and since all the ak are positive by assumption, drop
all but one term from the sum. This gives us bounds on the Weyl sums of
O(1/

√
N), though better results are believed to be achievable. We believe that

the total energy (above the base a0N
2) is of the form O(logN), though we were

unable to prove this.
In higher dimensions, the process is exactly analogous, except that instead of

considering WeylN (k), we instead consider the equivalent average for the basis
fk(x) = e2πi〈k,x〉 where k = (k1, . . . , kd) ∈ Zd. Then as before, we require that
the coefficients of f in this basis be positive, write the energy as a sum of “Weyl
sums,” and compare both sides.

2.6 Generalizing Steinerberger

The second step can be very easily generalised to a more general bounded set
K on the plane. The trick of bounding the minimum energy increase by the
average energy increase can be easily repeated.

It is the first step which is harder to do. We wish to find an orthonormal
basis ei of L2(∂K). Then given such a basis, we wish to relate the standard R2

energy to an analogue of the Weyl sums on K: namely for each i, considering
1
N

∑N
j=1 ei(xj). Then just as in Weyl’s equidistribution theorem, the xi will be

well-distributed when these converge to ai =
∫
ei.

3 Results

To begin, consider any nice curve ∂K with interior K such that the conditions
of the previous section hold, i.e. we have a conformal equivalence M sending
the complement of K to the complement of the disk D with ∂K mapping to ∂D.
Additionally, take µD as the arc length measure on ∂D and let µK = M∗(µD),
the pushforward measure of µD by M .
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3.1 Rotation and Energy Operators

Let Rθ be a map which “rotates” the space while preserving K. In particular,
take

Rθz = M(eiθ ·M−1(z)).

In words, Rθ takes z from ∂K to the unit circle, rotates by θ, and moves back to
∂K. Notice that when K is a disk and M = Id, then Rθ corresponds to ordinary
rotation by θ. Moreover, we will also apply Rθ to functions. If f : ∂K → C is
a function, then we define Rθf(z) = f(Rθz). Notice that since Rθ acts on the
inputs to a function, it is clearly linear over functions: for any functions f and
g and a ∈ C and Rθ(f + g) = Rθf +Rθg and Rθ(af) = aRθ(f).

Now, consider the following linear map T which, given a mass distribution
f on ∂K (say of “electrons”), computes the potential field:

Tf(z) = −
∫
∂K

f(z′) log |z − z′| dz′.

In particular, note that the integral is with respect to dz′, not dµK . We can now
consider Rθ and T as linear operators over L2(∂K, µK) i.e. square-integrable
functions on ∂K with inner product 〈f, g〉 =

∫
∂K

f(t)g(t) dµK .
We see that Rθ certainly takes square-integrable functions to square-integrable
functions, for ‖f‖L2(∂K) = ‖Rθf‖L2(∂K) by a change of variable.

3.2 Analysis of the disk

Notice that when K is a disk, we can take M as the identity map, meaning Rθ
corresponds precisely to ordinary rotations and µK = µD. Suppose we wish to
find the eigenfunctions of Rθ. Note that in principle, different values of θ may
have different eigenfunctions, but by a continuity argument this cannot happen:
any value of θ can be built up to arbitrary precision by repeated application of,
say, R1, since n (mod 2π) is dense in the circle for n ∈ Z.

In this case, our eigenfunctions are exactly functions such that f(eiθz) =
λf(z). In particular, functions fn(z) = zn for n ∈ Z work, since

(
eiθz

)n
=

einθzn = λzn where λ = einθ. This is the Fourier basis, since if we identify
points on the circle with an angle α ∈ [0, 2π), then fn indeed maps the point at
α to einα.

Moreover, when K is the disk, we see that T and Rθ easily commute as
linear operators. In particular, since Rθ is just a rotation, we have that TRθ is

TRθf(z) = Tf(Rθz)

= −
∫ 2π

0

f(ei(θ+α)) log |z − eiα| dα

= −
∫ 2π

0

f(eiβ) log |z − ei(β−θ)| dβ

= −
∫ 2π

0

f(eiβ) log
(
|e−iθ| |eiθz − eiβ |

)
dβ
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= −
∫ 2π

0

f(eiβ) log |Rθz − eiβ | dβ

= RθTf(z)

In the middle, we made the substitution β = θ + α. This confirms what is
physically obvious: rotating a ring of electrons simply rotates its potential field.
Note, however, that in our case f (the distribution of charge) can have a complex
output, so in this case, the analogy with electrons sometimes fails.

It is a well-known fact that linear operators which commute share an eigenba-
sis. In fact, in this case, we have in particular that the eigenfunctions mentioned
above are the common eigenbasis.

In general, we conjecture that some property like the following holds: if for
some w : K → C we have dµK = w(z) dz, i.e. for any measurable E ⊂ ∂K

µK(E) =

∫
E

w(z) dz

then the linear operators Tw and Rθ share an eigenbasis. Here, Twf is inter-
preted as T (wf), where wf is pointwise multiplication. In other words,

Twf(z) = −
∫
∂K

f(z′)w(z′) log |z − z′| dz′ = −
∫
∂K

f(z′) log |z − z′| dµK .

We have just seen this holds for K a disk, and will see in the next section that
it holds for K an interval, but the statement appears to fail for K in general.
We hope that some reformulation of this result (possibly for a better choice of
operator than Rθ) will be possible.

Note that to obtain a w(x) as above, it suffices (by change of variables for
pushforward measures) to take w(x) as the image of the constant map on the
circle. Thus, our earlier hypothesis regarding conformal equivalences sending
optimal distributions to optimal distributions suggests that w(x) should be an
optimal distribution–this is trivially the case for the circle, and as we will see
holds for the interval as well.

3.3 Analysis of the interval

One conformal equivalence between the circle and the interval is the Joukowsky
transform M(z) = 1

2

(
z + 1

z

)
. There are some issues since this is a “degenerate”

map in the sense that every point on the interval has two points on the circle
which map to it, but these issues will be resolved.

Note that our map sends z = eiθ to cos θ. In particular, this implies that if
we take E = (a, b) ⊂ [−1, 1], then

µK(E) = 2(cos−1(a)− cos−1(b)) = 2

∫ b

a

(
− 1√

1− z2

)
dz

suggesting

w(x) = − 2√
1− x2

.
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where x is used in place of z as K lies on the real line. We note that the
factor of 2 is simply an artifact of every open interval considered mapping to an
interval on the upper half of the circle and the lower half: considering w(z) as
the limiting case of the ellipse as in the next subsection, we will take

w(x) = − 1√
1− x2

but note that the factor of 2 does not affect the eigenfunctions of Tw. For
the sake of illustration, we take for granted the case when E is a more general
measurable set. Note that by a similar argument to that in Section 2.3, along
with the fact that the Chebyshev polynomials form an orthonormal basis with
respect to the inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x)

1√
1− x2

dx

we can show this is indeed the optimal distribution on the interval.
We claim that the Chebyshev polynomials are a common eigenbasis for the

operators Rθ and Tw. It is well known that they are orthogonal with respect
to our measure µK , which suggests that they may satisfy other nice properties
as well. First, we will verify that Rθ preserves the Chebyshev polynomials. In
fact, there is a minor issue – due to the degeneracy, there are two values that
each point could rotate to. We fix this by letting

R′θf(z) =
1

2

(
f(M(eiθz1)) + f(M(eiθz2))

)
where z1 and z2 are the two preimages of z in M . Note that z1 = z2 for z = ±1.
Here, we could also use the sum of both terms instead of average; the intuition
here is that the two points both contribute their “energy.” We wish to show
that

R′θfn = λfn

where in this case we happen to have λ = cos(nθ), where fn are the Chebyshev
polynomials:

fn(x) = cos
(
n cos−1(x)

)
.

This ultimately amounts to simple algebra:

R′θfn(x) =
1

2

(
cos(n cos−1(x) + nθ) + cos(−n cos−1(x) + nθ)

)
= cos(nθ) cos(n cos−1(x))

= λfn(x)

The first equation follows from the definition of R′θ. Then, the second line
follows from using the cosine sum identity and simplifying.

Next, we will show that the Chebyshev polynomials are also eigenfunctions
of Tw. We have

Twfn(x) = −
∫ 1

0

fn(x′)w(x′) log |x−x′| dx′ = −
∫ 1

0

cos(n cos−1(x′)) log |x− x′|√
1− x′2

dx′
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Making the substitution x′ = cos θ, we get

Twfn(x) = −
∫ π

0

cos(nθ) log |x− cos θ| dθ

From a StackExchange post [9], we see that this integral is equal to:

Twfn(x) =
π

n
fn(x)

for n > 0. Moreover, for n = 0, fn(x) is constant, and it is not hard to see that
the integral evaluates to the constant π log 2 ≈ 2.178 for any −1 ≤ x ≤ 1.

3.4 Application to Leja Sequences

Once we have a Fourier-like decomposition of functions in a general space K,
we can decompose any function g ∈ L2(∂K, µK). If we take the eigenfunctions
of Tw as our basis, which we call fk with eigenvalues λk then assuming that w
is not too bad, then we can decompose g as

g =
∑
k

ckwfk.

Here g will represent a distribution of mass around the circle, either continuous
or discrete. In the latter case we can approximate by a continuous distribution
by considering sums of good kernels. By an identical argument to the one pre-
sented by Steinerberger and the case of the disk, we can use this “Fourier-like”
series to analyze greedy sequences on ∂K analogous to those of Steinerberger
in [6].

We will now see how these eigenfunctions of Tw let us relate our energy to
an analogue of the Weyl sums using this Fourier decomposition.

We recall the definitions of E and T to be

E =

∫∫
∂K

− log |z − z′|g(z)g(z′)dzdz′ Tg =

∫
∂K

− log |z − z′|g(z)dz.

This almost looks like E = 〈Tg, g〉, except that for the true inner product in
L2(∂K), we must integrate against dµ and not dz. Therefore we see that the
energy is in fact 〈Tg, g/w〉. Now applying our decomposition of g into fk, we
get that

E =
∑
k≥0

λk|ck|2

We will now assume the first eigenfunction of Tw is the constant function 1.
This is reasonable, and is at least true on the interval and the circle.

Thus, c0 is simply

〈g/w, f0〉 =

∫
∂K

g(x)

w(x)
dµK =

∫
∂K

g(x) dx

13



which is the total amount of mass.
Performing rearrangements identical to Steinerberger, we extract the k = 0

term of the energy to get:

E =
∑
k≥0

λk|ck|2 = λ0N
2 +

∑
k≥1

λkN
2
∣∣∣ck
N

∣∣∣2
In a sense, ck/N are our new “Weyl sums” which cannot be too large if E

is small. In fact, when we let g be a discrete mass distribution, this is precisely
what they are.

This immediately tells us that the lowest-energy configuration is that in
which g/w decomposes only as f0 with no other components. In other words,
this occurs when g = w or is some other multiple of w.

We now proceed to the second of Steinerberger’s key steps: for a Leja se-
quence, we may again use the earlier argument to bound the energy by its
average value. In particular, there is some constant C such that for each N :

E ≤ λ0N2 + CN

Combining this with our expansion of E together with the fact that each λk
is at least 0 so each term in the sum is less than the entire sum, we can bound
ck/N as follows: ∣∣∣ck

N

∣∣∣ ≤ C√ 1

λkN

This yields a notion of regularity; indeed, we see the analogous Weyl sums
tend to 0. It still remains open for us to rigorously connect the ck with a notion
of discrepancy with respect to the equilibrium density w(x), but very roughly,
if the ck for k > 0 are not too large, then f ≈ wf0 = w, i.e. f becomes close to
our optimal distribution.

3.5 Outlook

In this paper, we demonstrated a framework for connecting results regarding
optimal distributions on the disk to those regarding optimal distributions on a
large class of sets K ⊂ C, and posed a conjecture regarding how such connec-
tions allow for useful analogues to Fourier decomposition. Moreover, we briefly
illustrated how such a tool may be used for research on Leja sequences, with an
eye toward proving regularity results for generalized Leja sequences, yielding a
construction for low-discrepancy sequences on such sets K ⊂ C. Further results
could hopefully use the machinery presented here to finish the generalization of
bounds given in works such as [8] to our case.
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Appendix: Empirical Results for the Interval

One of the major motivators for the question posed in Section 2.4 was the follow-
ing empirical result. Assuming that the question is answered in the affirmative,
we find as in Section 3.3 that

w(x) = − 1√
1− x2

.

Discretizing the interval [−1, 1] into points spaced 0.0001 apart, we take a sin-
gle point at 0 and then iteratively add the discretized point to our list which
maximizes the product of distances between points. 1,000 points are chosen in
this manner, and their locations are binned into a normalized histogram with
bin width 0.05. w(x) is then normalized and plotted on top, yielding this plot:

Figure 1: A plot of the density of points in the Leja sequence on the interval as
compared to w(x).

The closeness of the normalized version of w(x) to the distribution of points
from the Leja sequence illustrates the close connection between Leja sequences,
non-greedy sets of points which minimize energy, and optimal distributions as
suggested in Sections 2.1-2.4. Below are copied the scripts used to generate the
above plot:
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dots.py: generates point data

1 import csv

2 import numpy as np

3 from scipy import optimize

4 from tqdm import tqdm

5

6 NUM_POINTS = 1000

7 STEP = 0.0001

8

9 grid = np.reshape(np.arange(-1, 1 + STEP , STEP), (-1, 1))

10 points = [0.0]

11 for _ in tqdm(range(NUM_POINTS)):

12 ps = np.reshape(points , (1, -1))

13 dists = np.abs(ps - grid)

14 prods = np.prod(dists , axis =1)

15 max_ind = np.argmax(prods)

16 points.append(grid[max_ind , 0])

17

18 with open(’dump.csv’, ’w’) as f:

19 writer = csv.writer(f)

20 writer.writerow(points)

dotplot.py: plots generated point data

1 import csv

2 import matplotlib.pyplot as plt

3 import numpy as np

4

5 BIN_SIZE = 0.05

6 STEP = 0.0001

7

8 with open(’dump.csv’) as f:

9 reader = csv.reader(f)

10 points = [float(val) for val in next(reader)]

11

12 bins = np.arange(-1, 1+BIN_SIZE , BIN_SIZE)

13 plt.hist(points , bins=bins , density=True , alpha =1.0)

14

15 x = np.arange (-0.98 + STEP , 0.98, STEP)

16 y = 1.0 / (np.pi * np.sqrt(1 - x**2))

17 plt.xlabel(’x on interval ’)

18 plt.ylabel(’density of points ’)

19 plt.plot(x, y, linestyle=’dashed ’, color=’red’, linewidth=3, alpha

=0.75)

20 plt.legend ([’w(x)’, ’density of Leja points ’])

21

22 plt.show()
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