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Abstract

We present a proof of the Hodge Decomposition Theorem by way of Elliptic Regularity results
for differential operators on manifolds. Along the way, we develop some aspects of the theory of
vector bundles, distribution theory, and differential forms.

1 Introduction and Motivation

Hodge Theory is a way of studying the Cohomology groups of Riemannian manifolds using methods
from the analysis of partial differential equations. A key result in Hodge Theory is the Hodge
Decomposition theorem, which we will state and prove below. The Hodge Decomposition can be
viewed as a generalization of the Helmholtz decomposition from R3 to Riemannian manifolds. Of
course, this generalization is not quite a strict generalization as R3 is not compact.

2 Distribution Theory

Here we let U denote an open subset of Rn.

2.1 Notation

An n-dimensional multi-index is an n-tuple α = (α1, . . . , αn) ∈ Nn. For a multi-index α =
(α1, . . . , αn) ∈ Nn and (x1, . . . , xn) ∈ Rn we define

∂α = ∂α1
1 ∂α2

2 . . . ∂αn
n , xα = xα1

1 . . . xαn
n and D =

1

i
∂ (2.1)

We also define the norm of a multi-index by

|α| =
n∑

i=1

αi (2.2)

Then, for non-negative integers k we say that a function φ : U → C is Ck provided that ∂αφ
exist and are continuous for all α with |α| ≤ k. The space of all Ck functions with domain U is
denoted Ck(U). We define the norm ∥φ∥Ck(U) = max|α|≤k sup |∂αφ| on this space. Then the space

of smooth functions is defined by C∞(U) =
⋂

k∈NCk(U) and the subspace of smooth functions with
compact support is denoted by C∞

c (U). The smooth functions with compact support will be the
test functions we use to define distributions.
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2.2 Distribution Preliminaries

We start by defining distributions and prove some results concerning their basic properties.

Definition 2.1. For an open set U ⊂ Rn we define a distribution on u as a linear map u : C∞
c (U) → C

such that for all K ⊂ U compact, there exists C ≥ 0, n ∈ N for which |u(φ)| ≤ C∥φ∥Cn(U) for all
φ ∈ C∞

c (U) supported in K. We let D′(U) denote the space of distributions on U . For u ∈ D′(U)
and ϕ ∈ C∞

c (U) we take (u, φ) := u(φ). In this way, we can think of distributions as acting on test
functions as well as test functions acting on distributions.

Example 2.2. For f ∈ L1
loc(U) we define Tf (φ) =

∫
U f(x)φ(x)dx. We claim that Tf ∈ D′(U). Indeed,

for all K ⊂ U , we have that

|Tf (φ)| =
∣∣∣∣ ∫

U
f(x)φ(x)dx

∣∣∣∣ ≤ (∫
K
f(x)dx

)
∥φ∥C0(U) (2.3)

In fact, using mollifiers it can be shown that if Tf = 0 then f = 0 so the map f → Tf is a linear
injection of L1

loc(U) into D′(U). In this way we can (and do) identify L1
loc(U) as a subspace of

D′(U).

Example 2.3. For U ⊂ Rn and y ∈ U we define the distribution δy(φ) = φ(y). This is indeed a
distribution as for all φ ∈ C∞

c (U) we have

|δy(φ)| = |φ(y)| ≤ ∥φ∥C0(U). (2.4)

We define a notion of convergence on D′(U) by saying that uk → u in D′(U) if (uk, φ) → (u, φ)
for all φ ∈ C∞

c (U).

Example 2.4. Consider a sequence fk ∈ L1
loc(U) converging pointwise (almost everywhere) to

f ∈ L1
loc(U). We would like it fk → f in D′(U). Indeed, if the fk are uniformly bounded above by

some locally integrable function, then by the dominated convergence theorem we find that for all
φ ∈ C∞

c (U),

lim
k→∞

(fk, φ) = lim
k→∞

∫
U
fk(x)φ(x)dx =

∫
U
f(x)φ(x) = (f, φ) (2.5)

and so fk indeed converges to f .

The above example shows that our notion of convergence on the space of distributions is relatively
weak.

Example 2.5. Let fk(x) = k10≤x≤ 1
k
. Then fk → 0 almost everywhere but fk → δ0 in the sense of

distributions as for all φ ∈ C∞
c (R),∣∣∣∣ lim

k→∞
(fk, φ)− φ(0)

∣∣∣∣ = ∣∣∣∣ lim
k→∞

∫
Rn

fk(x)(φ(x)− φ(0)dx

∣∣∣∣ ≤ lim
k→∞

sup
0≤x≤ 1

k

|φ(x)− φ(0)| = 0. (2.6)

Definition 2.6. For u ∈ D′(U), we define the distributions ∂ju for appropriate 1 ≤ j ≤ n by

(∂ju, φ) := −(u, ∂jφ). (2.7)

This is indeed a valid definition. Let K ⊆ U . Then, there exists C ≥ 0 and non-negative n such
that |(u, φ)| ≤ C∥φ∥CN (U) for all φ ∈ C∞

c (U) supported in K. Thus, because ∂jφ ∈ C∞
c (U) as well,

we find that
|(∂ju, φ)| = |(u, ∂jφ)| ≤ C∥∂jφ∥N ≤ C∥φ∥n+1 (2.8)
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and so ∂ju is indeed a distribution. If f ∈ C1(U) then, using integration by parts it is easy to verify
that T∂jf = ∂jTf . Thus, the distributional and normal definitions of the partial derivative agree.
Additionally, if uk → u in D′(U) then for all φ ∈ C∞

c (U),

lim
k→∞

(∂juk, φ) = − lim
k→∞

(uk, ∂jφ) = −(u, ∂jφ) = (∂ju, φ) (2.9)

so ∂juk → u in D′(U) as well. In this way, for all multi-indices α, we can define the distribution
∂αu by (∂αu, φ) = (−1)|α|(u, ∂αφ).

Example 2.7. Let f(x) = 1[a,b] for some a ≤ b ∈ R. Then for all φ ∈ C∞
c (U) we find that

(∂jf, φ) = −(f, ∂j , φ) = −
∫ b

a
∂jφ = φ(a)− φ(b) = (δa − δb)(φ) (2.10)

so ∂jf = δa − δb.

Example 2.8. For a ∈ U , φ ∈ C∞
c (U) and multi-index α we find that

(∂αδa, φ) = (−1)|α|(δa, ∂
αφ) = (−1)|α|(∂αφ)(a) (2.11)

Similarly to the above construction of differentiation of distributions, we can define multiplication
of distributions by smooth functions.

Definition 2.9. For u ∈ D′(U), a ∈ C∞(U) and φ ∈ C∞
c (U) we let (ua, φ) := (u, aφ).

It is easy to verify that if f ∈ Lloc
1 )(U) then Taf = aTf for smooth a and that if uk → u in D′(U)

then auk → au in D′(U).

Example 2.10. Let f ∈ C∞(U) and a ∈ U . Then, for all φ ∈ C∞
c (U),

(fδa, φ) = (δa, fφ) = f(a)φ(a) = (f(a)δa, φ) (2.12)

so fδa = f(a)δa.

Proposition 2.11. For u ∈ D′(U) and a ∈ C∞(U),

∂j(au) = a(∂ju) + (∂ja)u (2.13)

This is a generalized version of Leibniz’ rule.

Proof. For φ ∈ C∞
c (U), we compute that

(∂j(au), φ) = −(au, ∂jφ)

= −(u, a(∂jφ))

= −(u, ∂j(aφ)− (∂ja)φ))

= (∂ju, aφ) + (u, (∂ja)φ)

= (a(∂ju), φ) + ((∂ja)u, φ)

= (a(∂ju) + (∂ja)u, φ)

where we have made use of the classical version of Leibniz’ rule.
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Now for u ∈ D′(U) and V ⊆ U open we define u|V by (u|V , φ) = (u, φ) for φ ∈ C∞
c (V ) where

we note the inclusion of C∞
c (V ) into C∞

c (U) by setting φ to be 0 on V/U . This is called localization
of a distribution. We say that two distributions u, u′ ∈ D′(U) are equal on V if u|V = u′|V

Definition 2.12. For u ∈ D′(U) we define the support of a distribution by

supp u = {x ∈ U : u = 0 on a neighborhood of x}C (2.14)

It is easy to see from the above definition that the support of a distribution in D′(U) is closed
in U .

Proposition 2.13. If f ∈ C0(U) then supp f = supp Tf .

Proof. If x /∈ supp f then there exists r > 0 such that f ≡ 0 on Br(x). Thus, Tf |Br(x) = 0
so x /∈ supp Tf . If x /∈ supp f then for some x ∈ V ⊆ U , Tf |V = 0 so for all φ ∈ C∞

c (V ),∫
V f(x)φ(x) = 0 and hence f ≡ 0 on V so x /∈ supp f .

Example 2.14. We claim that for a ∈ U , supp δa = {a}. Indeed, consider any neighborhood V of a.
Let r > 0 such that B2r(a) ⊆ V . Let f be a bump function which is 1 on Br(a) and 0 outside of
B2r(a). Then (δa, f) = f(a) = 1 so δa|V ̸= 0. Thus a ∈ supp δa. Now let b ̸= a ∈ V and r > 0 such
that a /∈ Br(b). Then, for all φ ∈ C∞

c (Br(b)),

(δa|Br(b), φ) = φ′(a) = 0 (2.15)

so δa|Br(b) = 0. Thus b /∈ supp δa, completing the proof.

Proposition 2.15. For all u ∈ D′(U), u|U/supp u = 0.

Proof. Let φ ∈ C∞
c (U/supp u). Then, for all x ∈ supp φ there exists a neighborhood Vx of x

such that u|Vx = 0. Suppose Vx1 , . . . , Vxm covers supp U (which is compact). Let χ1, . . . , χm be a
partition of unity subordinate to this cover (with χi ∈ C∞

c (Vxi) for all i). Then,

(u|U/supp(U), φ) = (u|U/supp(U), φχ1 + . . .+ φχm) = (u|Vx1
, φχ1) + . . .+ (u|Vxm

, φχm) = 0 (2.16)

Now, we would like a way to characterize the points where a distribution is smooth, to do so we
make the following definition.

Definition 2.16. For u ∈ D′(U) we say that x ∈ U is not in sing supp u (the singular support of
u) if there exists a neighborhood x ∈ V ⊆ U such that u|V ∈ C∞(V ).

Proposition 2.17. For u ∈ D′(U), sing supp u = ∅ ⇐⇒ u ∈ C∞(U).

Proof. Suppose first that u ∈ D′(U) and sing supp u = ∅. For x ∈ U let Vx be a neighborhood
around x such that U |Vx ∈ C∞(Vx). let fx = U |Vx . Suppose Vx ∩ Vx′ ̸= ∅. Then by definition

fx|Vx∩Vx′ = (U |Vx)|Vx∩VX′ = UVx∩Vx′ = (U |Vx′ )|Vx∩VX′ = fx′ |Vx∩Vx′ (2.17)

Thus, we can define f ∈ C∞(U) by f |Vx = fx for all x. Then, using a similar partition of unity
argument to the one in the proof of proposition 2.14, we conclude that (u, φ) = (f, φ) for all
φ ∈ C∞

c (U). The other direction is immediate.

The singular support also has a number of other properties, namely, sing supp ∂ju ⊆ sing supp u,
sing supp au ⊆ sing supp u and sing supp u ⊆ supp u for all u ∈ D′(U), a ∈ C∞(U).
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2.3 Distributions on Manifolds

In this section we will define distributions on manifolds and see some basic results about their
properties. As we will see, distributions on manifolds have many of the nice properties we observed
for distributions on open subsets of Rn. We first need to define a notion of convergence for test
functions on our manifold.

Definition 2.18. For fk, f ∈ C∞
c (U), we say that fk → f provided that

• There exists a compact subset K of U such that supp fk ⊆ K for all k

• ∥fk − f∥CN (U) → 0 for all non-negative integers N .

Definition 2.19. For fk, f ∈ C∞
c (M) we say that fk → f provided that for all coordinate systems

(U0, φ : U0 → V0), fk ◦ φ−1 → f ◦ φ−1 in C∞
c (V0).

We can then make our definition of distributions on manifolds.

Definition 2.20. A distribution on a manifold M is a linear map u : C∞
c (M) → C such that if

fk → f in C∞
c (M), u(fk) → u(f).

Similarly to the case of open subsets of Rn we can define localization of distributions on manifolds
and from there, the support and singular support of distributions.

3 Elliptic Regularity

We would like to understand the smoothness of distributional solutions to PDEs. In particular,
given a differential operator P and a partial differential equation of the form Pu = f , we would like
to understand what we can say about the smoothness of the solutions u of such an equation.

Definition 3.1. Let P =
∑

|α|≤n cαD
α for some constants cα ∈ C. We say that P is elliptic

provided its principal symbol σ(P )(ξ) =
∑

|α|≤n cαξ
α is invertible (ie. non-zero) away from 0.

For constant coefficient differential operators on Rn we have the following theorem we present
here without proof. The proof involves constructing a parametrix to a fundamental solution of the
given PDE.

Theorem 3.2. Let P be a constant coefficient differential operator that is elliptic. Then, for all
U ⊆ Rn and u ∈ D′(U), sing supp u ⊆ sing supp Pu.

Now, we would like to define differential operators on manifolds.

Definition 3.3. An operator P : C∞(M) → C∞(M) is a differential operator provided

• It is local (ie. supp Pu ⊆ supp u for all u ∈ C∞(M))

• It is a differential operator in charts.

With some technicalities, we can also define a notion of ellipticity for differential operators on
manifolds. Doing so, we have the following theorem.

Theorem 3.4. Let P be an elliptic operator in Diffm(M) for some non-negative integer m and
manifold m. Then for all u ∈ D′(M), we have sing supp u ⊆ sing supp Pu.

These theorems have important applications to the Fredholm theory of elliptic operators which
itself has an application in the proof of the Hodge Decomposition Theorem
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4 Vector Bundles and Differential Forms

4.1 Vector Bundles

Definition 4.1. We define a vector bundle as a triple (M,E, π) such that

• M is an n-dimensional manifold, E is an n+m dimensional manifold

• π : E → M is surjective and π−1(x) has the structure of an m-dimensional vector space for
all x ∈ M

• For all x ∈ M there exists a neighborhood U of x and a diffeomorphism ϕ : π−1(U) → U ×Cm

such that ϕ|π−1(x) is an isomorphism between π−1(x) and {x} × Cm

Example 4.2. The trivial bundle consisting of a manifold M , E = M × Rm and π(x, v) = x.

Example 4.3. Other examples of vetor bundles include the tangent and cotangent bundles TM and
T ∗M .

Definition 4.4. Given a vector bundle (M,E, π), a smooth map σ : M → E is a smooth section of
the bundle provided π ◦ σ = Id. The collection of smooth sections of a vector bundle (M,E, π) is
denoted C∞(M,E).

Using the local trivializations of our vector bundles, similarly to how we defined differential
operators on manifolds, we can define differential operators on sections of vector bundles.

4.2 Differential Forms

Fix a compact, oriented, n-dimensional manifold M .

Definition 4.5. We define the vector bundle of k-forms on M as Ωk =
∧k(T ∗M) and the vector

bundle of all differential forms on M as Ω◦ = ⊗n
k=0Ω

k.
Elements of C∞(M,Ωk) are called differential k-forms.

Definition 4.6. Now for 0 ≤ k ≤ n − 1 we define the exterior derivative dk : C∞(M,Ωk) →
C∞(M,Ωk+1) in local coordinates. In particular,

d(fdxi1 ∧ . . . ∧ dxik) := df ∧ dxi1 ∧ . . . ∧ dxik (4.1)

for 1 ≤ i1 < . . . < ik ≤ n.

It is easy to verify that dk ◦ dk−1 = 0. This allows us to define the deRham cohomology groups

Hk
dR(M) = {ω ∈ C∞(M,Ωk) : dkω = 0}/{dk−1ω : ω ∈ C∞(M,ωk−1)} = ker(dk)/im(dk−1). (4.2)

We note that this definition does not depend on any particular choice of Riemannian metric on M .

4.3 Inner Product on Form Bundle

Now, suppose we have a Riemannian Metric g on our manifold M . Via the Riesz representation
theorem, g induces an inner product on C∞(M,Ω1) = T ∗M . Now, for each x ∈ M , and k > 1, we
can define an inner product on Ωk via ⟨

∧
αi,

∧
βj⟩ = det([⟨αi, βj⟩]i,j) for 1-forms α, β. We can then

extend this an inner product on all of Ωk by linearity and this inner product ends up being smoothly
varying. We can then use this define an inner product on C∞(M,Ωk), the space of differential
differential k-forms via ⟨ω, ω′⟩ =

∫
M ⟨ω(x), ω′(x)⟩dVgx where dVg is the volume form on M induced

by g. Using this, we define δk+1 : C
∞(M,Ωk+1) → C∞(M,Ωk( to be the adjoint of dk for all k.
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5 Hodge Decomposition Theorem

This section is devoted to proving the Hodge Decomposition Theorem. We first need to make the
following definitions.

Definition 5.1. We define the operator d : C∞(M,Ω◦) → C∞(M,Ω◦) via d|C∞(M,Ωk) = dk.

Definition 5.2. We define the Laplace-Beltrami operator ∆g : C∞(M,Ω◦) → C∞(M,Ω◦) by

∆g = (d+ δ)2 = dδ + δd. (5.1)

It is immediately clear from this definition that ∆g is a self-adjoint operator and is elliptic
provided d+δ is elliptic. Additionally, for all k we have that ∆g restricts to an operator C∞(M,Ωk) →
C∞(M,Ωk).

Definition 5.3. We define the space of harmonic k-forms as Hk = {ω ∈ C∞(M,Ωk)}

Let us now prove the following lemmas.

Lemma 5.4. For all 0 ≤ k ≤ n we have that

Hk = {ω ∈ C∞(M,Ωk) : ∆gω = 0} = {ω ∈ C∞(M,Ωk) : dω = δω = 0} (5.2)

.

Proof. First suppose that ∆gω = 0. Then, we find that

0 = ⟨δgω, ω⟩g = ⟨dδω, ω⟩g + ⟨δdω, ω⟩g = ∥δω∥2g + ∥dω∥2g (5.3)

and so δω = dω = 0. The other direction is immediate.

Lemma 5.5. As an operator C∞(M,Ω0) → C∞(M,Ω0), d+ δ is elliptic (and hence ∆g as well).

As a consequence of

Theorem 5.6 (Hodge Decomposition Theorem). Let M be a n-dimensional oriented compact
Riemannian Manifold. Then

C∞(M,Ωk) = Hk ⊗ im δk+1 ⊗ im dk−1. (5.4)

Proof. Let us first prove that the sum is direct. Suppose there exists α ∈ Hk, β ∈ C∞(M,Ωk+1), γ ∈
C∞(M,Ωk−1) such that α+ δβ + dγ = 0. Then applying d to both sides we immediately find that
dδβ = 0 and hence 0 = ⟨dδβ, β⟩g = ⟨δβ, δβ⟩g = ∥δβ∥2g so δβ = 0. Similarly, applying δ we find that
dγ = 0 and hence α = 0 as well. Thus, the sum is indeed direct.

The rest of the proof follows rather simply from the Fredholm property of elliptic differential
operators on sections of vector bundles. We omit the details.

From this we immediately get the following useful corollaries.

Corollary 5.7. For a compact Riemannian manifold M ,

ker dk = Hk ⊗ im dk−1 (5.5)

and hence
Hk

dR(M) ∼= Hk (5.6)
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Proof. Let ω ∈ ker dk. By the Hodge Decomposition Theorem, there exists α ∈ Hk, β ∈
C∞(M,Ωk+1) and γ ∈ C∞(M,Ωk−1) such that

ω = α+ δβ + dγ (5.7)

Then, applying d to both sides we find that

0 = dω = dα+ dδβ + d2γ

By 5.4, dα = 0 and d2γ = 0 so dδβ = 0 and hence

⟨dδβ, β⟩g = ⟨δβ, δβ⟩g = ∥δβ∥2g = 0 (5.8)

so ω = α + dγ, completing the first direction of the proof. Now suppose ω = α + dγ for some
α ∈ Hk and γ ∈ C∞(M,Ωk−1). Then dω = 0 by 5.4, completing the proof of 5.5, from which 5.6 is
immediate.
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