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Abstract

The use of voting models on Branching Brownian Motion to represent solutions to reaction
- diffusion equations is a novel method that has become increasingly popular. Etheridge, Pen-
nington, and Freeman first observed the beautiful connection between voting models on ternary
Branching Brownian Motion and the Allen-Cahn equation. In this paper, we generalize one of
their results (Theorem 2.5 in [Ali16]) for the majority voting scheme with 2m + 1 voters. We
present both a probabilistic and a PDE proof of this generalized result.
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2 Introduction

Reaction-diffusion equations, or reaction-diffusion systems, are a class of partial differential
equations (PDEs) that possess the potential to model a wide range of physical phenomena. The
solutions u(t, x) to these PDEs represent quantities such as concentrations, densities, popula-
tions, and we usually take 0 ≥ u(t, x) ≤ 1. The typical form for such a PDE is

ut = D∆u+ f(u),

where ∆ is the Laplacian operator, which describes “diffusion.” The second term f ∈ C∞(R)
describes some process with a “change:” birth, death, chemical reaction, . . . . We state a few pos-
sibilities in relation to population dynamics. We can have functions that have some exponential
growth, wherein

f(u) = au,

for a a constant growth factor. We can have logistic growth functions of the form

f(u) = au
(
1− u

K

)
,

where K denotes some limiting carrying capacity of our population. Lastly, we can have an
equation that models the Allee effect, which gives us a logistic growth with the additional
condition that if the population gets too low, it will quickly die out. These functions are of the
form

f(u) = au

(
n

K0
− 1

)(
1− n

K

)
.

Some famous reaction diffusion equations are depicted in the table below.

Equation Name PDE Example phenomena modelled

Fisher-KPP ∂u
∂t = ∂2u

∂x2 + u(1− u) Invasive species growth

ZFK ∂u
∂t = ∂2u

∂x2 + u(1− u)(u− θ) Flame propagation

Bicoid ∂u
∂t = ∂2u

∂x2 − au+ j Bicoid gradient formation

NWS ∂u
∂t = ∂2u

∂x2 + au− buq Taylor-Couette Flow

Allen-Cahn ∂u
∂t = ∂2u

∂x2 + u(1− u)(2u− 1) Order-disorder transitions
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Recently, it has been proposed to model the solutions to these equations using a probabilistic
model that relies upon Branching Brownian Motion (BBM) and voting trees. In this section,
we will first delineate the model for the branching process, then introduce Branching Brownian
Motion and finally we will consider voting models on Branching Brownian Motion to allow us
to extend our probabilistic model to a larger class of reaction-diffusion equations of the type
ut = uxx + f(u), where f(u) is a polynomial nonlinearity.

2.1 Branching Mechanism of BBM

We will first start with the branching mechanism for BBM. We begin with a particle, which
has an associated exponential random variable Y ∼ Exp(1) that denotes the time τ at which
this particle will disappear and give birth to some number of new, identical particles of the same
type, and the process repeats. That is, the probability that the branching time τ is greater than
a given time t is P(τ > t) = e−t.

Definition 2.1. We define a leaf to be a particle that is alive at the time we are considering.

A particle need not split into the same number of new particles every time, and we can de-
note by pk, k ≥ 2, the probability that given that a particle splits into k new particles. However,
after this section, we will always assume that particles always split into the same number of
child particles.

The following proposition is an exercise which appears in [Ber14], [Bov13], and [Ryz21] and
will be essential in our proof of Theorem 3.1.

Proposition 2.1. Let N(t) denote the number of leaves at time t. Then

E[N(t)] = e(N−1)t,

where N =
∑

k≥2 kpk.

Proof of Proposition 2.1. We will use the partition theorem to express this expectation as a re-
newal equation. Let τ denote the very first branching time, and let f(t) denote this expectation.
We split into the case in which our initial particle has not branched, or it has branched at some
time s ∈ [0, t].

f(t) = P(τ > t) +
∑
k≥2

kpkf(t− τ)P(τ < t) = e−t +N

∫ t

0
f(t− s)e−sds,

= e−t +Ne−t

∫ t

0
f(w)ewdw,

where w = t− s. Then by the product rule,

df

dt
= −e−t +Nf(t)−Ne−t

∫ t

0
f(w)ewdw = −e−t +Nf(t) + e−t − f(t),
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=⇒ df

dt
= (N − 1)f(t),

which, with the initial condition that f(0) = 1, gives that E[N(t)] = e(N−1)t.

This branching process is an example of a Yule process, describing the birth of a population
in some amount of time.

2.2 Branching Brownian Motion

This model becomes more interesting when we introduce the factor of Brownian Motion. We
begin with our initial particle starting at some point x ∈ R. It does Brownian Motion for time
τ , where τ is its first branching time, distributed exponentially, as before. At the branching
time, it is replaced with some number of new identical child particles, each with their own in-
dependent exponentially distributed branching time clock. The Brownian Motion itself carries
an interesting connection with the Heat Equation.

Claim 2.1. u(t, x) = E[u0(x + Bt)], denoted as Ex[u0(Bt)], is a solution to the Heat Equation
with initial condition u(0, x) = u0(x), where Bt denotes Brownian Motion for time t.

Proof of Claim 2.1. First, note that at time 0, the expectation is just u0, so the initial condition
is satisfied. Then,

Ex[u0(Bt)] =
1√
4πt

∫ ∞

−∞
u0(y)e

− (x−y)2

4t dy = u0 ∗K(x, t),

which is the convolution of u0 and the heat kernel, K(x, t) = 1√
4πt
e

−x2

4t implying that this is

indeed a solution to the heat equation.

2.3 McKean’s Observation

As it would turn out, putting the structure of Brownian Motion and this tree branching mech-
anism together would lead to surprising connections in the mathematics of reaction-diffusion
equations. Around 1975, McKean observed in [McK75] that if we took the case of dyadic BBM,
then the quantity

u(t, x) = Ex

N(t)∏
i=1

u0(Xi)

 (1)

satisfies the Fisher-Kolomogorov-Petrovsky-Piskunov (Fisher-KPP) equation of the form, ut =
uxx + u(u− 1), with initial condition u0, where here x denotes the position of the starting par-
ticle, N(t) denotes the number of leaves at time t, and Xi denotes the location of the ith leaf at
time t. To see why this is the case, we will introduce the very useful Duhamel’s Principle:
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Theorem 2.1 (Duhamel’s Principle). Let L be a linear differential operator. Then if u(t, x) =
(H(t, ·) ∗ f)(x) takes f(x) to the solution to ut = Lu with initial condition u0(x) = f(x), we
have that

u(t, x) = (H(t, ·) ∗ f)(x) +
∫ t

0
(H(s, ·) ∗ g(t− s, ·))(x)ds

solves the equation (ut −Lu)(t, x) = g(t, x) with initial condition u0(x) = f(x). H(t, x) is often
called the Green’s function for the differential operator L.
Proof of Theorem 2.1. We have

ut − Lu = ((H(t, ·) ∗ f)(x))t − L((H(t, ·) ∗ f)(x))

+

(
d

dt
− L

)∫ t

0
(H(s, ·) ∗ g(t− s, ·))(x)ds.

The first two terms vanish, since (H(t, ·) ∗ f)(x) solves ut = Lu. With the Leibniz rule, we have
that this becomes

(H(t, ·) ∗ g(0, ·))(x) +
∫ t

0

(
d

dt
− L

)
(H(s, ·) ∗ g(t− s, ·)) (x)ds = (H(t, ·) ∗ g(0, ·))(x) = g(t, x),

where again we have used the fact that (H(t, ·) ∗ f)(x) solves ut = Lu, and so we are done.

It is well known that K(t, x) = 1√
4πt
e−x2/2t is the Green’s function for L = ∂2xx. We claim

that the Green’s function for Lu = ∂xxu − u is H(t, x) = e−tK(t, x). Indeed, if u(t, x) is the
convolution of H with some initial condition function f(x), we see that

ut(t, x) = (e−t(K(t, ·) ∗ f)(x))t,
= e−t((K(t, ·) ∗ f)(x))t − e−t(K(t, ·) ∗ f)(x),
= (e−t(K(t, ·) ∗ f)(x))xx − u(t, x),

= (uxx − u)(t, x).

Now we show that we can apply Duhamel’s Principle 2.1 to show that quantity 1 satisfies
the Fisher-KPP equation. We condition on the first branching time τ .

u(t, x) = Ex

N(t)∏
i=1

u0(Xi)

 = Ex[u0(Bt)]e
−t +

∫ t

0
Ex[u

2(t− s,Bs)]e
−sds.

We notice now, that Ex[u0(Bt)]e
−t is the convolution of u0 with with e−tK(t, x) = H(t, x)

and Ex[u
2(t− s,Bs)]e

−sds is the convolution of u2(t− s, x) with H(s, x), and so by Duhamel’s
Principle 2.1, we see that quantity 1 satisfies the PDE ut = uxx − u+ u2, as desired.

2.4 The Voting Model

Past using different expressions of the McKean type, the above work does not seem to extend
very far. Thus we introduce the a tree voting structure to our model. At time t, we look at
every particle that is alive and have it vote 0 or 1 with probability given by the initial condition
evaluated on its position. That is, leaf i, which is at position Xi(t) at time t will vote 1 with
probability u0(Xi(t)). Then we propagate the vote backwards in genealogy based on some rule,
e.g. majority voting, random group voting. We claim that the probability that the initial parti-
cle votes 1, henceforth denoted by Px(V0(t) = 1), gives us the solutions to some interesting PDEs .
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Example 2.1. Consider the dyadic branching case in which we have a parent node vote 1 if and
only if both child nodes vote 1. Then the probability that the first node voted 1 is the probability

that all leaves voted 1, which is given by u(t, x) = Ex

[∏N(t)
i=1 u0(Xi)

]
, which is the solution to

the Fisher-KPP Equation.

Example 2.2. Consider the case of ternary branching in which we have a parent node vote 1 if
and only if the majority of its child nodes voted 1. Then we can condition on the first branching
time to get that our probability of the origin voting 1 satisfies the renewal equation

u(t, x) = E[u0(x+Bt)]P(τ > t) +

∫ t

0
Ex

[
u(t− s,Bs)

3 + 3u(t− s,Bs)
2(1− u(t− s,Bs))

]
e−sds,

which, using Duhamel’s Principle 2.1, implies that

ut = uxx − u+ u3 + 3u2(1− u) = uxx + u(1− u)(2u− 1),

which is the Allen-Cahn Equation.

Example 2.3. We can also ask what PDE the quantity Ex

[∏N(t)
i=1 u0(Xi)

]
satisfies for general

n-branching. Writing out a renewal equation and using Duhamel’s Principle, we get that

u(t, x) = E[u0(x+Bt)]e
−t +

∫ t

0
Ex[u(t− s,Bs)

n]e−sds,

giving us the PDE ut = uxx − u+ un. This will be used in Lemma 2.3.

We can expand even further on our voting model by introducing weights. That is, if k
out of n children vote 1, then the parent node has probability akn of voting 1. For example,
in the Allen-Cahn case, we have that a33 = a23 = 1 and all other akn are 0. Using these
weights, we may write out our renewal equation and apply Duhamel’s Principle again to find
that Px(V0(t) = 1) = u(t, x) satisfies the PDE

ut = uxx − u+

n∑
k=0

(
n

k

)
aknx

k(1− x)n−k.

We will show that we can achieve a large class of degree n polynomial nonlinearities. To see
this, we need the following proposition:

Proposition 2.2. For all 0 ≤ m ≤ n, we have

n∑
k=0

(
n

k

)( k
m

)(
n
m

)xk(1− x)n−k = xm.

Proof of Proposition 2.2. Note that(
n

k

)( k
m

)(
n
m

) =
n!

k!(n− k)!
· k!m!(n−m)!

n!m!(k −m)!
=

(
n−m

k −m

)
.

Hence,
n∑

k=0

(
n

k

)( k
m

)(
n
m

)xk(1− x)n−k =

n∑
k=0

(
n−m

k −m

)
xk(1− x)n−k,
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=
n∑

k=m

(
n−m

k −m

)
xk(1− x)n−k =

n−m∑
j=0

(
n−m

j

)
xj+m(1− x)n−j−m,

= xm
n−m∑
j=0

(
n−m

j

)
xj(1− x)n−m−j = xm,

by the Binomial Theorem.

Probabilistically, this is biasing by the number of groups of size m that exist among the
children that voted 1. Using this proposition, we get the following nice corollary.

Corollary 2.1. If g(u) = cnu
n + cn−1u

n−1 + · · ·+ c1u+ c0, then for

akn =

n∑
j=0

cj

(
k
j

)(
n
j

) ,
we have that

n∑
k=0

(
n

k

)
aknu

k(1− u)n−k = g(u).

Provided that 0 ≤ akn ≤ 1 for each k = 0, 1, . . . , n, then a voting model with these weights will
satisfy the PDE ut = uxx − u+ g(u).

Proof of Corollary 2.1. This is a straightforward calculation that follows from simply taking
linear combinations of expressions of the type in 2.2

Example 2.4. For n = 3, we can let a13 =
1
3(1− θ), a23 = 1− 1

3θ, and a33 = 1 to get the ZFK
equation, ut = uxx + u(1 − u)(u − θ) for all θ ∈ (0, 12). Notice that for θ = 1

2 , this is just the
Allen Cahn equation.

Example 2.5. For akn = k
n , we obtain g(u) = u and thus our respective PDE is the heat

equation, ut = uxx. This represents an unbiased voting model, in the sense that the probability
of voting 1 given that k out of the n children voted 1 is k

n .

Example 2.6. Let ain = i
n(1 − a), for i < n and ann = 1. These weights give us the Bicoid

equation ut = uxx − au for a ∈ (0, 1). Recall that the solution to the Bicoid equation u is given
by u = e−atw where w solves the heat equation. We can interpret this voting model by noticing
that there is a slight bias towards zero. This makes logical sense since, in comparison to the
unbiased case for the heat equation, the Bicoid equation has an extra coefficient that is at most
1 and is thus smaller.

Example 2.7. Take n = q, and let aiq = i
q (1 + a

b ), for i < q with aqq = 1. Then we get the
Newell-Whitehead-Segel equation, ut = uxx+au− buq. To ensure our that our weights are small
enough to represent probabilities, we require a

b ≤ 1
q−1 to make 0 ≤ aiq ≤ 1.
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2.5 Probabilistic Arguments for PDE Properties

We would like to be able to use these voting models to prove results about the correspond-
ing PDEs. For instance, we might start with some interesting observations on the Fisher-KPP
equation.

Lemma 2.1. Given some initial condition u0(t, x) > 0, the solution u(t, x) to the Fisher-KPP
equation is strictly positive for any time t.

Proof. Probabilistically speaking, u(t, x) = Px(V0(t) = 1) is given by E
[∏N(t)

i=1 u0(x+Xi)
]
,

which is the expected value of a positive product that should certainly be positive.

From a PDE perspective, applying the strong maximum principle gives us the result.

Lemma 2.2. Given some initial condition u0(x) such that u0 is monotonically increasing in
terms of x, we have that u(t, x) is monotonically increasing with respect to x for all t.

Proof. Probabilistically speaking, it is immediate that the solution to Fisher-KPP is mono-
tonically increasing given that u0(x) is monotonically increasing, since we can write is as

u(t, x) = E
[∏N(t)

i=1 u0(x+Xi)
]
.

To see this from a PDE perspective, we first denote w(t, x) = ux(t, x). Then taking d
dx on both

sides of the Fisher-KPP equation, we get

wt = wxx + (1− 2u)w.

Similarly, the strong maximum principle suggests that ux(t, x) ≥ 0 for all t.

Moreover, using our probabilistic model, we can compare solutions to reaction-diffusion equa-
tions.

We do some preliminary work first. Recall that if our particles always branch into n new
particles, then

v = Ex

[
Nt∏
i=0

g(Xi)

]
satisfies the PDE

∂u

∂t
=
∂2u

∂x2
− v + vn.

Hence, we get the following lemma:

Lemma 2.3. Given some

f(u) =

n∑
k=0

(
n

k

)
aknu

k(1− u)n−k,

with ann = 1 and 0 ≤ akn ≤ 1 for k = 0, 1, . . . , n− 1 (representing weighted votes), then v(t, x)
satisfying the equation

vt = vxx − v + vn,

is a subsolution to
ut = uxx − u+ f(u),

where both PDEs have initial condition 1(x<0) and as a result v(t, x) ≤ u(t, x) for all t, x.
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Proof of Lemma 2.3. We present two proofs of this inequality. First, there is a simple proof
that uses the maximal principle for parabolic PDEs. Let L denote the operator that sends u to
ut − uxx + u− f(u). We claim that v is a subsolution of u, or in other words that Lv ≤ 0 for all
x, t ∈ R with t ≥ 0. Indeed, we have that

Lv = vt − vxx + v − f(v) = vn − f(v) ≤ 0,

by assumption.

Thus v(t, x) is a subsolution, and so v(t, x) ≤ u(t, x).

Alternatively, we can obtain this inequality in a much neater way, using our probabilistic
model. Note that u(t, x) = Px(V0(t) = 1). Clearly this is at least P(all leaves vote 1) since ann =
1. Note that since we have the initial condition 1(x≤0), P (all leaves vote 1) = Px(maxj≤Nt Xj <

0) = Ex

[∏Nt
i=0 1(Xi<0)

]
which is exactly v(t, x), and so we have proved that v(t, x) ≤ u(t, x)

once again but in a probabilistic way.

3 Probabilistic Proof

In the next two sections, our goal is to prove a generalization of Theorem 2.5 in [Ali16].
The set up for this theorem is that our initial condition is, 1(x≥0), our particles split with an
exponential clock of parameter 1/ε2 into 2m + 1 particles, m ≥ 1, and we propagate the vote
back to the origin by majority voting.

Theorem 3.1 (Main Theorem). Let T ∗ ∈ (0,∞). For all k ∈ N, there exists c1 (k) and
ε1 (k) > 0 such that, for all times t ∈ [0, T ∗] and all ε ∈ (0, ε1),

1. for z ≥ c1 (k) ε| log ε|, we have Pε
z[V (B (t)) = 1] ≥ 1− εk,

2. for z ≤ −c1 (k) ε| log ε|, we have Pε
z[V (B (t)) = 1] ≤ εk.

We will need a number of lemmas to state our theorem, but we must first consider some
properties of our majority voting model.

3.1 Properties of the Nonlinearity

Note that the probability for majority voting is given by

g (p1, p2, . . . , p2m+1) :=
∑

X⊆{1,...,2m+1}
|X|≥m+1

∏
i∈X

pi
∏

j∈XC

(1− pj) ,

where p1, p2, . . . , p2m+1 are the respective probabilities that a child node votes 1.

Claim 3.1. g (1− p1, 1− p2, . . . , 1− p2m+1) = 1− g (p1, p2, . . . , p2m+1) .
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Proof of Claim 3.1. We can write g as

g (p1, p2, . . . , p2m+1) =
∑

Y⊆{1,...,2m+1}
|Y |≤m

∏
j∈Y

(1− pj)
∏
i∈Y C

pi,

=⇒ g (1− p1, 1− p2, . . . , 1− p2m+1) =
∑

Y⊆{1,...,2m+1}
|Y |≤m

∏
j∈Y

pj
∏
i∈Y C

(1− pi) ,

and so

g (p1, . . . , p2m+1) + g (1− p1, . . . , 1− p2m+1) =
∑

X⊆{1,...,2m+1}

∏
i∈X

pi
∏

j∈XC

(1− pj) ,

=
2m+1∏
i=1

(pi + (1− pi)) = 1.

Probabilistically, note that 1 − pi denotes the probability of a child voting 0. So, if a ma-
jority of the children vote 0, then the parent node votes 0, which happens with probability
1− g (p1, . . . , p2m+1).

We abuse notation and write

g (p) =

m∑
j=0

(
2m+ 1

j

)
p2m+1−j (1− p)j .

Proposition 3.1. If

g (x) =
m∑
j=0

(
2m+ 1

j

)
x2m+1−j (1− x)j ,

then

g′ (x) = (2m+ 1)

(
2m

m

)(
x− x2

)m
,

and

g′′ (x) = (2m+ 1)m

(
2m

m

)(
x− x2

)m−1
(1− 2x) .

Proof of Proposition 3.1. The second derivative very easily follows from the first, by the chain
rule. We compute the first derivative as follows:

g′ (x) =

m∑
j=0

(
2m+ 1

j

)(
(2m+ 1− j)x2m−j (1− x)j − jx2m+1−j (1− x)j−1

)
,

=
m∑
j=0

(2m+ 1− j)

(
2m+ 1

j

)
x2m−j (1− x)j −

m∑
j=1

(
2m+ 1

j

)
jx2m+1−j (1− x)j−1 .

But since (2m+ 1− j)
(
2m+1

j

)
= (2m+ 1)

(
2m
j

)
and j

(
2m+1

j

)
= (2m+ 1)

(
2m
j−1

)
, we can re-index

the second summation for this to become

=

m∑
j=0

(2m+ 1)

(
2m

j

)
x2m−j (1− x)j −

m−1∑
j=0

(2m+ 1)

(
2m

j

)
x2m−j (1− x)j ,
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= (2m+ 1)

(
2m

m

)(
x− x2

)m
,

by telescoping series.

Corollary 3.1. On the interval
[
1
2 , 1
]
, g′ (x) ≥ 0 and g′′ (x) ≤ 0.

Proof of Corollary 3.1. Clearly both x (1− x) ≥ 0 and 1− 2x ≤ 0 on the interval
[
1
2 , 1
]
.

Theorem 3.2 (Condorcet’s Jury Theorem). For n ≥ 1, let g2n−1(p) denote the probability of
a majority of 2n− 1 particles voting 1, given that each particle votes 1 with probability p and 0
with probability 1− p. If 1

2 ≤ p ≤ 1, then

g2n+1(p) ≥ g2n−1(p).

Proof of Theorem 3.2. We will create a bijection as follows: Let X1, X2, . . . , X2n+1 be 2n + 1
Bernoulli random variables with parameter p ≥ 1

2 . Consider the random variables Si = 2Xi− 1.

Let S2n+1 denote the sum of the Si. Our probability g(n+1)(p) is exactly P(S2n+1 > 0). We will
first consider the case of 2n− 1 voters and then add 2 new voters in. We get three cases:

• S2n−1 > 2 and the two new voters do not influence the vote.

• S2n−1 = 1 and at least one of the new voters needs to vote 1.

• S2n−1 = −1 and both of the new voters need to vote 1.

This gives the following recursive structure to our probabilities:

P(S2n+1 > 0) = P(S2n−1 > 2) + (1− (1− p)2)P(S2n−1 = 1) + p2P(S2n−1 = −1).

Now, notice that P(S2n−1 > 2) + P(S2n−1 = 1) = P(S2n−1 > 0), and so we can rewrite our
equation as

P(S2n+1 > 0)− P(S2n−1 > 0) = p2P(S2n−1 = −1)− (1− p)2P(S2n−1 = 1).

To show that this last quantity is at least 0, we can rewrite it as

p2
((

2n− 1

n

)
pn(1− p)n−1

)
− (1− p)2

((
2n− 1

n

)
pn−1(1− p)n

)
,

which is clearly nonnegative for p ∈
[
1
2 , 1
]
, and so we are done.

Corollary 3.2 (Increasing in Composition). For all n ≥ 0 and p ∈
[
1
2 , 1
]
we have that

g(n+1)(p) ≥ g(n)(p).

Proof of Corollary 3.2. Since g is increasing on the interval
[
1
2 , 1
]
, and 1

2 ≤ g(p) ≤ 1 for p ∈[
1
2 , 1
]
, we need only show that g(p) ≥ p for all p ∈

[
1
2 , 1
]
. But this is exactly an application of

Theorem 3.2.

The last fact we will need about g is an important theorem which states that when the input
probabilities of g are at least 1

2 , g is at least the average of the input probabilities. This theorem
is nontrivial and merits its own subsection.
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3.2 Generalized Condorcet’s Theorem

We wish to prove the following theorem:

Theorem 3.3. For all n ∈ N, we have that for all 1
2 ≤ p1, p2, . . . , pn ≤ 1

g (g1, g2, . . . , gn) ≥
1

n
(p1 + p2 + · · ·+ pn) .

Corollary 3.3. Given n Bernoulli random variables X1, X2, . . . , Xn with parameters pi ∈
[
1
2 , 1
]

for 1 ≤ i ≤ n, then P
[
X1 + · · ·+Xn >

n
2

]
≥ 1

n(p1 + · · ·+ pn).

Proof of Corollary 3.3. Recall that a Bernoulli random variable of parameter p takes the value 1
with probability p and the value 0 with probability 1− p. There is a bijection between having a
majority vote and having a majority of the Bernoulli variables be 1. If a majority of the Bernoulli
variables are 1, then clearly their sum is strictly greater than n

2 , and so we are done.

Now to prove Theorem 3.3, we will prove the more general fact: Consider a voting model
of n people, each with possibly different probabilities greater than 1

2 of voting 1 in which the
group votes by randomly selecting a subcommittee of k people, 1 ≤ k ≤ n, and then allowing
the majority vote of those k people to decide how the group of n votes. We will show that as
k increases, the probability of the group voting 1 increases. Our proof of this fact comes from
[Dan03], and we provide it here for completeness.

Proof of Theorem 3.3. Define by [n] the set {1, 2, . . . , n}, and let pi denote the probability that
the ith person votes 1, and qi = 1− pi denote the probability that the ith person votes 0. For a
subset E ⊆ [n], Let Mm,j (E) denote the probability that exactly m − j members of E vote 1.
Then

Mm,j (E) =


1, m = 0∑

E1⊆E
|E1|=m−j

∏
i∈E1

pi ·
∏

j∈E\E1

qj , m ≥ 1

Denote by Sn,m,j the sum of all Mm,j (E) as E ranges over all
(
n
m

)
subsets of [n] of size m. Let

M (E) denote the probability that a majority votes 1 in the subcommittee E. If |E| is odd, this
is defined as

M(E) =

|E|−1
2∑

j=0

M|E|,j(E).

If |E| is even, then we will define

M (E) =

|E|
2

−1∑
j=0

M|E|,j (E) +
1

2
M|E|,|E|/2 (E) .

12



Then, we will define by P (m) the probability of the group voting correctly given that they used
a subcommittee of m people. That is

P (m) =
1(
n
m

) ∑
E⊆[n]
|E|=m

M (E) .

Note that P (1) = 1
n

n∑
i=1

pi and P (n) = g (p1, . . . , pn) as defined previously. Therefore, the

following theorem will suffice.

Theorem 3.4. Suppose we have a committee of n people with probabilities p1, p2, . . . , pn, each
between 1

2 and 1 of voting 1. Then

P (0) ≤ P (1) = P (2) ≤ P (3) = P (4) ≤ · · · ≤ P (n− 1) ≤ P (n) ,

if n is odd and

P (0) ≤ P (1) = P (2) ≤ P (3) = P (4) ≤ · · · ≤ P (n− 1) = P (n) ,

if n is even.

Lemma 3.1. For a group of size n and nonnegative integers m, j, k and r, with m+ r ≤ n and
0 ≤ j ≤ m and 0 ≤ k ≤ r, we have∑

E,E′⊆[n],E∩E′=∅
|E|=m,|E′|=r

Mm,j (E)Mr,k

(
E′) = (j + k

k

)(
m+ r − j − k

r − k

)
Sn,m+r,j+k.

Proof of Lemma 3.1. Recall that Sn,m+r,j+k is the sum over all Mm+r,j+k (F ) as F ranges over
all subsets of size m+r. It is not hard to see that the productMm,j (E)Mr,k (E

′) contains terms
of the form

∏
i∈F1

pi ·
∏

i∈(E∪E′)\F1
qi where F1 ⊆ E ∪ E′ and |F1| = m + r − j − k. Now, let’s

think about it instead as first choosing a subset F of size m+ r and then another subset F1 ⊆ F
of size m + r − j − k. Then, we allow E and E′ to range over some disjoint subsets of size m
and r, respectively, of F . Notice that once we select the set E, E′ is uniquely determined as F \E.

Notice that since E and F1 must have m − j elements in common, we first select m − j
elements for E in

(
m+r−j−k

m−j

)
ways. Then, we select the remaining j elements from F \F1, which

we can do in
(
j+k
j

)
ways. We reiterate that since we have chosen E, E′ is uniquely determined.

Therefore, the term ∏
i∈F1

pi ·
∏

i∈F\F1

qi

appears exactly
(
m+r−j−k

m−j

)(
j+k
j

)
times. Summing over all possible sets F and F1 will give us

Sn,m+r,j+k. Therefore, our result is
(
m+r−j−k

m−j

)(
j+k
j

)
Sn,m+r,j+k, as desired.

Lemma 3.2. For a group of size n, we have that

Sn,2k+1,k ≥ Sn,2k+1,k+1,

where 1 ≤ k ≤ n−1
2 with equality if and only if p1 = p2 = · · · = pn = 1

2 .
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Proof of Lemma 3.2. It suffices to show thatM2k+1,k (E) ≥M2k+1,k+1 (E) for E a subset of size
2k + 1 in [n]. Note that

M2k+1,k (E) =
∑
E1⊆E

|E1|=k+1

∏
i∈E1

pi ·
∏

i∈E\E1

qi.

Since each pi is at least
1
2 , we have that∏
i∈E1

pi ·
∏

i∈E\E1

qi ≥
∏

i∈E1\{i0}

pi ·
∏

i∈(E\E1)∪{i0}

qi,

where E1 ⊆ E, i0 ∈ E1. Then, summing over each i0 ∈ E1, we have that

(k + 1) ·
∏
i∈E1

pi ·
∏

i∈E\E1

qi ≥
∏

i∈E\E1

qi ·
|E1|∑
i=1

qi
pi

∏
i∈E1

pi =
∏

i∈E\E1

qi ·Mk+1,1 (E1) .

Summing over all sets E1 with |E1| = k + 1, we have that

(k + 1)M2k+1,k (E) ≥ (k + 1)M2k+1,k+1 (E) .

Proof of Theorem 3.4. Now we will finish this proof by two parts. First we show that

P (2k + 1) = P (2k + 2) ,

for all 0 ≤ k ≤ n
2 − 1. Recall that

P (2k + 1) =
1(
n

2k+1

) ∑
E⊆[n]

|E|=2k+1

M (E) .

Notice that

(n− 2k − 1)
∑
E⊆[n]

|E|=2k+1

M (E) =
∑
E⊆[n]

|E|=2k+1

M (E)
∑

i∈[n]/E

1 =
∑
E⊆[n]

|E|=2k+1

M (E)
∑

i∈[n]/E

(pi + qi) ,

=
∑

E,E′⊆[n],E∩E′=∅
|E|=2k+1,|E′|=1

M (E)
(
M1,0

(
E′)+M1,1

(
E′)) ,

=

k∑
j=0

∑
E,E′⊆[n],E∩E′=∅
|E|=2k+1,|E′|=1

M2k+1,j (E)M1,0

(
E′)+ k∑

j=0

∑
E,E′⊆[n],E∩E′=∅
|E|=2k+1,|E′|=1

M2k+1,j (E)M1,1

(
E′) .

Now using Lemma 5.3 with m = 2k+1, r = 1, k = 0, and then once again with m = 2k+1, r =
1, k = 1, we obtain

=
k∑

j=0

(2k + 2− j)Sn,2k+2,j +
k+1∑
j=1

jSn,2k+2,j
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which telescopes to

= (2k + 2)

 k∑
j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1

 .

Therefore, we find that

P (2k + 1) =
2k + 2(

n
2k+1

)
(n− 2k − 1)

 k∑
j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1

 ,

=
1(
n

2k+2

)
 k∑

j=0

Sn,2k+2,j +
1

2
Sn,2k+2,k+1

 = P (2k + 2) .

Lastly, and most importantly, we show that P (2k) ≤ P (2k+1). Similarly to the previous proof,
we get that

(n− 2k)
∑
E⊆[n]
|E|=2k

M(E) =
k−1∑
j=0

∑
E⊆[n]
|E|=2k

M2k,j(E)
∑

i∈[n]\E

(pi + qi) +
1

2

∑
E⊆[n]
|E|=2k

M2k,k(E)
∑

i∈[n]\E

(pi + qi),

=

k−1∑
j=0

∑
E,E′⊆[n],E∩E′=∅
|E|=2k,|E′|=1

(M2k,j(E)M1,0(E
′) +M2k,j(E)M1,1(E

′))

+
1

2

∑
E,E′⊆[n],E∩E′=∅
|E|=2k,|E′|=1

(M2k,k(E)M1,0(E
′) +M2k,k(E)M1,1(E

′)).

Applying Lemma 3.1, this gives

(n− 2k)
∑

E⊆[n],|E|=2k

M(E) =

k−1∑
j=0

(2k + 1− j)Sn,2k+1,j +

k−1∑
j=0

(j + 1)Sn,2k+1,j+1

+
1

2
(k + 1)Sn,2k+1,k +

1

2
(k + 1)Sn,2k+1,k+1,

= (2k + 1)

k−1∑
j=0

Sn,2k+1,j +
3k + 1

2
Sn,2k+1,k +

k + 1

2
Sn,2k+1,k+1,

= (2k + 1)
k∑

j=0

Sn,2k+1,j +
k + 1

2
(Sn,2k+1,k+1 − Sn,2k+1,k).

This gives that

P (2k) =
1(

n
2k

)
(n− 2k)

(2k + 1)
k∑

j=0

Sn,2k+1,j +
k + 1

2
(Sn,2k+1,k+1 − Sn,2k+1,k)

 ,
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=
1(
n

2k+1

)
 k∑

j=0

Sn,2k+1,j +
k + 1

2(2k + 1)
(Sn,2k+1,k+1 − Sn,2k+1,k)

 ,

but since P (2k + 1) = 1

( n
2k+1)

∑k
j=0 Sn,2k+1,j , we have that

P (2k + 1)− P (2k) =
1(
n

2k+1

) · k + 1

2(2k + 1)
(Sn,2k+1,k − Sn,2k+1,k+1),

and so we are done by Lemma 3.2.

3.3 Necessary Lemmas

Now we are ready to begin stating and proving the lemmas we will need to prove Theorem
3.1.

Definition 3.1. Define a time-labelled n-tree to be the the genealogical tree formed through
our branching mechanism wherein branching particles split into n ≥ 2 child particles.

Denote by Tn (B (t)) the time-labelled n-tree traced out by Branching Brownian Motion up
to time t. Since the context usually is clear, we will drop the n subscript. Then we denote by
Pt
z (T ) the probability of voting 1 at the origin, given that Tn (B (t)) = T and our branching

motion started at z.

Now if we have branching at time τ ≤ t into subtrees T1, . . . , T2m+1, then we have that

Pt
z (T ) = Ez

[
g
(
Pt−τ
Bτ

(T1) , . . . ,Pt−τ
Bτ

(T2m+1)
)]
,

whereBτ denotes Brownian Motion for time τ . We shall denote this expression by Ez[g
(
Pt−τ
Bτ

(T ⋆)
)
].

Lemma 3.3. For any time-labelled n-tree, any time t ≥ 0 and any z ≥ 0,

Pt
z (T ) ≥ Pz[Bt ≥ 0].

Proof of Lemma 3.3. We proceed by induction on the number of branching events. Clearly,
if there are no branching events, then Pt

z = Pz[Bt ≥ 0]. Now assume that this holds for all
time-labelled n-trees up to ℓ ≥ 1 branching events. Define a function h : [0, 1]2m+1 → [0, 1] by

h (p1, p2, . . . , p2m+1) = g (p1, p2, . . . , p2m+1)−
1

2m+ 1
(p1 + p2 + · · ·+ p2m+1) .

From 3.3 we have that for 1
2 ≤ p1, p2, . . . , p2m+1 ≤ 1 we have h ≥ 0. Also note that, using 3.1,

we have

h (1− p1, . . . , 1− p2m+1) = g (1− p1, . . . , 1− p2m+1)−
1

2m+ 1
(2m+ 1− p1 − · · · − p2m+1) ,

= g (1− p1, . . . , 1− p2m+1)− 1 +
1

2m+ 1
(p1 + · · ·+ p2m+1) ,

= −g (p1, . . . , p2m+1) +
1

2m+ 1
(p1 + · · ·+ p2m+1) = −h (p1, p2, . . . , p2m+1) .
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Now, for our inductive step, we have that

Pt
z (T ) = Ez

[
g
(
Pt−τ
Bτ

(T1) , . . . ,Pt−τ
Bτ

(T2m+1)
)]
,

= Ez

[
h
(
Pt−τ
Bτ

(T1) , . . . ,Pt−τ
Bτ

(T2m+1)
)]

+
1

2m+ 1

2m+1∑
i=1

Ez

[
Pt−τ
Bτ

(Ti)
]
.

We will show that the first term of this expression is nonnegative, from which induction will
complete our proof.

Recall that Pt
z (T ) = 1 − Pt

−z (T ), and that h (1− p1, . . . , 1− p2m+1) = −h (p1, . . . , p2m+1).
Therefore,

Ez

[
h
(
Pt−τ
Bτ

(T1) , . . . ,Pt−τ
Bτ

(T2m+1)
)]

= −Ez

[
h
(
Pt−τ
−Bτ

(T1) , . . . ,Pt−τ
−Bτ

(T2m+1)
)]
,

⇐⇒ Ez[h
(
Pt−τ
Bτ

(T ⋆)
)
] = −Ez[h

(
Pt−τ
−Bτ

(T ⋆)
)
].

Therefore,

Ez[h
(
Pt−τ
Bτ

(T ⋆)
)
] = Ez[h

(
Pt−τ
Bτ

(T ⋆)
)
1{Bτ ≥ 0}] + Ez[h

(
Pt−τ
Bτ

(T ⋆)
)
1{Bτ < 0}],

= Ez[h
(
Pt−τ
Bτ

(T ⋆)
)
1{Bτ ≥ 0}]− Ez[h

(
Pt−τ
−Bτ

(T ⋆)
)
1{Bτ < 0}],

=

∫ ∞

0
h
(
Pt−τ
x (T ⋆)

)
(ϕz,2τ (x)− ϕz,2τ (−x)) dx,

where we denote by ϕz,2τ the probability distribution of a Gaussian with mean z and variance
2τ , in accordance with our Brownian Motion.

Now, recall that we have an increasing initial condition, and that Pt
0 (T ) = 1

2 . That is, the
probability of voting 1 at the origin given that the origin started exactly in the middle is 1

2
by a symmetry argument. Therefore, for x, t ≥ 0 we have that Pt

x (T ) ≥ 1
2 , and so since h is

nonnegative on the interval
[
1
2 , 1
]
, so is Ez[h

(
Pt−τ
Bτ

(T ⋆)
)
].

Finally, since z ≥ 0 and x ≥ 0, we have that ϕz,2τ (x) − ϕz,2τ (−x) ≥ 0 (that is, starting at
a positive location z ≥ 0, it is more likely for us to end in a positive location than a negative
location).

Hence Ez[h
(
Pt−τ
Bτ

(T ⋆)
)
≥ 0 and so

Pt
z (T ) = Ez[h

(
Pt−τ
Bτ

(T ⋆)
)
] +

1

2m+ 1

2m+1∑
j=1

Ez[Pt−τ
Bτ

(Ti)] ≥
1

2m+ 1

2m+1∑
j=1

Ez[Pt−τ
Bτ

(Ti)].

But using the inductive hypothesis, we have that

Ez[Pt−τ
Bτ

(Ti)] ≥ Ez[PBτ [Bt−τ ≥ 0]] = Pz[Bt ≥ 0],

which completes the proof of our lemma.

Now we will show that having a small voting bias ε at the leaves of our tree magnifies to be
greater than 1−εk as we propagate the vote back through an order of O (| log ε|) rounds of voting.
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Lemma 3.4. For all k ∈ N, there exist A (k) < ∞ such that, for all ε ∈ (12 , 1], and n ≥
A (k) | log ε|, we have

g(n)
(
1

2
+ ε

)
≥ 1− εk. (2)

Proof of Lemma 3.4. First, we prove that it takes an order of O (| log ε|) iterations to get

g(n)
(
1

2
+ ε

)
≥ 1

2
+ δ, (3)

for some well-chosen δ > 0.

Next, we show that an additional n iterations, where n is of the order of O (log (k| log ε|))
are needed to achieve

g(n)
(
1

2
+ δ

)
≥ 1− εk. (4)

From 3.1, we know that g is monotonically increasing, so combining the two parts above will
lead to the result we need. First, we will write 1− g(1− x) as an explicit polynomial in x. Let
a0, a1, . . . , an be real numbers such that

1− g(1− x) =
n∑

i=0

aix
i.

We note that a0 = a1 = 0, and so for all x ∈ (0, 1), we have

1− g(1− x) ≤ Cx2,

where C = |a2|+ |a3|+ · · ·+ |an|. Let δ = 1
2 −

1
2C , and let 0 < ξ < 1 be the unique real number

for which g
(
1
2 + ξ

)
= 1

2 + δ. We know that ξ is unique, since g is nondecreasing on the interval[
1
2 , 1
]
. Let δ

ξ = b > 1 be the unique real number such that

g

(
1

2
+ ξ

)
=

1

2
+ bξ.

We also know from 3.1 that g is concave down, and so for all b < g′
(
1
2

)
we have

g

(
1

2
+ ε

)
≥ 1

2
+ bε,

for all ε ∈ [0, δ). Figure 1 depicts the choices of our variables b and δ graphically. We must first
check that our choice of b is well - defined. That is, we need g′

(
1
2

)
> 1. Indeed, since we know

that for m ≥ 1

g′
(
1

2

)
= (2m+ 1)

(
2m

m

)(
1

4

)m

>

(
2m∑
i=0

(
2m

i

))(
1

2

)2m

= 1.

Now, while g(n)
(
1
2 + ε

)
− 1

2 < δ, we will have

g(n+1)

(
1

2
+ ε

)
− 1

2
≥ b

(
g(n)

(
1

2
+ ε

)
− 1

2

)
≥ bnε.
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Figure 1: Depiction of g
(
1
2 + x

)
and 1

2 + bx with intersection point
(
ξ, 12 + δ

)
.

It immediately follows that O (| log ε|) iterations are sufficient for the first step. Finally, invoking
the fact that 1− g(1− x) ≤ Cx2, we have that

1− g(n+1)

(
1

2
+ δ

)
≤ C

(
1− g(n)

(
1

2
+ δ

))2

,

≤ C1+2+···+2n−1

(
1

2
− δ

)2n

=
1

C

(
C

(
1

2
− δ

))2n

.

Notice that C
(
1
2 − δ

)
< 1 for our choice of δ = 1

2 − 1
2C , therefore, we know that the right hand

side goes to εk with O (log (k| log ε|)) iterations, and so we are done.

Note that the work we did for Lemma 3.4 is valid only for large regular trees, where we define
a k-level regular tree to be T reg

k =
⋃

j≤k{1, 2, . . . , n}j . In more colloquial terms, a regular tree
is a tree which is “complete.” A necessary and sufficient condition for our tree to be complete is
that every leaf has the same number of nodes in its genealogy. Our next lemma will show the
unintuitive fact that, with high probability, there exists a large regular n-tree within T (B(t)).
We will also define for ℓ ∈ R, T reg

ℓ = T reg
⌈ℓ⌉ .

Lemma 3.5. Let k ∈ N and let A = A(k) be as in Lemma 3.4. Then there exists a1 = a1(k)
and ε1 = ε1(k) such that, for all ε ∈ (0, ε1) and t ≥ a1ε

2| log ε|,

Pε
[
T (B(t)) ⊇ T reg

A(k)| log ε|

]
≥ 1− εk.

Proof of Lemma 3.5. It suffices to show that the probability of the complement is smaller than
εk. Our method of proof will be to notice that for an ℓ level regular tree if X1+X2+ · · ·+Xℓ > t,
where X1, . . . , Xℓ denote the exponential branching times from some chain of branching events
that led to a given leaf of our regular tree, and t is the current time, then the ℓ level tree does
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not exist yet at time t.

First, we will find some bounds on the distribution of the sum of the n independent, expo-
nentially distributed, branching times. To this end, we will apply Cramér’s Theorem. Notice
that for X ∼ Exp(1), we have

MX(λ) = E[eλX ] =

{
1

1−λ λ < 1

∞ λ ≥ 1

Then for a ≥ 1 the Legendre transform is

Ψ∗(a) = sup
λ≥0

(λa− logMX(λ)) = sup
0≤λ<1

(λa+ log(1− λ).

We can easily check that since the derivative is a− 1
1−λ and the second derivative is non positive

everywhere, that the maximum is achieved at λ = a−1
a , and this maximum is a− 1− log a. Now

denote by Sn the sum X1 +X2 + · · ·+Xn, where the Xi are i.i.d exponential branching times
with parameter 1. Cramér’s Theorem tells us that

lim
n→∞

(
− 1

n
logP[Sn ≥ na]

)
= Ψ∗(a) = a− 1− log a, a ≥ 1.

In particular, we then know that

lim
n→∞

(
1

n
logP[Sn ≥ na]

)
= Ψ∗(a) = 1 + log a− a,

and so for sufficiently large n, we have

1

n
logP[Sn ≥ na] ≤ 3

2
+ log a− a.

Now we will use this inequality to bound the probability that a given leaf of an A| log ε|
level regular tree is not contained in our time-labelled 2m + 1-tree. Using a union bound,

since our regular tree has n⌈A| log ε|⌉ children, Pε
[
T (B(t)) ̸⊇ T reg

A| log ε|

]
is bounded by (2m +

1)⌈A| log ε|⌉P
(
one leaf of T reg

A| log ε| is not in T (B(t))
)
. In terms of everything we have above, for

times t ≥ aε2⌈A| log ε|⌉, this becomes

Pε
[
T (B(t)) ̸⊇ T reg

A| log ε|

]
≤ (2m+ 1)⌈A| log ε|⌉P

[
ε2S⌈A| log ε|⌉ ≥ t

]
,

≤ (2m+ 1)⌈A| log ε|⌉P
[
ε2S⌈A| log ε|⌉ ≥ aε2⌈A| log ε|⌉

]
,

= exp

(
⌈A| log ε|⌉

(
log(2m+ 1) +

1

⌈A| log ε|⌉
logP

[
S⌈A| log ε|⌉ ≥ a⌈A| log ε|⌉

]))
,

where we must scale Sn by ε2, since in practice our branching times are exponential random
variables with parameter 1

ε2
. Now, by Cramér’s Theorem, we can choose ε1(k) sufficiently small

(corresponding to our sufficiently large n above) so that for all ε ∈ (0, ε1) we have

1

⌈A| log ε|⌉
logP

[
S⌈A| log ε|⌉ ≥ a⌈A| log ε|⌉

]
≤ −a+ 3

2
+ log a.
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Finally, we choose a ≥ 1 sufficiently large so that −a + 3
2 + log a ≤ − log(2m + 1) − k

A , which,
since the right hand side is constant and the left hand side is unbounded below and decreasing,
is clearly possible. Putting this into our exponential above, we get

Pε
[
T (B(t)) ̸⊇ T reg

A| log ε|

]
≤ exp(−k| log ε|) = εk,

for small ε and t ≥ aε2⌈A| log ε|⌉. Letting a1 = a(A+ 1) then completes our proof.

The last thing we will do is bound the maximal displacement of particles in our branching
process for small times. Let N(s) denote the set of particles alive in the historic process B(s).

Lemma 3.6. Let k ∈ N, and let a1(k) be as in the lemma above. Then there exists d1(k) and
ε1(k) such that for all ε ∈ (0, ε1(k)) and all s ≤ a1ε

2| log ε|, we have

Pε
x[∃i ∈ N(s) : |Bi(s)− x| ≥ d1(k)ε| log ε|] ≤ εk.

That is, the probability that there is a particle that has moved further than d1(k)ε| log ε| is very
small.

Proof of Lemma 3.6. We will denote the quantity a1ε
2| log ε| by δ1. Let Z be a N (0, 1) dis-

tributed random variable. Note that N(s) is itself a random variable. Therefore, we can condi-
tion on N(s) and get

Pε
x [∃i ∈ N(s) : |Bi(s)− x|] ≥ d1ε| log ε|] = Eε

x

(
1∃i∈N(s):|Bi(s)−x|]≥d1ε| log ε|

)
,

= Eε
[
Ex

(
1(∃i∈N(s):|Bi(s)−x|]≥d1ε| log ε|)|N(s)

)]
.

Now we bound this by taking a sum over the indicators for each i in N(s) and using the linearity
of expectation we have

Pε
x [∃i ∈ N(s) : |Bi(s)− x|] ≥ d1ε| log ε|] ≤ Eε

Ex

|N(s)|∑
i=0

1(|Bi(s)−x|≥d1ε| log ε|) | N(s)

 .
But since our Brownian Motions are i.i.d, this becomes

Eε
[
|N(s)|Ex

[
1(|B(s)−x|≥d1ε| log ε|)

]]
= Eε [|N(s)|]Ex

[
1(|B(s)−x|≥d1ε| log ε|)

]
.

Since our expectation on the right does not depend on N(s), it is in fact just the probability that
Brownian Motion in time s travels further than d1ε| log ε|. Therefore, our desired probability is
bounded above by

= Eε [|N(s)|]P
(√

2s|Z| ≥ d1ε| log ε|
)
.

Now we finish our bounding with some computations. Recall from Proposition 2.1 that Eε [|N(s)|] =
e2ms/ε2 , and so for s ≤ δ1 we have

Pε
x[∃i ∈ N(s) : |Bi(s)− x|] ≥ d1(k)ε| log ε|] ≤ Eε[|N(s)|]P(

√
2s|Z| ≥ d1ε| log ε|),

= e
2ms
ε2 P

[√
2s|Z| ≥ d1ε| log ε|

]
,

≤ e
2mδ1
ε2 P

[√
2δ1|Z| ≥ d1ε| log ε|

]
,

=
1

ε2ma1
P
[√

2a1|Z| ≥ d1| log ε|1/2
]
.
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But note that for d1 large enough, we have that (0,∞),

P
[√

2a1|Z| ≥ d1| log ε|1/2
]
=

∫ ∞

d1| log ε|1/2√
2a1

1√
2π
e−x2/2dx,

≤
∫ ∞

d1| log ε|1/2√
2a1

xe−x2/2 = −e−x2/2

∣∣∣∣∣
∞

d1| log ε|1/2√
2a1

= exp

(
− d21
4a1

| log ε|
)
,

which implies that our above probability is bounded above by

1

ε2ma1
exp

(
− d21
4a1

| log ε|
)

= ε
d21
4a1

−2ma1 .

Finally, we are done by choosing d1(k) large enough so that
d21
4a1

− 2ma1 ≥ k, since then, since

ε < 1, this will be bounded above by εk, and completes our proof.

Now we are finally read to put our four lemmas together and prove Theorem 3.1.

3.4 Finishing the Proof of Theorem 3.1

Proof of Theorem 3.1. First, note that if the first statement is true, then by symmetry of our
Brownian Motion the second one is also true, since u(t, x) ≤ εk is the same as 1−u(t, x) ≥ 1−εk.
So, it suffices to prove just the first statement. That is, we will show that for all t ∈ [0, T ∗]
and ε ∈ (0, ε1) and z ≥ c1(k)ε| log ε|, for ε1, T

∗, and c1(k) chosen appropriately, we have
Pε
z[V(B(t)) = 1] ≥ 1− εk.

For all ε < 1
2 we define zε to be a real number such that P[BT ∗ ≥ −zε] = 1

2 + ε. Just to get
a sense as to what zε is, we can write that∫ ∞

−zε

1√
4πT ∗

e−x2
dx =

1

2
+ ε =⇒

∫ zε

0

1√
4πT ∗

e−x2/2dx = ε.

But for small enough ε, e−x2/2 asymptotically approaches 1, and so our integral tells us that

zε√
4πT ∗

∼ ε =⇒ zε ∼ ε
√
4πT ∗,

as ε→ 0. Let ε1(k) be sufficiently small so that Lemma 3.5 and Lemma 3.6 hold for ε ∈ (0, ε1(k)).
Let d1(k) be given by Lemma 3.6, and shrink ε1 so that for all ε ∈ (0, ε1) we have

zε ≤ d1(k)ε| log ε|.

Let a1(k) be such that Lemma 3.5 holds and let

δ1 = δ1(k, ε) = a1(k)ε
2| log ε|.

Now, we claim that c1(k) = 2d1(k) is a sufficient constant so that our theorem holds for all
z ≥ c1ε| log ε|. If we have a small time t ∈ (0, δ1) and z ≥ c1ε| log ε| = 2d1ε| log ε|, then

Pε
z[V(B(t)) = 0] ≤ Pε

z[∃i ∈ N(t) such that |Bi(t)− z| ≥ c1ε| log ε|],
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≤ Pε
z[∃i ∈ N(t) such that |Bi(t)− z| ≥ d1ε| log ε|] ≤ εk,

where the first inequality holds since this means we must have at least one particle that is neg-
ative. The second inequality follows from the fact that c1 = 2d1, and the third follows from
Lemma 3.6.

Now, suppose that t ∈ [δ1, T
∗] and z ≥ c1ε| log ε|. Let Tδ1 = T (B(δ1)) denote the time-

labelled tree of Branching Brownian Motion up to time δ1. Define

pt−δ1(z) = Pε
z[V(B(t− δ1)) = 1].

We write {B(δ1) > zε} for the event that Bi(δ1) > zε for all i ∈ N(δ1). Then, by the Markov
Property of B applied at time δ1, and the monotonicity of our initial condition we have.

Pε
z[V(B(t)) = 1] = Pε

z

[
Vpt−δ1

(Bδ1
)(B(δ1)) = 1

]
≥ Pε

z

[{
Vpt−δ1

(zε)(B(δ1)) = 1
}
∩ {B(δ1) > zε}

]
,

≥ Pε
z

[{
Vpt−δ1

(zε)(B(δ1)) = 1
}
∩ {B(δ1) > d1ε| log ε|}

]
.

Now using the fact that P(A∪B) = P(A)+P(B)−P(A∩B) =⇒ P(A∩B) ≥ P(A)+P(B)− 1,
from the fact that probabilities are bounded above by 1, we have that our expression is bounded
below by

≥ Pε
z

[
Vpt−δ1

(zε)(B(δ1)) = 1
]
+ P(B(δ1) > d1ε| log ε|)− 1.

Now, we bound the complement of P(B(δ1) > d1ε| log ε|) by Lemma 3.6.

P(B(δ1) > d1ε| log ε|) = 1− P(∃i ∈ N(t) such that z −Bi(t) ≥ d1ε| log ε|),

≥ 1− P(∃i ∈ N(t) such that |Bi(t)− z| ≥ d1ε| log ε|) ≥ 1− εk,

where here we have used the fact that our initial starting point z ≥ c1ε| log ε| = 2d1ε| log ε|.
This implies that our initial expression is bounded below by

= Pε
z

[
Vpt−δ1

(zε)(B(δ1)) = 1
]
− εk.

From Lemma 3.3 we have that

pt−δ1(zε) ≥ Pzε [Bt−δ1 ≥ 0] ≥ 1

2
+ ε,

since t− δ1 < T ∗.

Now, if each of p1, p2, . . . , p2m+1 is at least 1
2 , then we know that

g(p1, . . . , p2m+1) ≥
1

2m+ 1
(p1 + · · ·+ p2m+1) ≥ min{p1, . . . , p2m+1}.

Therefore, if each leaf of Tδ1 votes 1 independently with probability at least 1
2 + ε, and we have

that Tδ1 ⊇ T reg
A| log ε|, then each of the leaves of T reg

A| log ε| votes 1 independently with probability at

least 1
2 + ε. Therefore

Pε
z[V(B(t)) = 1] ≥ Pε

z

[
Vpt−δ1

(zε)(B(δ1)) = 1
]
− εk,
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≥ Pε
z

[(
Vpt−δ1

(zε)(B(δ1)) = 1
)
∩
(
Tδ1 ⊇ T reg

A| log ε|

)]
− εk,

= Pε
z

[(
Vzε(T

reg
A| log ε|) = 1

)
∩
(
Tδ1 ⊇ T reg

A| log ε|

)]
− εk,

≥ Pε
z

[
Vzε(T

reg
A| log ε|) = 1

]
+ Pε

z

[
Tδ1 ⊇ T reg

A| log ε|

]
− 1− εk,

≥ Pε
z

[
Vzε(T

reg
A| log ε|) = 1

]
− 2εk ≥ g(⌈A| log ε|⌉)

(
1

2
+ ε

)
− 2εk ≥ 1− 3εk,

and our proof is complete.

4 PDE Proof

Consider the solution u (t, x) to the equation

ut = uxx + f (u) . (5)

In our case,

f (u) = g (u)− u =
m∑
j=0

(
2m+ 1

j

)
u2m+1−j (1− u)j − u.

It is easy to observe that f (0) = f (1) = 0. Moreover,

f ′ (u) = g′ (u)− 1 = (2m+ 1)

(
2m

m

)(
u− u2

)m − 1.

This implies that f is decreasing on [0, a], increasing on [a, b], and decreasing on [b, 1] where
a < b are the roots of f ′ (u) = 0. So f has only one root α in the interval (0, 1). Moreover
f ′ (0) , f ′ (1) < 0, f (u) < 0 for u ∈ (0, α) and f (u) > 0 for u ∈ (α, 1). In particular, we have
g (u) = 1− g (1− u) and thus f (u) = −f (1− u). This implies that f(12) = −f(1− 1

2) = 0 and
thus f(12) = 0.

We define traveling wave solutions to be solutions of form u(t, x) = U(x− ct) where c is the
speed of the traveling wave. In particular, for our type of equations U satisfies the ODE

U ′′ + cU + f(U) = 0.

With the above properties of f , we know that equation (5) is of the bistable type [Roq11], and
so we know that there exists a traveling wave solution U such that U (−∞) = 0, U (∞) = 1
and U is monotonically increasing, which is illustrated in chapter 4.4 of [Fif79]. Moreover, there
exists a unique speed c and a unique travelling wave up to translation [Per15]. In the graph
below, we can see how our choice of f(u) behaves for several values of n.
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Figure 2: Nonlinearity f(u) for several values of n.

We first prove that solutions to bistable equations converge to a translation of the traveling
wave exponentially fast in time.

Consider the change of coordinates z = x− ct. We get the equation

N (v) = vt − cvz − vzz − f (v) = 0, (6)

where v (z, t) = u (x, t) = u (z + ct, t).
Lemma 4.1. With initial condition u (0, x) = ϕ (x) = 1(x≥0), there exist constants z1, z

′
1, q0, µ,

the last two positive, such that

U (z − z1)− q0e
−µt ≤ v (z, t) = u (x, t) ≤ U

(
z + z′1

)
+ q0e

−µt. (7)

Here U (x) is the traveling wave solution to (5) where f (0) = f
(
1
2

)
= f (1) = 0, f ′ (0) , f ′ (1) <

0, and f (u) < 0 for u ∈ (0, α) while f (u) > 0 for u ∈ (α, 1).

Proof of Lemma 4.1. We first consider the left side of the inequality, and we want to find
ζ (t) , q (t) such that

v0 (z, t) = max{0, U (z − ζ (t))− q (t)}

is a subsolution.

First, let q0 > 0 be any real number such that α < 1 − q0. Then we choose z∗ sufficiently
large such that U (z − z∗)− q0 ≤ ϕ (z) for all z, which can be achieved by choosing z∗ such that
U (−z∗) = q0. In this case, we have U (z − z∗)− q0 ≤ 0 for all z ≤ 0 by monotonicity of U and
also U (z − z∗)− q0 < U (z − z∗) ≤ 1 for all positive z.

Let

ψ (u, q) =

{
f(u−q)−f(u)

q , q > 0

−f ′ (u) , q = 0.
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Figure 3: Critical point on f(u) where the derivative begins to be negative. In particular, there
is a small interval around 1 where the derivative starts to be negative.

For 0 < q ≤ q0, there is α1 such that α ≤ α1 < 1 − q0 ≤ 1 − q < 1 implies ψ (1, q) > 0.
This is because f ′ (1) < 0 suggests that there exist an interval (α1, 1) where f is decreasing.
Also ψ (1, 0) = −f ′ (1) > 0. Notice that ψ is continuous, there must exist some µ > 0 such that
ϕ (1, q) ≥ 2µ for 0 ≤ q ≤ q0. Also by continuity, there exist δ > 0 such that ψ (u, q) ≥ µ for
1− δ ≤ u ≤ 1 and 0 ≤ q ≤ q0. So in this region we have

f (u− q)− f (u) ≥ µq.

Let ρ = z − ζ (t), for v0 > 0, equation (6) implies

N (v0) = −ζ ′ (t)U ′ (ρ)− cU ′ (ρ)− q′ (t)− U ′′ (ρ)− f (U − q) .

Recall that U ′′ + cU ′ + f (U) = 0, we have

N (v0) = −ζ ′ (t)U ′ (ρ)− q′ (t) + f (U)− f (U − q) .

Therefore, for U ∈ [1− δ, 1], q ∈ [0, q0], we have

N (v0) ≤ −ζ ′U ′ − q′ − µq ≤ −
(
q′ + µq

)
,

provided that ζ ′ ≥ 0 since we already have U ′ ≥ 0. Choosing q (t) = q0e
−µt, we have N (v0) ≤ 0

for U ∈ (1− δ, 1), i.e. v0 is a subsolution on this interval.

Similarly, we can run the same argument for U ∈ [0, δ], U ≥ q using the fact that f ′ (0) < 0
by potentially choosing smaller δ and µ in the proof above.

The remaining case is when U ∈ [δ, 1−δ]. In this compact interval, we may assume U ′ (z) ≥ β
for some β > 0.We also take k > 0 such that: f (U)− f (U − q) ≤ kq . Hence, we have

N (v0) ≤ −βζ ′ − q′ + kq.
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Setting z2 =
−q0(µ+k)

µβ , z1 = z∗ − z2, and ζ = z1 + z2e
−µt, we have

ζ ′ (t) =
−q′ + kq

β
=

(µ+ k) q

β
> 0.

Clearly, this implies N (v0) ≤ 0 and we can now conclude that v0 is a subsolution on the
whole interval. Also notice that ζ (t) is an increasing function such that limt→∞ ζ(t) = z1. By
monotonicity of U , we have

u (x, t) = v (z, t) ≥ v0 (z, t) ≥ U (z − z1)− q (t) = U (z − z1)− q0e
−µt.

Now consider the other direction where we want to find ζ (t) , q (t) such that

v1 (z, t) = min{1, U (z + ζ (t)) + q (t)}

is a supersolution.

For any q0 > 0 with α < 1 − q0, we choose z∗∗ with U (z∗∗) = 1 − q0 to make sure that
U (z + z∗∗) + q0 ≥ ϕ (z) for all z.

By the same argument, we can choose µ > 0 such that there exist δ > 0 with f (u) −
f (u+ q) ≥ µq for u ∈ [1− δ, 1], u+ q ≤ 1 and q ∈ [0, q0]. Hence, for such u, q we have

N (v1) = ζ ′U ′ + q′ − cU ′ − U ′′ − f (U + q) ,

= ζ ′U ′ + q′ + f (U)− f (U + q) ,

≥ q′ + µq = 0,

where q (t) = qoe
−µt and we must have ζ ′ ≥ 0.

For u ∈ [δ, 1 − δ], there exist β > 0 such that U ′ ≥ β and 0 < k < µ such that f (u) −
f (u+ q) ≥ kq. Then we have

N (v1) ≥ βζ ′ + q′ + kq.

Setting z′2 =
−q0(µ−k)

µβ , z′1 = z∗∗ − z′2, and ζ (t) = z′1 + z′2e
−µt, we have

ζ ′ (t) =
(µ− k) q

β
> 0.

This implies N (v1) ≥ 0 on the whole interval. Since ζ is increasing, monotonicity of U implies
that

u (x, t) = v (z, t) ≤ v1 (z, t) ≤ U
(
z + z′1

)
+ q0e

−µt.

Now we focus on the traveling wave solutions to our specific equations, and we can show that
the speed c of our traveling waves is zero, which means that our solutions u (t, x) will converge
to the steady-state solutions.

We begin with a small lemma
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Lemma 4.2. ∫ 1

0
(g (x)− x) dx = 0,

where is as before, g =
∑m

j=0

(
2m+1

j

)
x2m+1−j(1− x)j

Proof of Lemma 4.2. It suffices to show that
∫ 1
0 g (x) dx = 1

2 .∫ 1

0
g (x) dx =

∫ 1

0

m∑
j=0

(
2m+ 1

j

)
x2m+1−j (1− x)j dx =

m∑
j=0

(
2m+ 1

j

)∫ 1

0
x2m+1−j (1− x)j dx,

=

m∑
j=0

(
2m+ 1

j

)
β (2m+ 2− j, j + 1) =

m∑
j=0

(
2m+ 1

j

)
Γ (2m+ 2− j) Γ (j + 1)

Γ (2m+ 3)
,

=

m∑
j=0

(
2m+ 1

j

)
(2m+ 1− j)!j!

(2m+ 2)!
=

1

2m+ 2

m∑
j=0

(
2m+1

j

)(
2m+1

j

) =
1

2
.

Alternatively, note that g(1 − x) = 1 − g(x). hence
∫ 1
0 =

∫ 1/2
0 g(x) +

∫ 1/2
0 (1 − g(x))dx =∫ 1/2

0 1dx = 1
2 , as desired.

This lemma allows us to state the following theorem:

Theorem 4.1. Traveling wave solutions to

ut = uxx + f (u) ,

where f (u) = g (u)− u have speed c = 0.

Proof of Theorem 4.1. Recall that a traveling wave solution is of the form u (x− ct). Therefore,
rewritten in terms of our traveling wave, our equation reads

−cu′ = u′′ + g (u)− u.

Now, we can multiply by u′ and integrate over the real line to get

0 =

∫ 1

0
(g(u)− u)du+

1

2
(u′)2

∣∣∣∣∣
∞

−∞

+

∫ ∞

−∞
c(u′)2.

Recall our boundary conditions, which state that u′(−∞) = u′(∞) = 0. Therefore

0 =

∫ 1

0
(g (u)− u) du+

∫ ∞

−∞
c
(
u′
)2

=⇒ c = −
∫ 1
0 (g(u)− u)du∫∞

−∞(u′)2
.

In particular from Lemma 4.2, we know that
∫ 1
0 (g(u) − u)du = 0. Note additionally that the

denominator is positive, since (u′)2 ≥ 0 and u′ ̸≡ 0. Hence we have c = 0, as desired.
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Now we know that our traveling wave solutions satisfies the ODE

U ′′ + f (U) = 0.

Again, this means that the travelling wave solution is in fact a steady state solution to equation
(4.1).

Let

W (u) =

∣∣∣∣∫ u

0
f (v) dv

∣∣∣∣ =
{
−
∫ u
0 f(v)dv v ∈

(
0, 12
)

−
∫ 1−u
0 f(v)dv v ∈

(
1
2 , 1
)

we have W ′ (u) = −f (u) and also

d

dx

(
u′2 − 2W (u)

)
= 2u′u′′ − 2W ′ (u)u′ = 0.

This implies u′2 − 2W (u) = λ, and we have that λ = 0 by plugging in the boundary condition
for U(−∞) = 0, U ′(−∞) = 0 since W (0) = 0.

We have that u′ =
√

2W (u). From Theorem 4.15 of [Fif79], we know that taking the
boundary conditions limx→−∞W (x) = 0, limx→+∞W (x) = 1 produces a unique traveling wave
up to translation. WLOG, we may choose the translation of our travelling wave to be the one
such that U(0) = 1

2 . Then, separating variables and integrating, we have∫ u

1/2

dv√
2W (v)

=

∫ x

0
1dy =⇒

∫ u

1/2

dv√
2W (v)

= x.

Now, we will set F (u) =
∫ u
1/2

dv√
2W (v)

= x. Notice that F is an increasing function since it is the

integral of a positive quantity. Therefore, to show that U(x) ≥ 1− εk for all x ≥ c1(u)| log ε|, it
suffices to show that

F (U(x)) = x ≥ F (1− εk).

for all x ≥ c1(u)| log ε| Therefore, it suffices to show that c1(k)| log ε| ≥ F (1− εk). To show this
comparison, we introduce a lemma.

Lemma 4.3.

W (v) =

∣∣∣∣∫ v

0
f(w)dw

∣∣∣∣ > ∣∣∣∣∫ v

0
fAC(w)dw

∣∣∣∣ =WAC(v),

where fAC(w) = 2w3 − 3w2 − w denotes the nonlinearity of the Allen-Cahn equation.

Proof of Lemma 4.3. If v ∈
(
0, 12
)
we have that:

W (v) =

∫ v

0
−f(w)dw =

∫ v

0
f(1− w)dw =

∫ 1

1−v
f(z)dz. (8)

If we denote by f2m+1(u) = g2m+1(u) − u, the nonlinearity corresponding to majority voting
with 2m+1 branchings, then if u ∈

(
1
2 , 1
)
we have g2m+1(u) ≥ g2m−1(u) from Condorcet’s Jury

Theorem 3.2, and so in particular f2m+1(u) ≥ f3(u) = fAC(u). Now, since 1 − v ∈
(
1
2 , 1
)
in

Equation (8), we get that W (v) =
∫ v
1−v f2m+1(z)dz ≥

∫ v
1−v fAC(z)dz =WAC(v).
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We may compute that

WAC(v) =

∫ v

0
(2w3 − 3w2 + w)dw =

v4

2
− v3 +

v2

2
,

for v ∈
(
0, 12
)
and analagously for v ∈

(
1
2 , 1
)
we get

WAC(v) =

∫ 1−v

0
(2w3 − 3w2 + w)dw =

(1− v)4

2
− (1− v)3 +

(1− v)2

2
.

Now we can bound

F (1− εk) =

∫ 1−εk

1/2

dv√
2W (v)

≤
∫ 1−εk

1/2

dv√
2WAC(v)

,

and so it suffices to show that ∫ 1−εk

1/2

dv√
2WAC(v)

≤ c1(k)| log ε|.

For v ∈
(
1
2 , 1
)
we have

∫ 1−εk

1/2

dv√
2WAC(v)

=

∫ 1−εk

1/2

dv√
(1− v)2v2

=

∫ 1−εk

1/2

dv

v(1− v)
=

[
log

v

1− v

]1−εk

1/2

,

= log(1− εk)− k log ε ≤ −k log ε ≤ B1(k)| log ε|,

from which we see it suffices to choose B1(k) = k.

The last thing we want to do is show that we can choose our constants so that the subsolution
proof works, and so that our constants are suitably small. We choose q0 = εk in the subsolution
proof so that 1

2 < 1− q0 < 1. Then, we choose z∗ such that

U(−z∗) = q0 = εk.

Now, we define

ϕ(u, q) =

{
f(u−q)−f(u)

q q > 0

−f ′(u) q = 0
.

We have that

ϕ(1, q) =
f(1− q)− f(1)

q
> 0,

for q ∈ [0, q0], since f is decreasing for all u ∈ [α1, 1], where α1 =
1
2 +

1
2
√
3
is chosen appropriately

as the threshold for f ′AC(u) to be negative in [α1, 1] (see Figure 3). Next, we see that

f ′2m+1(u) ≤ f ′2m−1(u),

for all u ∈ [α1, 1]. To see this, we introduce another lemma.
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Lemma 4.4. Let m ≥ 1. Then
f ′2m+1(u) ≤ f ′2m−1(u),

for u ∈
[
1
2 + 1

2
√
3
, 1
]
.

Proof of Lemma 4.4. From our computations in Lemma 3.1 we want to show that on this interval
we have

(2m+ 1)

(
2m

m

)
(u− u2)m − 1 ≤ (2m− 1)

(
2m− 2

m− 1

)
(u− u2)m−1 − 1,

⇐⇒ u− u2 ≤ 2m− 1

2m+ 1
· m2

2m(2m− 1)
=

m

4m+ 2
=

1

4
− 1

8m+ 4
.

Since the right hand side is increasing in m, it suffices for u− u2 ≤ 1
4 −

1
12 = 1

6 on this interval.
Note that u − u2 = 1

6 has roots 1
2 ± 1

2
√
3
, and since it has negative end behavior, we have that

u − u2 − 1
6 is nonpositive on the interval

[
1
2 + 1

2
√
3
, 1
]
, and so our inequality holds. Therefore,

f ′2m+1(u) ≤ f ′AC(u) for all u ∈ [α1, 1].

By the Mean Value Theorem, there is a real number ξ1 so that

f(1− q)− f(1)

q
= −f ′(ξ1),

for ξ1 ∈ (1− q, 1). But by Lemma 4.4, −f ′(ξ1) ≥ −fAC(ξ1) for ξ1 ∈ [α1, 1] and so it suffices that

1− q > α1.

In other words, we need q0 = εk < 1− α1 =
1
2 − 1

2
√
3
. Now, we look at µ such that

ϕ(1, q) ≥ 2µ,

for all q ∈ [0, q0]. We can choose δ > 0 such that

ϕ(u, q) ≥ µ,

for all u ∈ [1− δ, 1] and all q ∈ [0, q0]. Recall that

ϕ(u, q) =
f(u− q)− f(u)

q
,

and so there exists ξ2 ∈ [u− q, u] such that

f(u− q)− f(u)

q
= −f ′(ξ2).

We have u ∈ [1 − δ, 1] so that ξ2 ∈ [1 − δ − q0, 1]. We choose δ such that 1 − δ − q0 > α1 or
equivalently that 0 < δ < 1

2 − 1
2
√
3
− εk. It will suffice to choose δ =

4
√
εk as long as

4
√
εk + εk <

1

2
− 1

2
√
3
.
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Let y =
4
√
εk. Then it suffices for

y + y4 ≤ 2y ≤ 1

2
− 1

2
√
3
.

In other words, y ≤ 1
4 − 1

4
√
3

=⇒ εk ≤
(
1
4 − 1

4
√
3

)4
suffices.

Now ϕ(u, q) ≥ min (−f ′AC(ξ2)) := µ for all ξ2 ∈ [1 − δ − εk, 1] since then ξ2 ∈ [a1, 1] by
Lemma 13. But since −f ′AC(u) = 6u2 − 6u+ 1, is increasing on [1− δ − εk, 1], we have that the
minimum occurs at 1− δ − εk. That is, we choose µ so that

µ = −f ′AC(1− δ − εk) = 6(1− δ − εk)2 − 6(1− δ − εk) + 1 > 0.

Also, we want µ to satisfy that
ϕ(u, q) ≥ µ,

for u ∈ [0, δ]. Setting u− q = v we need v ≥ 0 so that

f(v)− f(v + q)

q
≥ µ,

for q ∈ [0, q0]. Applying the Mean Value Theorem again, there is ξ3 ∈ [v, v + q] so that

f(v)− f(v + q)

q
= −f ′(ξ3),

for ξ3 ∈ [0, δ]. From Lemma 4.4 we have that −f ′(ξ3) ≥ −f ′AC(ξ3) for ξ3 ∈ [a1, 1]. We also have
that

f(u) = −f(1− u) and f ′(u) = f ′(1− u) =⇒ f ′(ξ3) = f ′(1− ξ3),

and 1− ξ3 ∈
[
1
2 + 1

2
√
3
, 1
]
and 1− ξ3 ∈ [1− δ, 1]. Therefore, −f ′AC(ξ3) = −f ′AC(1− ξ3) ≥ µ, and

so µ still holds as the desired lower bound for ϕ(u, q) with u ∈ [0, δ], u ≥ q for our δ.
Finally, for the values in the interval [δ, 1− δ], we have to choose β such that U ′(z) ≥ β > 0 for
U ∈ [δ, 1− δ] and k such that f(u)− f(u− q) ≤ kq.

We have that U ′ =
√

2W (u) ≥
√

2WAC(u) and so we can choose β such that√
2WAC(u) ≥ β,

for u ∈ [δ, 1− δ]. We have

2WAC(u) ≥ β2 ⇐⇒
∣∣∣∣∫ u

0
fAC(w)dw

∣∣∣∣ ≥ β2

2
,

so 2
∣∣∣u3 − u4

2 − u2

2

∣∣∣ ≥ β2 for u ∈ [δ, 1− δ]. Since this is just u− u2 ≥ β, we have that β = δ− δ2

is our minimum.

Now we show that k can be chosen to be f ′
(
1
2

)
. That is, we need

f(u)− f(u− q)

q
≤ k,
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for all u ∈ (δ, 1− δ), u ≥ q. Indeed, notice that

f ′(x) ≤ f ′
(
1

2

)
,

since

f ′(u) = (2m+ 1)

(
2m

m

)
(u− u2)m − 1 = (2m+ 1)

(
2m

m

)(
1

4
−
(
u− 1

2

)2
)m

− 1,

which, by the Trivial Inequality, clearly achieves its maximum at u = 1
2 for u in the interval

[0, 1]. Thus we can choose k = f ′(12). Finally, for the subsolution proof, we have then that

u(t, x) ≥ U(x− z1)− q0e
−µt ≥ U(x− z1)− εk,

and we have shown that U(x− z1) ≥ 1− εk as long as x− z1 > B1(k)| log ε|. Now we will choose
c1(k) so that if x > c1(k)| log ε| then x > z1 +B1(k)| log ε|. It suffices to control z1 where

z1 = z∗ + q0

(
1

β
+

k

µβ

)
.

Note that

q0
β

(
1 +

k

µ

)
=

εk√
(δ − δ2)2

(
1 +

f ′
(
1
2

)
6(1− δ − εk)2 − 6(1− δ − εk) + 1

)
.

For δ =
4
√
εk, we have

q0
β

(
1 +

k

µ

)
=

4
√
ε3k

1− 4
√
εk

(
1 +

f ′
(
1
2

)
6(1− 4

√
εk − εk)2 − 6(1− 4

√
εk − εk) + 1

)
,

and so this is a term of order O(ε3k/4) and can thus be bounded above by B2(k)| log ε| for some
B2(k). Now, for z

∗, we chose it so that

U(−z∗) = εk,

or equivalently that

F (U(−z∗)) = −z∗ = F (εk) =

∫ εk

1/2

1√
2W (v)

dv =⇒ z∗ =

∫ 1/2

εk

1√
2W (v)

dv.

Again, we bound
√

2W (v) ≥
√

2WAC(v) to get that

z∗ ≤
∫ 1/2

εk

1√
2WAC(v)

dv =

∫ 1/2

εk

1

v(1− v)
dv =

[
log

v

1− v

]1/2
εk

= − log

(
εk

1− εk

)
,

= −k log ε+ log(1− εk) ≤ −k log ε.

Thus, we have bound z∗ above by −k log ε so that z∗ ≤ B3(k)| log ε| with B3(k) = k. Finally,
taking c1(k) = B1(k)+B2(k)+B3(k), we have that if z > c1(k)| log ε| then z > z1+B1(k)| log ε|
and thus

u(t, x) > 1− 2εk.
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We will note that this works for εk ∈ (0, ε1(k)) where ε1(k) =
(
1
4 − 1

4
√
3

)4
. We may even choose

ε′ such that 2εk = ε′k and get that this proof works for ε′k ∈
(
0, ε1(k)2

)
.

The result on the upper bound on u(t, x) follows similarly, using the supersolution.

Remark 4.1. The above computation is very simple for the case n = 3, i.e. the case of ternary
branching, since we have an explicit expression for the steady state solution when our nonlinearity
is f(u) = u(1−u)(2u−1). In that case we have the traveling wave U(x) = 1

2(1+tanh( x√
2
)) and

tanhx = 1 +O(e−2x), so we can easily see that U(x) ≥ 1− εk if x ≥ d(k)| log ε|.

5 Simulations

PDEs which we cannot explicitly solve are generally very difficult to understand visually.
Usually, we can at best say things about the solution’s long-term behavior and convergence. In
order to get a better handle on how the solutions to our PDEs behaved, we created simulations.
This work allowed us to confirm surprising results we had proved and make conjectures about
other behaviors of our solutions.

5.1 Graphing Branching Brownian Motion

We begin with the graphing of the standard Brownian Motion of a single particle. There
are many ways in which mathematicians have discussed simulating Brownian Motion. We have
used a very popular option: sampling many times from a normal distribution.

Suppose we want to graph the Brownian Motion path of a single particle starting from x
on a time interval of length t. We know that the particle’s final location y will be normally
distributed by y ∼ N (x, t). The problem we have is that rather than simulating a full Brownian
Motion path, we have only the particle’s starting and ending points. We can rectify this by
splitting this time interval into many smaller intervals and sample from the normal distribution
over each interval. If a time interval of length t is split into 10, 000 smaller intervals, then we

can sample from the normal distribution N
(
0, t

10,000

)
for each of these intervals and take the

cumulative sum to depict our Brownian Motion path. It is well-known that a sum of 10, 000

normal distributions that follow N
(
0, t

10,000

)
results in a normal distribution of N (0, t), which

is the same as our original distribution. The resulting graph is shown as Figure 4.
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Figure 4: Graph of a particle undergoing Brownian Motion.

From this process of graphing a path of Brownian Motion, we can introduce the branching
mechanism to graph Branching Brownian Motion. To graph the ternary BBM discussed in
earlier sections, we start with a single particle and sample from the exponential distribution
to determine the length of our time interval. After graphing the Brownian Motion along this
interval, we restart the process using this endpoint point as the starting point for 3 new particles,
each of which follows its own path of Brownian Motion. By plotting this on a graph, we get a
nice visual representation of the process as seen in Figure 5.

5.2 Monte Carlo Trials

To exhibit our probabilistic model for the solution to the Allen-Cahn, we simulate the actual
process of Branching Brownian Motion and use this data to propagate the votes of each individ-
ual particle back to the original starting particle and determine the original particle’s vote. We
run this simulation many times for various starting points to estimate the probability of voting
1 conditioned on the original particle’s starting location.

To actually simulate the ternary branching voting model, we utilized a ternary tree data
structure. We use individual nodes to represent particles, and each node has four data points
associated with it: three nodes representing the three children into which the particle splits, and
one variable representing that particle’s position in space.

We first construct the entire tree starting with one particle with location x. We then sample
from the exponential distribution to determine the time t at which the particle branches. We
then sample from the normal distribution N (x, t) to determine the particle’s location at the
end of this time interval. We then create three new children nodes representing the three new
branching particles; each child has a starting location equal to the ending location of the parent.
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Figure 5: Ternary Branching Brownian Motion graph.

We then repeat this procedure for each of the children, and the process continues as more and
more particles are born until we reach a stopping time established at the beginning.

Once we have constructed the tree, we can use vote propagation to determine the vote of
the original particle. For each particle in the most recent generation (the “leaf” nodes), we
determine their vote based on the initial condition, 1(x≥0). Then, the parent node will vote
the same as the majority of its children. By repeating this process, the votes of the current
generation propagate back to the original particle.

This process can be run many times for a specific starting location to experimentally de-
termine the original particle’s probability of voting 1 in that location. In our case, we ran this
process with a stopping time of 5 seconds and an exponential rate parameter of 1. We used 600
equally spaced data points on the interval [−3, 3] and ran the simulation 500 times for each data
point. For each point, we recorded the number of times that the particle voted 1 and divided
it by 500 to calculate the desired probability. Then, we plotted the data points against their
estimated probability and achieved the graph shown in Figure 6.

We can observe the following properties of our graph:

• the probability of voting 1 given that we start from the origin is approximately 0.5, which
we would expect.

• As x becomes more positive, the probability that the original particle votes 1 decreases to
0, and as x becomes more negative, it increases to 1.

Note that the solution to Allen-Cahn is monotonically decreasing. However, our graph is not.
While the overall shape of the graph is that of a decreasing curve, restricting our curve to smaller
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Figure 6: Probabilistic graph of Allen-Cahn Solution with the initial condition 1(x≥0), with
Monte-Carlo trials.

intervals reveals a much more jagged structure. This is due to the natural, random variation that
comes with sampling from exponential and normal distributions. Had we run the simulation
more than 500 times for each data point or increased the stopping time, we should expect to see
a smoother curve, as the experimental probability converges to its theoretic value.

5.3 Allen-Cahn PDE and Results

While the probabilistic graph gives us the general shape of the solution to Allen-Cahn,it is
much less accurate than if we were to numerically simulate the PDE itself.

To estimate more accurate values for the PDE and to graph it, we refer to Euler’s method,
utilizing Laplacian intervals to slowly converge towards the actual solution. The resulting graph
when using Euler’s method as well as the initial condition 1(x≥0), is much more accurate and
evidently monotonic than the Monte-Carlo simulated graph appeared to be.

Using this simulation for the Allen-Cahn PDE, we are able to find explicit values for c1(k) as
in Theorem 3.1. We denote by c1(k) the constants for the ≥ 1− εk case and c2(k) the constant
for the ≤ εk case. As expected, we found the c1(k) and c2(k) values to be identical. In Figure 8
below, we depict an array of values for the case ε = 0.1.
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Figure 7: The graph illustrates the behavior of the solution under the initial condition 1(x≥0),

and we can see that it resembles the traveling wave solution of form U(x) = 1
2

(
1 + tanh

(
x√
2

))
.

k c1(k) c2(k)

1 1.04230676 1.04230676

2 2.08461351 2.08461351

3 3.12692027 3.12692027
...

...
...

Figure 8: Table of values for ε = 0.1

6 Contributions

Yunchu Dai proposed the idea of generalizing Theorem 2.5 of [Ali16] and worked primarily
on the PDE proof of the theorem. Bradley Moon worked primarily on the probability proof of
Theorem 2.5. Overall, the two proofs were a result of collaborative efforts by Bradley Moon and
Yunchu Dai with advice and guidance from Alexandra Stavrianidi. Simulations were designed
and implemented by Taran Kota.
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