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The Triforce

Abstract. Given a finite graph H, the Subgraph Query Problem stud-
ies f(H, p), the minimum number of edge queries needed to find a copy
of H as a subgraph of G(∞, p) with constant probability, as p→ 0. This
problem was first introduced in connection to Ramsey Theory. However,
we will study the Subgraph Query Problem in of itself, with a focus on
sparse graphs. We obtain the following result for general d-degenerate
graphs:

f(H, p) = O

(
p−d

`(n)(p−1)

)
where `(p−1) = log p−1

log log p−1 and `(n)(p−1) = `(· · · `(`(p−1))) taken n times.

We supplement these upper bound improvements with an investigation
of two lower bound strategies. These improvements leave us with the
novel result that for the triforce graph, we have:

Ω

(
p−2

`(p−1)4 log p−1

)
= f(H, p) = O

(
p−2√
`(p−1)

)
This is the first result that finds a graph with a query complexity not
of the form bε for some rational ε > 0.
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1. Introduction

We start our discussion of the Subgraph Query Problem by giving an
illustrative example. In particular, we can consider the simple case where H
is a path of length one (one edge) and we prove an upper bound for f(H, p).
For the sake of notation, let b = p−1 for the rest of the paper. We will prove
that f(H, p) = O(b).

Suppose that we have b queries. Since the probability that one query
reveals one edge is p, then the following is true.

P
[

no edge is found in b queries
]

= (1− p)b

P
[

at least one edge is found in b queries
]

= 1− (1− p)b

Now recall that lim
p→0

(1 − p)b =
1

e
, and so lim

p→0
1 − (1 − p)b = 1 − 1

e
. This

proves that as p→ 0, we can find a copy of H with constant probability in
b queries. By definition of f(H, p), this implies that f(H, p) = O(b).

1.1. Previous Work. Most of the work on the Subgraph Query Problem
revolved around dense graphs due connections discovered by Conlon, Fox,
Grinshpun and He to the online Ramsey game. The online Ramsey game
consists of two players: a builder and a painter. The builder chooses edges to
construct and the painter gets to color each edge red or blue. The builder is
attempting to build a copy of some graph H of a single color while the painter
is attempting to prevent the builder from doing so. The Subgraph Query
Problem is analogous to this game where the builder wants to construct a
red copy of H and the painter plays randomly, painting the edges red with
a probability p.

Conlon, Fox, Grinshpun and He determined the order of the number of
queries needed for complete graphs up to five vertices. In particular, they
prove that the asymptotic growth rate of f(Km, p) for m = 3, 4, 5 are

f(K3, p) �
(
b
3
2

)
f(K4, p) �

(
b2
)

f(K5, p) �
(
b
8
3

)
In addition to these tight bounds, Conlon, Fox, Grinshpun, and He also

show the following upper and lower bounds on general Kn:

Theorem 1 (Conlon, Fox, Grinshpun, He).

Ω
(
p(−2+

√
2)n
)

= f(Kn, p) = O
(
p−

3
2
n
)

It is conjectured that the upper bound is the correct value.
Papers based on this research have also focused on dense graphs. For

example, Feige, Gamarnik, Neeman, Rácz and Tetali study the special case
of finding cliques in G(n, 12). This focus on dense graphs throughout the
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literature leaves the realm of sparse graphs largely unexplored, our work
begins to fill in this gap.

1.2. Contributions. Unlike previous work, our focus has been on sparse
graphs. Specifically, we explore the query complexity of general d-degenerate
graphs.

Definition 1.1. Let H be a simple labeled graph.
We say that H is d-degenerate if and only if for every subgraph H ′ of H,
there exists a vertex v in H ′ such that d(v) ≤ d.

Definition 1.2. An equivalent definition of d-degenerate graphs is that their
vertices can be arranged in a line such that the number of neighbors to the left
of any vertex is at most d. We call this arrangement a degeneracy ordering.

For the query complexity problem, d-degeneracy appears to be the correct
measure of the sparsity of a graph given the existence of a natural algorithm
that uncovers sparse graphs vertex by vertex in the order given by their d-
degeneracy ordering. In particular, one could check whether a given graph
H is d-degenerate by removing vertices with degree at most d one by one.
It is clear that if this process does not give the empty graph, then the
resulting graph will contain no vertices of degree at most d, and so H is not
d-degenerate by definition. It is equally easy to check the converse, meaning
that if H is d-degenerate, then the algorithm will yield the empty graph,
and this is left as an exercise to the reader.

We now give a preliminary bound on general d-degenerate graphs.

Theorem 2. If H is d-degenerate, then f(H, p) = O(bd).

Proof. Let H be a d-degenerate graph with n vertices. We will prove the
theorem by induction on the number of vertices of H.

If H is the empty graph, then it is vacuously d-degenerate and the result
is trivial.

Assume that for all d-degenerate graphs H ′ on n − 1 vertices, we have
f(H ′, p) = O(bd). Now consider our graph H. Since it is d-degenerate, then
every subgraph of H must have a vertex of degree at most d. In particular,
there exists v in H such that d(v) ≤ d. The graph H\v has n − 1 vertices
and is d-degenerate since it is a subgraph of a d-degenerate graph and so by
our induction hypothesis, f(H\v, p) = O(bd).

Note that the number of queries needed to build one copy of H is at most
the number of queries needed to build one copy of H\v and adding back the
vertex v. We have d(v) ≤ d, and since we know that finding one edge takes
at most b queries by our previous result, then finding d edges from a vertex
will take at most bd, and so adding v to H\v takes at most bd queries.

Hence f(H, p) = O(bd) as required. �

Up until now, it was thought that f(H, p) could be written as asymptotic
expressions of the form bε for some rational ε > 0. Our main contribution
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to this problem was to show that this is not necessarily true. In particular,
we prove in this paper the following two major results.

Theorem 3. Let H be a d-degenerate graph. Then there exists n ∈ N such
that

f(H, p) = O

(
bd

`(n)(b)

)
and

Theorem 4. Let H be the triforce graph, then f(H, p) = Ω
(

b2

`(b)4 log b

)
where `(b) = log b

log log b and `(n)(b) = `(· · · `(`(b))) taken n times.

The introduction of the polylog expression in bounding f(H, p) leads us
to thinking that the Subgraph Query Problem is actually richer than previ-
ously thought. After proving the two main theorems mentioned above, we
conclude by giving a few conjectures raised during our research.

As a reminder, throughout this paper, for the sake of notation, we let
b = p−1 and we use those interchangeably. Furthermore, for a vertex v in a
graph H, we denote by N(v) the neighborhood of v, or the set of vertices
u ∈ H such that (u, v) ∈ E(H), the set of edges of H. Also, we will not
attempt to optimize the constant factors in our calculations.

2. Upper bounds

We start this section with the following definition.

Definition 2.1. Let H be a simple labeled graph. We call H (1, d)-degenerate
if H can be partitioned into trees T1, ..., Tn such that for all k ∈ {1, ..., n}
and for all v ∈ Tk, |N(v) ∪

⋃k−1
i=1 Ti| ≤ d, where N(v) denotes the set of

vertices adjacent to v.

The reason why we are interested in studying (1, d)-degenerate graphs is
because they are closely related to d-degenerate graphs. In particular, the
following is true.

Lemma 2.1. If H is (1, d− 1)-degenerate, then H is d-degenerate.

Proof. Let H be (1, d− 1)-degenerate, and so H has a partition into n trees

T0, · · ·Tn for some n. We will show that H =

n⋃
i=0

Ti is d-degenerate by

induction on the number of trees n.
Since T0 is a tree, then it is d-degenerate (in particular, it is 1-degenerate).

Now assume that H ′ =
k⋃

i=0

Ti is d-degenerate, and we prove that adding a

tree Tk+1 to H ′ such that all v ∈ Tk+1 have at most d− 1 edges connected
to H ′ conserves the degeneracy. To check the degeneracy of H ′ ∪ Tk+1, we
will apply our algorithm and remove vertices with degree at most d until
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we get the empty graph. Note that each leaf in Tk+1 must have degree at
most (d− 1) + 1 = d in H ′ ∪ Tk+1, and so we can remove it from the graph.
Repeating this process with every leaf of Tk+1, we can get rid of Tk+1 and
end up with H ′, which is d-degenerate by our induction hypothesis.

Hence, H ′ ∪ Tk+1 =
k+1⋃
i=0

Ti is d-degenerate which finishes the induction

argument, and we conclude that H =

n⋃
i=0

Ti is d-degenerate, as required. �

Lemma 2.2. Let T ′ be the largest tree in a (1, d − 1)-degenerate partition

of a graph H, and let v = |V (T ′)|, then f(H, p) = O(vbd−
1
v ).

Proof. Consider a partition of H into trees and let T ′ be the biggest tree in
the partition, with |V (T ′)| = v. Note that since we are only interested in the
asymptotic growth of f(H, p), then we can assume that the cost of building
H is the same as the cost of building T ′. To prove the lemma, it then suffices

to find a strategy that constructs T ′ in O(vbd−
1
v ). For each of the v vertices,

we will construct a cloud of vertices of size b1−
1
v . Choosing one vertex from

each cloud, we would have (b1−
1
v )v total choices for T ′. Furthermore, since

T ′ is a tree, then it has v− 1 edges, and so for each choice of the v vertices,
the probability that the v−1 edges of T ′ exist is pv−1. The probability that
T ′ exists will then be

1− (1− pv−1)b
(1− 1

v )v

→ 1− 1

e

Hence, this strategy gives us a copy of T ′ with constant probability, and so

f(H, p) = O(vbd−
1
v ), as required. �

Let Bd,t = K1,..,1,t denote the complete (d + 1)-partite graph on d ver-
tex sets of size 1 and a single vertex set of size t. We will call this graph
the d-degenerate book with t pages. We want to understand the maximum
number of pages that we can build as the number of queries varies. In par-
ticular, we are interested in the maximum number of pages of a d-degenerate
book we can build in approximately bd queries. Under the naive strategy
demonstrated in theorem 2, it appears as though we can only build at most
a constant number of pages under this query constraint. However, in the fol-
lowing lemmas, we will demonstrate a strategy for building a non-constant
number of these pages in bd queries using this (1, d−1)-degeneracy condition.

First, observe that Bd,t is (1, d−1)-degenerate. To verify this, consider the
induced subgraph of Bd,t formed by a vertex from exactly one of the d single
vertex sets and t vertices from the vertex set of size t. We note that this
induced subgraph is a tree (in particular, it is a star). Furthermore, there are
only d−1 remaining vertices forming Kd−1, so this tree trivially satisfies the
condition that for all vertices v contained in the tree, |N(v)∪Kd−1| ≤ d−1.
The remaining graph is Kd−1 easily verified to be (1, d− 1)-degenerate.
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Lemma 2.3. Let t = `(b), then f(Bd,t, p) = O(bdt−1) = o(bd).

Proof. As argued in the previous lemma 2.2, we know that Bd,t is (1, d− 1)
degenerate. In particular, the biggest tree in the partition of Bd,t has size

t, hence we have f(Bd,t, p) = O(tbd−
1
t ). We want to construct Bd,t in o(bd)

time, and so it suffices to have, up to a constant factor

tbd−
1
t = bdt−1

=⇒ log 2 + log t + (d− 1

t
) log b = d log b

=⇒ t log t ≈ log b

We can see that plugging t = `(b) in the above expression satisfies the
equality as b increases, which proves the lemma. �

Theorem 5. Let H be the triforce graph. Then f(H, p) = O( b2√
`(b)

).

Proof. This theorem follows directly lemma 2.3. Build one copy of B2,`(b)

and then build a neighborhood of size b/
√
`(b) off each of the single vertices

in the first two vertex sets of B2,`(b). Between these two neighborhoods and
the pages of B2,`(b), we can find a path of length 2, which completes the

triforce with a total cost of b2/
√

`(b) queries. �

3. Improved Upper Bounds

3.1. Opening Remarks. In previous sections, we proved that for a general
d-degenerate graph H, the number of queries required to find H is O(bd). In
this section will will show that this bound is not tight. First, we will need to
recall some notation. As a reminder, let `(b) = log b

log log b and let `(n)(b) denote

`(. . . `(`(b))) iterated n times. This brings us to the main theorem in this
section, which we will prove later.

Theorem 6. Let H be a d-degenerate graph. Then there exists n ∈ N such
that:

f(H, p) = O

(
bd

`(n)(b)

)
3.2. An Illustrative Example. Before jumping into our major result, we
will first present the reader with an illustrative example which will hopefully
bestow some intuition about the mechanics of the proof. As this is just an
illustrative example, some technical details will be taken for granted. The
goal of the algorithm is to maintain sets of vertices of more than constant
size which we will call clouds. If we want an algorithm to run in less than bd

queries, the algorithm can never be required to find a common neighbor of
d vertices that have been already fixed by the algorithm (as this step would,
in of itself, cost bd queries). Consider the following graph:
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Figure 1.

a

b

c

d

e

f

The Row of Four Triangles

Note this graph is 2-degenerate, so we want to build it in less than b2

queries. The algorithm is as follows:

(1) We begin by choosing an arbitrary vertex in G(∞, p) and denoting
it a.

(2) From vertex a, we can build a neighborhood out of a of size b1/2 at a

cost of b3/2 queries. As we are expecting to use just under b2 queries,
this cost is negligible. We will call this neighborhood the cloud of
vertex b and denote it C(b). We can think of C(b) as a group of
candidate vertices for b. As the algorithm progresses, we will choose
one vertex from C(b) to become fixed.

(3) Out of a, we will build `(|C(b)| neighborhoods of size b
|C(b)|1/`(|C(b)|) .

Note that the value of `(|C(b)| is carefully chosen to ensure that the
cost of building these neighborhoods is o(b−d).

(4) Furthermore, due to the chosen size of these neighborhoods, there
exists a vertex b in C(b) with constant probability such that b has
at least one neighbor in each of the `(|C(b)| neighborhoods. Fix this
vertex and let C(c) be the set of these neighbors. By construction
|C(c)| = `(|C(b)| ≈ `(b).

(5) So far, we have fixed vertices a and b, and found a set C(c) of more
than constant size such that every vertex in C(c) is neighbors with
a and b. We now want to find C(d). We repeat steps 2-4, with b
taking the role of a and C(c) taking the role of C(b).

(6) We are left with the fixed vertices a, b, c and the vertex cloud C(d)
which has size |C(d)| = `(|C(c)| ≈ `(`(b)).

(7) One more repetition gives us the fixed vertices a, b, c, d and the vertex
cloud C(e) which has size |C(e)| ≈ `(`(`(b))).

(8) Finally, as f is the last vertex, there is no need to make a cloud for
f . All that we must do is find a common neighbor between d and a
single vertex in C(e). We build a neighborhood of size b

`(`(`(b))) out

of vertex d and then query all pairs between this final neighborhood
and C(e). With constant probability, we find an edge. This gives us
the completed row of four triangles.

Since the cost of the final step (which is the most expensive step under this

algorithm) was b2

`(`(`(b))) , we have f(H, p) = O( b2

`(3)(b)
) where H is the row of

four triangles. In the following subsection, we generalize this example to all
d-degenerate graphs.
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3.3. Proof of Upper Bound Theorem.

Definition 3.1. Let H be a simple labeled graph. We say that H has a
good partition when H can be partitioned into sets I0, · · · , Il such that the
following conditions hold:

i The sets Ik are independent for all 0 ≤ k ≤ l, meaning that for any
two vertices u and v in Ik, there are no edges between u and v.

ii For all 0 ≤ k ≤ l and all vertices v in Ik, |N(v)
⋂

(∪k−1i=0 Ii)| ≤ d.
iii For all 0 ≤ k ≤ l and all vertices v in Ik, |N(v)

⋂
Ik−1| ≥ 1.

Lemma 3.1. Let H be a d-degenerate graph. Then H has a good partition
(a good name for this partition is still pending).

Proof. We will prove the lemma by giving an explicit good partition for a
general d-degenerate graph.

Recall that a degeneracy ordering of a d-degenerate graph H is an ordering
of the vertices of H such that each vertex has at most d neighbors to its left.
It is left as an exercise to the reader to check that any d-degenerate H has
such an ordering.

Let H be a d-degenerate graph and consider ~H to be one degeneracy

ordering of it. We can think of ~H as a directed graph: in particular, for

every vertex v of ~H, we can consider all of the edges where v is the right
end-point to be an out-edge with head v. We will now partition H into sets
I0 · · · Il, such that for each vertex v in H, v ∈ Ik if and only if the longest

path starting from v in the directed graph ~H has length exactly k. We show
that this is indeed a good partition.

i We claim that the sets are independent. Consider a set Ik in the
partition, and let u and v be two vertices in Ik. Assume without

loss of generality that u is on the left of v in ~H, and assume for
contradiction that there is an edge from v to u. Since u ∈ Ik, then
u has longest path of length k, and since there is an edge from v to

u in ~H, then v must have longest path at least k + 1, but v ∈ Ik,
which is a contradiction. Hence, there is no edge between u and v
and all the sets are independent.

ii For any k and any v in Ik, note that all vertices in ∪k−1i=0 Ii that

are connected to v must be to the left of v in ~H, otherwise we get a
contradiction by the same reasoning used in i. Also, v has out-degree

at most d by our definition of ~H, and so the result follows.
iii For any k, consider v ∈ Ik. v has longest path of length k, and so it

must be connected to a vertex with longest path k − 1, which must
be in Ik−1 by definition, and so v must have at least one edge going
to Ik−1.

Hence H has a good partition, as required. �
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Lemma 3.2. Let C be a cloud of vertices of size t, and D1, · · · , Ds be clouds

of vertices of size p−1t−
1
s each. Then with high probability, there exists a

vertex u ∈ C such that u has an edge to each of the s clouds D1, · · · , Ds.

Proof. Note that between the clouds C and D1, we have tp−1t−
1
s pairs of

vertices. Each of these have probability p of yielding an edge, and so we

get ptp−1t−
1
s = t1−

1
s edges between C and D1. This allows us to restrict

our attention to the endpoints of these t1−
1
s edges in C instead of the entire

cloud of t points, and so let C1 ⊂ C be the reduced cloud. We repeat the
same process between C1 and D2. More formally, we can prove by induction
that after looking at the cloud Di, our intial cloud C of t vertices will be

reduced to a cloud Ci of size t1−
i
s . We already dealt with the base case,

and so assume that this is true for i, and so Ci ⊂ C and |Ci| = t1−
i
s . Now

looking at the number of pairs between Ci and Di+1, we get

t1−
i
s p−1t−

1
s = t1−

i+1
s

which gives us a set Ci+1 of size t1−
i+1
s , as required.

In particular, after the sth step, our cloud C will be reduced to the cloud
Cs of size t1−

s
s = t0 = 1, meaning that by the end of this algorithm, we

end up with a single vertex u that is connected to each of the s clouds
D1, · · · , Ds, which concludes the proof. �

With this in mind, we have all the necessary tools to prove theorem 6. As
a reminder, we will show that for any d-degenerate graph H, we can build
H in o(bd). In particular, there exists n ∈ N such that:

f(H, p) = O

(
bd

`(n)(b)

)
Recall that in lemma 2.3, we proved that we can build a book with a base

of d vertices and a number of pages t = `(b) = ω(1) fast, namely in O(bd).
The key observation in this theorem is that having a non-fixed base allows
us to build multiple books at the same time and do so in o(bd) queries. In
particular, in our base of d vertices u1, · · · , ud, we can fix d− 1 vertices and
leave the last one ud free, meaning that ud will lie in a cloud of candidates
C(ud) that we only fix later. This will allow us to not only build the book
on those d vertices u1, · · · , ud, but also build any book whose base consists
of fixed vertices and one free vertex contained in the cloud C(ud).

Proof. Since H is d−degenerate, then by lemma 3.1, H has a good partition
into sets I0, · · · Il. We will construct H using an explicit algorithm where
each step takes o(bd). We will show by induction on the number of sets l
in the good partition of H that for each v ∈ Il, we have a cloud of vertices
C(v) such that |C(v)| = t = ω(1).

If k = 0, the good partition of H only contains the set I0, and so for each

v ∈ I0, we construct a cloud of size b
1
2 = ω(1) vertices. Now assume by
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induction that for all v ∈ Ik, v lies in a cloud of size w(1), and we show the
claim is true for all v ∈ Ik+1.

Consider all vertices in Ik+1 and let r = minv∈Ik+1
|N(v)∩ Ik|. By defini-

tion of a good partition, we must have r ≥ 1 by property iii. Now choose
the vertex w1 ∈ Ik+1 such that w1 has r neighbors in Ik (in case multiple
vertices have r neighbors in Ik, it suffices to choose one arbitrarily) and
call these neighbors u1, u2, · · · , ur. By our induction hypothesis, since all
ui ∈ Ik for 1 ≤ i ≤ r, then for each ui we can build a cloud C(ui) such that
|C(ui)| = ω(1). We will fix the first r − 1 neighbors u1, · · · , ur−1 and let ur
be a free vertex. Our goal is to build a cloud of vertices, or candidates, for
w1.

Again, since this is a good partition, then by property ii, we must have

|N(w1)
⋂
∪ki=0Ii| ≤ d, and so |

(
N(w1)

⋂
∪ki=0Ii

)
\ur| ≤ d − 1. Hence, we

can find s sets of size p−1t−
1
s of common neighbors of all the vertices in(

N(w1)
⋂
∪ki=0Ii

)
\ur, and the cost of this will be sp−(d−1)

(
p−1t−

1
s

)
=

sp−dt−
1
s at most. The size of these sets might seem arbitrary for now, but

this is exactly as big as we need our clouds to be in order to prove our
inductive argument.

We hence have one cloud C(ur) of size t and s clouds of size p−1t−
1
s each,

and by lemma 3.2, there must exist a vertex u′ ∈ C(ur) that has an edge
to each of the s clouds. Fixing u′, we get a book Br,s on s pages, meaning
s candidates for w1. Recall that our goal was to construct this entire d-
degenerate graph in o(bd), and so to determine the appropriate size of s, we
solve the following equation

sp−dt−
1
s =

bd

s

=⇒ s2 = t
1
s

=⇒ s log s =
1

2
log t

=⇒ s ≈ 1

2

log(t)

log log(t)
=

1

2
`(t)

By our induction hypothesis, we know that t = ω(1), and since ` is an
increasing function, then s = ω(1), as required.

However, assume that at some point during this construction, we get mul-
tiple vertices w1, · · · , wn in Ik+1 such that for each wi, all but one neighbor
of wi in Ik are fixed, and assume furthermore that all the wi share the same
unfixed neighbor. Recall that a key step in our construction above was to
fix this free neighbor in order to get a cloud of s = `(b) candidates for w.
Assuming that we construct clouds for each of the wi one by one, we im-
mediately run into a problem with w2. In particular, the base of the book
associated with w2 will be completely fixed, and so we cannot hope to find a
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number of candidates for w2 equal to ω(1). In order to avoid this problem,
we will give a way to construct multiple books at the same time.

Let w1, · · · , wn be the set of vertices in Ik+1 such that for each wi, all but
one of its neighbors in Ik are fixed, and let v′ be this unfixed neighbor, lying
in a cloud of size t = ω(1). Using a similar reasoning as above, for each wi

with 1 ≤ i ≤ n, we can find s clouds of common neighbors of the vertices

in
(
N(wi)

⋂
∪ki=0Ii

)
\v′ of size p−1t−(ns)

−1
each and this costs sp−dt−

1
−ns

queries, hence we get ns sets in total for a total cost of snp−dt−
1
−ns . Note

that this can be thought of as building a big book of ns pages instead of
only s pages. Hence, to find the appropriate value of s, we solve a similar
equation

snp−dt−
1
ns =

p−d

s
which yields s ≈ 1

2n`(t) = ω(1), since n is constant, which is the required
result.

Recall that we started with w1 ∈ Ik+1 with r = minv∈Ik+1
|N(v) ∩ Ik|

neighbors in Ik. We then constructed a cloud of size ω(1) around w1, as
well as a cloud around each vertex whose associated book contains the same
unfixed vertex as w1 in its base. To finish the construction of Ik+1, it only
remains to perform the same strategy for each vertex in Ik+1 with i neighbors
in Ik for all r ≤ i ≤ d in order. Letting t be the minimum size of all the
unfixed clouds in Ik that we encountered throughout this construction, we
can see from the previous calculations, discarding constant terms, that the

cost of building Ik+1 is bd

`(t) .

Recall that we started with constructing clouds of size b
1
2 for each vertex

in I0, and so if the good partition of H consists of sets I0, · · · , Il, then with
an iterative argument, it is easy to see that

f(H, p) = O

(
bd

`(l)(b)

)
which concludes our proof. �

4. Lower bounds and Recursive Rules

So far we have discussed bounding f(H, p) from above by giving explicit
strategies for finding H as a subgraph of G(∞, p). In this section, we are
interested in bounding f(H, p) from below. To do so, we introduce the
following quantity:

Definition 4.1. Let H be a simple labeled graph. We define t(H, p,N) to
be the maximum expected number of copies of H that can be constructed as
a subgraph of G(∞, p) in N queries.

The reason why this is useful is because upper bounds on t(H, p,N) give
us lower bounds on f(H, p). It is easy to see that the following lemma is
true.
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Lemma 4.1. If t(H, p,N) ≤ 1
2 , then f(H, p) = Ω(N)

The natural question is, of course, how do we understand t(H, p,N)? One
answer is through the use of recursive rules which first bound the noniso-
morphic subgraphs of H. The following lemma presents three such rules.

Lemma 4.2 (Conlon, Fox, Grinshpun and He).
Recursive bounds on t(H, p,N):

(1) t(H, p,N) ≤ min
spanning subgraphs H’

t(H ′, p,N)

(2) t(H, p,N) ≤ pmax
e

t(H\e, p,N)

(3) t(H, p,N) ≤ pN min
e

t(H\{u, v}, p,N)

where u, v are the vertices connected by edge e.

Example 4.3. To provide insight on how to use these recursive bounds, we
provide the reader with the following example on three vertices:

Figure 2.

v

u

H1 H2 H3 H4

t(H4, p,N) ≤ pt(H3, p,N) Rule 2

≤ p(pt(H2, p,N)) Rule 2

≤ p(p(pNt(H1\{u, v}, p,N))) Rule 3

≤ p3N2

As t(H4, p,N) ≤ p3N2, we can set p3N2 = 1
2 to solve for N which gives

N = Ω(b
3
2 ). Hence, upper bounds on t(H, p,N) give lower bounds on f(H, p)

as established in lemma 4.1, we conclude f(H4, p) = Ω(b
3
2 ).

While the bound given by the example above turns out to be tight, for
more complex graphs running this recursive decomposition does not always
produce tight bounds. Hence, one of the major goals of our project was to
identify ways to improve upon these rules. The first improvement was notic-
ing that despite the limitation of N queries, the completion of some steps
using rule 2 required over N queries. For example, consider the following
graph:

Figure 3.
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Under rule 2, we are forced to remove the edge which gives us the max-
imum number of copies of the resulting graph. One can verify that in this
case we are forced to remove the leaf. For the sake of this discussion, let v
be the leaf and let u be its neighbor. This leaves us with:

Figure 4.

We have by definition N choices for the now isolated vertex v. Hence, if
we had ω(1) choices for the left previously neighboring vertex u, to query all
the choices would require Nω(1) queries. This is an obvious contradiction.
Hence, we must restrict ourselves to a constant number of options for vertex
u. As we are only attempting to determine f(H, p) up to a constant factor,
it is sufficient to consider the number of copies of the connected component
on the right going through a single copy of the vertex u.

This example motivated us to introduce the following new variants of
t(H, p,N).

Definition 4.2. Let H be a simple labeled graph. We define te(H, p,N) to
be the maximum expected number of copies of H that can be constructed as
a subgraph of G(∞, p) in N queries where the edge e is the last edge built.

Definition 4.3. Let H = (V,E) be a simple labeled graph. We define
tu(H, p,N) to be the maximum expected number of copies of H that can be
constructed through a single copy of vertex u ∈ V as a subgraph of G(∞, p)
in N queries.

By isolating the problem identified in the previous example, we estab-
lish the following new recursive rule on t(H, p,N). (note t(H, p,N) ≤
max

e
te(H, p,N))

Lemma 4.4. Let v be a leaf of a simple labeled graph H and let u be its
neighbor. Denote the edge between u and v to be e. Then

te(H, p,N) ≤ pNtu(H\v, p,N)

Proof. To prove this, note simply that the number of copies of H that end
with the edge e = (u, v) that we can construct is at most the number of
choices of v that are connected to a single copy of u times the number of
copies of H\v going through that same copy of u, which is tu(H\v, p,N).
Since we only have N queries, we have N choices for the leaf v, each of these
choices having probability p to be connected to u, which gives us a factor of
pN , and so the inequality follows. �

Despite this improvement, the recursive rules still do not give perfect
bounds for all graphs. In the following sections we will introduce the oracle
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model which, despite not being recursive in nature, will give us the following
additional three rules:

Lemma 4.5. Let H be a simple labeled graph with a vertex v such that
d(v) ≥ n.

(1) If pnN = O(pε), then t(H, p,N) ≤ t(H\v, p,N)
(2) If pnN � 1, then t(H, p,N) ≤ `(b)t(H\v, p,N)
(3) If pnN = Ω(bε), then t(H, p,N) ≤ pnNt(H\v, p,N)

The proof of this lemma follows directly from lemma 6.2 below.

5. The Oracle Model

5.1. Motivation. Despite the improvements made to the recursive rules,
we found that tight bounds were still not guaranteed. Furthermore, the re-
cursive bounds suffer from their computational difficulty. In example 6.3, to
understand the complete graph on three vertices, we only had to bound three
other graphs. Unfortunately, as the number of vertices increases, the num-
ber of non-isomorphic graphs on those vertices grows exponentially. These
two flaws motivated us to build a new model to generate upper bounds
on t(H, p,N). In this section, we will introduce this new model that gives
new upper bounds on t(H, p,N) for certain graphs H without the computa-
tional intensity required by the recursive bounds. Furthermore, the careful
application of these upper bounds mixed with the recursive strategy used
in previous works leads to new and promising improvements in the lower
bounds of 2-degenerate-not-(1,1)-degenerate graphs. Later, we will explore
these improvements through the specific example of the triforce graph de-
picted below:

Figure 5.

The Triforce

5.2. The New Model. Under the query model, the number of vertices that
we can expose in N queries is bounded from above by 2N . This realization
allows us to restrict the problem of querying edges in G(∞, p) to the smaller
space of G(2N, p). For the sake of notation, we will refer to this graph
simply as G(N, p) as we are only interested in f(H, p) up to constant factors.
Further, note that in the query model, the number of edges created by N
queries is tightly concentrated around pN . Hence, any query strategy will
produce some graph G ⊆ G(N, p) with pN edges.

This allows us to restrict the problem of constructing a graph H as a
subgraph of G(∞, p) to a subgraph of G(O(N), p). For the sake of notation,
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we will simply denote this underlying probability space as G(N, p) as we are
only interested in f(H, p) up to a constant factor. Let G be the graph built
by a given strategy with N queries under the query model.

Now suppose that there existed some oracle that reveals to us an uncov-
ered copy of G(N, p) and allows us to select pN edges from this graph to
create a subgraph G. For emphasis, we highlight these two properties of G:

(1) G ⊂ G(N, p)
(2) G has pN edges

As every query strategy will build one such G, the optimal player in the
oracle model will choose a graph G that is at least as good as the graph G
created by the optimal query strategy. This means that upper bounds on
the number of copies of a graph H that one can find under the oracle model
give upper bound on the number of copies of a graph H one can find under
the query model. In particular, we have

t(H, p,N) ≤ #(H ⊂ G)

In some sense, the oracle model allows us to make arguments about the
optimal query strategy without actually needing to know what the optimal
query strategy is. In the following section, we will present an in depth
exploration of how to use this model.

6. Improved Lower Bounds

To introduce the first oracle model calculation, we will start with a rela-
tively simple graph. This calculation will give the flavor of future arguments.

Lemma 6.1. Let P4 denote the path of length 4. Then t(P4, p, b
2) = O(b2`(b)).

Proof. We denote the second and fourth vertices of P4 to be u and v respec-
tively.

Figure 6.

u v

Let G ⊂ G(b2, p) as defined in the oracle model. As depicted in figure 5,
note that for each pair u, v ∈ G, the number of copies of P4 through u and v
is given by the product: d(u)d(v)d(u, v), where d(u, v) denotes the number
of common neighbors of u and v. Hence the total number of copies of P4 in
G can be bounded from above by the following sum:

#(P4 ⊂ G) ≤
∑

u∈G,v∈G,u 6=v

d(u)d(v)d(u, v)

We know by the condition that G has b edges that
∑

u∈G d(u) = b, ignor-
ing the constant factor of 2. Therefore, if we can show that d(u, v) ≤ `(b)
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with high probability, then we calculate:

t(P4, p, b
2)≤

∑
u∈G,v∈G,u 6=v

d(u)d(v)d(u, v)

≤ `(b)
∑

u∈G,v∈G,u 6=v

d(u)d(v) by assumption

≤ `(b)
∑
u∈G

d(u)
∑
v∈G

d(v) = O(b2`(b))

as desired.
Now let us justify that d(u, v) ≤ `(b) with high probability.
Note that d(u, v) ∼ Bin(b2, p2). Using standard approximations, we find

that for all n, there exists a constant c such that

P[ ∃u, v ∈ G s.t. d(u, v) ≥ c`(b) ] = o(pn)

Hence, with high probability all pairs will satisfy d(u, v) ≤ `(b).
�

In lemma 6.1, we showed that the number of common neighbors of two
vertices u and v in G(b2, p) was bounded from above by `(b) with high prob-
ability. The important element of this bound was the fact that d(u, v) was
distributed by a binomial distribution that approximated the Poisson dis-
tribution in the limit as p → 0. The next lemma generalizes this result to
the number of neighbors in G(N, p) shared by all vertices in a vertex set
V . The first case corresponds to when the binomial distribution approxi-
mates the geometric distribution, the second case corresponds once again
to the Poisson distribution, and in the third case the binomial distribution
approximates the normal distribution.

Lemma 6.2. Let V be a set of vertices and let d(V ) denote the number of
common neighbors in G(N, p) shared by all vertices in V .

(1) If p|V |N = O(pε), then d(V ) ≤ O(1) with high probability.

(2) If p|V |N � 1, then d(V ) ≤ O(`(b)) with high probability.

(3) If p|V |N = Ω(bε), then d(V ) ≤ O(p|V |N) with high probability.

Proof. Choose a set V as above. First note that d(V ) ∼ Bin(N, p|V |) as

there are N vertices contained in G(N, p) and each vertex has a p|V | chance
of being connected to all vertices in the set V . Hence, we note that:

P[ d(V ) = t ] = P[ Bin(N, p|V |) = t ]

=

(
N

t

)
pt|V |(1− p|V |)N−t

≤ (
Ne

t
p|V |)t
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(1) Assume p|V |N = O(pε). Given n ∈ N, we want to find t such that:

P[ d(V ) = t ] ≤ (
Ne

t
p|V |)t ≤ (

pεe

t
)t � pn

Solving for t gives us:

t log(et) � n log p

tε log p + t log e− t log t � n log p

Choose t = nε−1

(2) Assume p|V |N � 1. Given n ∈ N, we want to find t such that:

P[ d(V ) = t ] ≤ (
Ne

t
p|V |)t ≤ (

e

t
)t � pn

Solving for t gives us:

t log(
e

t
) � n log p

−t log e + t log t � n log b

Choose t = n`(b)

(3) Assume p|V |N = Ω(bε). With insight, we choose t = 3p|V |N . Then
for all n ∈ N, we find:

P[ d(V ) = 3p|V |N ] ≤ (
Ne

3p|V |N
p|V |)3p

|V |N

≤ (
e

3
)3b

ε

= ω(pn)

Note that for all three cases, t is strictly greater than the mean of the
corresponding distribution. Hence, for all three cases, it follows that:

P[ d(V ) ≥ t ] ≤ b|v|P[ d(V ) = t ] = pn−|v|

Hence, we can choose a sufficiently large n such that P[ ∃V ⊂ G s.t. d(V ) ≥
t ]→ 0 as desired. �

With this lemma proven, we are now ready to move onto bounding t(H, p,N)
for more complex graphs. To complete this task, we will need to mix both
the oracle model and the recursive rules. To bound a graph H, we will first
reduce to a simpler graph H ′ ⊂ H using the recursive rules. Then we will
use the oracle model to t(H ′, p,N). Finally, we backtrack our recursion to
finish with a bound on t(H, p,N).

7. The Triforce

For the entirity of this section, let H denote the triforce graph.
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7.1. Statement of the Theorem.

Theorem 7. Let H be the triforce graph, t(H, p, b2) = O(`(b)4 log b).

Corollary 7.1. Let H be the triforce graph, f(H, p) = Ω
(

b2

`(b)4 log b

)
To see how Corollary 7.1 follows from Theorem 7 is a contrapositive argu-

ment. Suppose f(H, p) = o
(

b2

`(b)4 log b

)
, then we could simply repeat what-

ever algorithm built one copy of H ω(`(b)4 log b) times to get t(H, p, b2) =
ω(`(b)4 log b).

7.2. Subgraphs of the Triforce. The triforce has 8 non-isomorphic sub-
graphs missing two edges. Throughout this section we will denote the graph
in each case H1, ...,H8 respectively.

Figure 7.

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Case 7 Case 8

7.3. Proof of Lower Bound Theorem. To prove Theorem 7, it is suffi-
cient to prove the following three propositions.

Proposition 1. For all Hi such that i ∈ {1, ..., 6}, t(Hi, p, b
2) ≤ O(b2`(b)2).

Proof. We will quickly run through each case. Recall the following recursive
rules from section 4 (stated with N = b2):
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(1) t(H, p, b2) ≤ bmin
e

t(H\{u, v}, p, b2)
where u, v are the vertices connected by edge e.

(2) Let d(v) ≥ 2, then t(H, p, b2) ≤ `(b)t(H\v, p, b2)
We will show that each graph Hi for i ∈ {0, ..., 6} we can apply the second

bound twice to arrive at the graph P3. Finally, we note two applications of
the first bound grants us t(P3, p, b

2) = b2.

(1) −→ −→

(2) −→ −→

(3) −→ −→

(4) −→ −→

(5) −→ −→

(6) −→ −→
Hence, for Hi with i ∈ {1, ..., 6}, we have:

t(Hi, p, b
2) ≤ `(b)2t(P3, p, b

2)

≤ `(b)2(bt(P1, p, b
2)

≤ `(b)2b2

As desired. �

Before proving the final two cases, we need to prove the following lemma.
Unfortunately, the graph represents an example where the oracle model
diverges from the query complexity game. Hence, we need to go a fewer
layers deeper to get the desired bounds.

Lemma 7.1. Let H’ be the graph depicted below:

Figure 8.

u

Then tu(H ′, p, b2) ≤ `(b)3 log b.

Proof. We will begin by splitting this lemma into three cases on the following
page.



THE QUERY COMPLEXITY OF DEGENERATE GRAPHS 21

Figure 9.

u u u

Case 1 Case 2 Case 3

Denote these graphs H ′1, H
′
2, and H ′3 respectively.

(1) Let the degree 3 vertex in H ′1 be denoted v. Then under the oracle
model, we have:

#(H ′1 ⊂ G) = max
u

(∑
v∈G

d(v)d(u, v)

)
Which implies that tu(H ′1, p, b

2) ≤ `(b)b. Ideally, we would like to
return to the graph H ′ using the recursive rules to get tu(H ′1, p, b

2) ≤
`(b). Unfortunately, the maximum over all u ∈ G adds a layer of
difficulty.

Suppose the number of copies of H ′1 off each of the b vertices u ∈ G
was `(b)b. Furthermore, suppose for each u that each of these `(b)b
copies shared the same missing edge. Then, we could query the b
missing edges and with constant probability we would find a vertex
u such that the number of graphs H ′ off u is b`(b).

Thankfully, we have some intuition that this scenario is extremely
unlikely. To prove this rigorously, we note that by lemma 6.2, the
number of common neighbors shared by three vertices in G(b2, p) is
bounded by some constant c with high probability. Therefore, if we
consider any u at most c copies of H ′1 off of u could share the same
missing edge. Therefore, at worst, we have:

#(H ′1 that turn into H ′) ∼ cBin(`(b)b, p)

Standard approximations of the binomial distribution give:

#(H ′1 that turn into H ′) ≤ log b

with high probability.
(2) The second and third cases follow similarly, however, they add three

additional factors of `(b). Hence we get tu(H ′, p, b2) ≤ `(b)3 log b as
desired.

�

Proposition 2. t(H7, p, b
2) = O(b2`(b)3 log b).

Proof. Consider the three graphs on the following page.
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Figure 10.

Using the oracle model, we verify for each of these graphs that at most
b3`(b)2 copies can be made in b2 queries. This calculation allows us to apply
lemma 4.4 to one of the leaves of H7. This gives us:

t(H7, p, b
2) ≤ te(H7, p, b

2) ≤ btu(H7\v, p, b2)
Where H7\v is the graph depicted below:

Figure 11.

u

One application of lemma 4.5 to remove the remaining leaf, in combination
with lemma 7.1 to bound the remaining diamond, gives us the desired result
of t(H7, p, b

2) = O(b2`(b)3 log b). �

Proposition 3. Let H∗ be the following graph:

Figure 12.

Then te(H
∗, p, b) = O(b`(b)4 log b) where e is the pendant edge.

Proof. Let H8\v be the graph depicted below:

Figure 13.

u

We find:

te(H, p, b2) ≤ btu(H8\v, p, b2)
≤ b`(b)tu(H ′, p, b2)

≤ b`(b)4 log b

�
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Now that we have proven these three propositions, the theorem follows
immediately. Recall that H denotes the triforce graph.

t(H, p,N) ≤ pmax( max
i∈{1,..,7}

(pt(Hi, p, b
2), te(H

∗, p, b2))

≤ `(b)4 log b

as desired.

8. Future Work

8.1. Sparse Graphs. At the moment, we have only been able to prove this
special class of lower bounds for the triforce and the the row of four triangles.
This naturally generates an infinite class of graphs with these lower bounds
as any two degenerate graph that has either the triforce or the row of four
triangles as a subgraph will have this property. However, it is not clear how
to generalize this lower bound. We conjecture:

Conjecture 1. If H is 2-degenerate, but not (1, 1)-degenerate, then f(H, p) =

Ω
(

b
`(b)n

)
for some n ∈ N.

However, at the moment we have no way of verifying this conjecture
beyond directly testing each H in this infinite class individually. Further
study into what distinguishes the 2-degenerate, but not (1, 1)-degenerate
graphs from the (1, 1)-degenerate graphs may prove useful in answering this
question. One potentially enlightening graph to explore is the following
2-degenerate, triangle free, but not (1, 1)-degenerate graph:

Figure 14.

Unfortunately, as we look to generalize beyond 2-degenerate graphs, the
problem only becomes increasingly complicated. It is not entirely clear what
the proper generalization of (1, 1)-degeneracy is as we increase d. Through-
out this paper we frequently made use of (1, d−1)-degenerate graphs. How-
ever, for d ≥ 3 there is a large class of graphs that are d-degenerate, but not
(1, d − 1)-degenerate with f(H, p) = O(bd−ε) for some ε > 0. Determining
the proper generalization of (1, 1)-degeneracy appears to be vital to extend
our lower bound results to higher orders of degeneracy.

8.2. Dense Graphs. While the focus on this report is on d-degenerate
graphs, we develop several new strategies which may be applicable to dense
graphs. The value of f(Kn, p) where Kn is the complete graph on n vertices
is still an open problem. We believe that lemma 4.5 may prove to be a useful

tool in proving the upper bound f(Kn, p) = O
(
p−

2
3
n
)

to be tight.
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9. Conclusion

The new strategies developed in this report produce interesting results
that enlighten us to the hidden subtleties of the Subgraph Query Problem.
The oracle model specifically has been useful in finding new bounds that
could not be proven with the previously investigated recursive rules. It
remains an interesting problem to determine the appropriate generalizations
of many of the results in this paper.
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