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Abstract

In this article, we give a counterexample to an endpoint mixed norm estimate
of Calderéon-Zygmund Operators.

1 Introduction

Definition 1.1. A kernel K : R* — {0} — C is called a Calderon-Zygmund kernel if
there exists some constant B such that

1. |K(2)| < Bl
2. f\x|>2|y\ |K(x) - K(z —y)|dx < B for all ly| >0

3. f7,<|x‘<sK(x)dx=0f0r0<7’<5<oo

Definition 1.2. For a Calderon-Zygmund kernel K and f € S(R"), let
1) =tim [ K -y)f)dy

T is called the Calderdon-Zygmund operator with kernel K.
Now we give two examples of Calderén-Zygmund operators.

Definition 1.3. The Riesz transforms R;’s are the Calderdn-Zygmund operators given
by kernels Kj(z) = o

Definition 1.4. The double Riesz transforms R;;’s are the Calderén-Zygmund operators

given by kernels
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where C),’s are some dimensional constants.



By computation, for Schwartz function w,

0?u
8@6@

() = Ry (Au) () + 6, D) (1)

So, in particular, the L boundedness of R;; is equivalent to the following L? estimate:

0%u
(91:1-8%-

I (@)l < Cf|Au(z)||r

A Calderén-Zygmund operator T' can be extended to an bounded operator on LP(R"):

Theorem 1.5 (Calderén-Zygmund). For T a Calderdn-Zygmund operator and f €
S(R™),
1T f(@)|r < Cpllf ()] v

for 1<p<oo. Hence, T can be extended to a bounded operator on LP(R™) for 1<p< oo.
This fails when p=1 or oo

It is also known that the following mixed norm estimate holds for Calderén-Zygmund
operators given by Calderén-Zygmund kernels with some additional regularity assump-
tions. [1, p.448, Theorem 1].

Theorem 1.6 (Mixed norm estimates). For T, a Calderdn-Zygmund operator given
by kernel K defined on R? — {0} satisfying additional reqularity conditions

02K (21, 22)] < A(22 +22) 2 [010,K (w1, 20)| < A(a? + 22) 2

we have
7T f (1, @2)lle |lza, < OIS (2, 2)lee, Mlze,
for 1<p,qg<oo

Remark. The above theorem no longer holds when ¢ =1 or co. For example, consider the
the double Riesz transform and a sequence of compactly supported functions with supports
shrinking to a point.

The above mixed estimate no longer holds when ¢ = co. We are curious about what
will happen if we make the right hand side of the above mixed estimate larger by changing
the order of the two norms.

That is, for T', a Calderén-Zygmund operator given by a kernel K defined on R? - {0},
can we always find a constant C), such that ||||T'f(z,y)llzellze < Cullllf (2, 9)llLe e for
all Schwartz function f?7 In the next section we will see that the answer is negative.
For example, we cannot have such estimate for the double Riesz transform R, and p > 2.
Indeed, it can be easily verified that the kernel corresponding to R;s satisfies the additional
regularity conditions in Theorem 1.6: [0y K12(x1,22)] < A(x%+x§)‘% and |0 0o K12(1,22)] <
A(x? + 22)72 for some constant A > 0.



2 Main Results

We first give a counterexample to the estimate || [|T'f(z,y)|z ||z < C|[[|f (2, y)l|Le|lzz for
T = Ry5, a double Riesz transform, and p = 2.

Proposition 2.1 (A Counterexample). Let Riy be the double Riesz transform given

by the kernel K(xy,x9) = % Then there exists a sequence of Schwartz functions g,

such that the sequence {|| ||Rlzgn($1»$2)||Lgl||L;3} goes to infinity, while the the sequence
{ll ||9n($1,$2)||L;-5||L31} stays bounded.

Proof. We first construct a sequence of Schwartz functions f;’s as follows. Define X(] )
to be a smooth bump function supported in [277,279*1] with maximum value 1. Let
x2(x) = ﬁe‘ﬁ. Define x to a smooth bump function supported in [0, A] for 3 < A <100

such that y(z) =1 for = € [§, A - 1]. Define ) = x(z - 27) + x(—z +27). Now we set

fi(z1,2q) = X(])(l’Q)XQ(JZl)F_l(Xéj))(ZEl). Now, for n > 100, define g, = ¥ 7_149 f;-
Next, we show that {||||g,(z1,22)||zs [[z2, } is bounded by some fixed constant.

FLOE) @) < 1F 0 = 2) @) +1F (=€ +20)) (@)
=| [ errinex(e - 20)de| +| [ e (- +27)dg
< sup |77 (x)| + sup | F (X))
Let D =sup |F~'(x)| +sup|F(x)[. Thus,

i m)| < | e P ) ) < e

Since f;’s have disjoint supports in 2, we have

67 g (21, 22) |1, < sup €7 FA) (21)] <

100<j<n ﬁ \/_

Hence,

) 2 D 2
gn (@1, 22)llLg Iz, < lle™ [|zzlle™ gn (@1, 22) |15 < ﬁlle e

Therefore, {[|[|gn(21, %2)[[ ||r2, } 1s bounded.
In order to show that {[|[|Ri29,(z1,22)||z2 [l } goes to infinity, it suffices to show
that {|[R12g,(21,0)[z2 } goes to infinity.

n 2 n 2
[ R12gn (1, 0)][72 =/ Y. Riafi(a, d%:f Y, Fi(Riafi)(&1,0)] d&
! =100 i=100
n 204A-1] n 2
> > / >, Fi(Riafi)(&1,0)| d&
j=100 427 +1 =100

We begin with computing |F;(R12f) (&1, x2)| as follows, where F; is the fourier trans-
form with respect to the ' coordinate.

( &16

[ Fi(Rizf)(&,0)] = €

) @0 -| [ 5@ K-
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where

K@) = [ emeffag - [ e doga - 67, ()(@:)

€7
Thus,

FiRef)E0l=| [ A(DE D6,

-\3| [ A gea

=\/ 5 (F(XQ)*Xéj) (51)51/)(1(2)6_‘&”2'@
=/ 2 (]:(XQ) *X:(),j)) (&) (e"fﬂﬂ —e"fl‘wﬂ)

20+ A-1

Now we estimate [; " |Xili00 F1(Raafi) (&, ())|2 d¢;. To this end, we estimate |Fy (Ri2f;) (&1, 0)|
from below for & € [27 + 1,27 + A-1].

F1(Ri2f3)(61,0)] = \/g |(~7:(X2) * xé”) (&) (e—\&lzﬂ’ _ e—|£1|2—j+1)
2\/30 - 7 *X;ﬂ) @)
> \/g(eh 4)[

Set B =/F(e2—e) [% e ™€ d¢ > 0. Observe that e ™ < Lz-2 for 2 > 0.
Next, we estimate |F1(Ri2f;)(&1,0)| from above for £ € [27 +1,27 + A—1] and i < j.

"“"‘ ,M._.

P2 (R fi) (61, 0)] = \/f| f()@) £ X5 ) (&) (e—\ﬂ?‘i _ €—|§|2—i+1)

[| }—(Xz)*Xg (51)|
31\/j f e-n2(£1—s>2d§+l\/f f = AR
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Next, we estimate |Fi(Ri2f;)(&1,0)| from above for & € [27+ 1,27+ A—-1] and i > j.

1 (Ruafi) (£1,0)] = \/§|(}“(X2) ) () (P el
< }1\/§|(F(X2 )+ x$”) ()
1
=@\/§(51_21_A_§1—2i +£1+2i _§1+2i+A)

1 \/7 1 1 T
< ——= <——1 /=27
2em2 V 221 & T en?V 2

Now we estimate | Y1109 F1(Ri2fi)(&1,0)| from below for & € [27 + 1,27 + A-1].

> |F1(Ri2f;)(€,0)[ = Y. [Fi(Riafi)(&1,0)[ = Y [Fi(Ruafi)(&,0)|

100<i<j j<i<N

>E-(j- 100)—\/j e7r2\/72]
2E——2 z E—&Q)\/E 100
e em

Zn: Fi(Riafi) (&1,

=100

Hence,
) n 214A-1| n 2
|Riaga(es, OI2, > > [* 7| Y FRuf)(€,0)] d
"1 42100 /27 +1 =100
n 27+ A-1 ;
J T oiv2
: b2 [Ty
j;)o‘/z;ﬁ-l ( 2 2 ) 51
1
> Z (A -2)( E—@ Zo9-100)2
7=100 2
1
> (n—100)(A - 2)(}3—E nglﬂo)2
em?

Therefore, {||R129,(z1, O)“Lil} goes to infinity and so does {|| ||nggn(9(:1,332)||ngc1 ||L;;°2}
]

To better understand when we will or will not have the estimate [|[|7'f(x,y)l|z[|L= <
Cyllllf (, y)||z |z for Calderén-Zygmund operator T', we prove the following interpola-
tion theorem and the following mixed weak L' estimate.

Proposition 2.2 (An Interpolation theorem). Let T be a sublinear operator from
Lro(R, L>(R)) + LP1 (R, L>=(R)) to the space of measurable functions. Assume that for
Po < p1 < 00 we have

TS G, )l 2ol < Aol [ 1 (2, w)l el o
TS Gy )l zesllzee < Al {1 G2, )l ge

>



Then for po < p < p1, we have

T f (@, )|zl < C(po, o1, p, Aoy AN (2, )| 2ge ]2

where C(po, p1, p, Ao, A1) is a constant depending on pg,p1,p, Ao, Aj.

Proof.  Pick any po <p <pi. For any f e LP(R, L=(R)), we have [|[|f(x,y)||rzllLz < oo.
Now we decompose f into a sume of two functions defined as follows:

f(x,y) for |[f(z,y)]>a

fi(@y) = {O for | f(z,y)| <«

f(z,y) for |f(z,y)| <

fi(a,y) = {O for |f(z,y)| > a

By our definition, f = f& + f*.

Next, we note that f§'(-,y) € LPo(R) and f{(-,y) € LP1(R) for a.e.y. Indeed, for a.e.y,
we have

el = [ fylrde= | [P plrrde
I Col= [ Af@ede= [ P

<(ayr [ 1 @) do < (@)™ 21 (o)l e
{z:lf (zy) >} Y

fa LY plp :f f x,Yy p1d$=f f T,y pf T,y P17P (]
Gl = f o @)l e L@ 9)]
<(« Pl—Pf f x,- P da < (o)PrP f T,y Mlop
( ) {I:\f(l",y)Ka}” ( )” v ( ) |||| ( )”Ly “Lz

Since T is sublinear, |T'(f)| < |T(f&)| +|T(f)]. Hence, drsiyy(@) < drjocq(5) +
drye(y(5) for a.e.y. Therefore, for a.e.y, we have

« (87
drs)(@) < drsp)(5) +drpecy(5)

1

Po 1 \P1
a. a a . \ro a_, [« o\
- (s )] G () (D))
a_ a 0 - 1 o 1
< Y PITI B + (P ITEC I -
a — « 0 a —p1 « 1
< YIS @l + ()P I )

Q. _ o o, _ o
< AP G PINSS (@ )l W7o + AT (S (o )l 17,

Now we will compute [[[|f§'(2, y)l[z 750 and [[[|/7 (2, y)l|Lz]

First, we observe that

P
Lo 0 terms of f.

1f (@, 9)lley <a= foraey [f(z,y)<a
= fora.e.y f§(z,y)=0

= [1/5(z, y)llLg = 0



and

1f(@,Y)llre >a = foraey |[f(z,y)|>a

= fora.ey f5(z,y)=f(z,y)
= |15 (z, )|z = |If (2, y)| e

Hence,

o (g, |70, f T [ z,y)|h%dx
15 G )l [0 = | o' (2 )1z (el NGl
Similarly, we get

el = | 1/ g

{z|f(zy)llpge<a}

With ||| f
by |If (=, )|z

L= e computed, we can now estimate dr (., ()

1o and [[[1 /7 (2, y)

drj(.y)(@) <( )7 AT £5" Gy )l o= I +( ) AP S ()l o= N7

S_—poAPO/ f ypodx
(374 {mznf(z,y)HL;om}” @)l

(0%
+(=)"PA pl/ f T,y p1°°d‘r
(R4 {xzuf(x,y)uL;osa}” (= vl

Finally, we estimate ||Tf ('79)”]25 as follows:

ITS Gl =p [ @ drs(@)da

< p(245)P° /ooap‘po‘lf f(z,y)|F% dx do
B ), {x:nf(m,y)nL;wa}” (@9l
+p(2A plf ozp_pl_lf flz,y)|PLdr do
(24,) 0 {z|f (zy)llpge<a }“ ( )H
=pa0)™ [ IfG ol [ 0 dacda

+p(24,)P [ If [ T e ldade

I/ (@w)llge
:p((QAo) (24,)7
P —Do p1—

)||||f(:rr Dz It

for a.e.y.
Therefore, we conclude that

TS (@ )llellzg < C (o, 1, p, Ao, ADIS (@, 9) e[l



Proposition 2.3. For T, a Calderon-Zygmund operator given by a kernel K defined on
R2 - {0} such that

T (x 9)lzellze < ClILF (2, 9) gl

we have

T (@, )l g1l < DI (@, 9)l gl

Proof. Tt suffices to prove the inequality for f € S(R?). Fix any a > 0. We apply Calderén-
Zygmund decomposition to || f(x,y)||re, i.e. we can find a collection of intervals B = {Q}
such that

1
U@l < —llllf (@ lleglly a<
B «

1 (2, 9)lles = §(a) + b(x)

& I lipde <20

where b(z) = Zg xollf (2, 9)l|zy and ()| < a

Now we define
b(z,y) = QZ;SXQ(@JC(% y)

g(xay) = f(a:,y) —b(&:,y)

=g(,y)+ i T x
fi(hy) =9(v) ZXQ(’Q‘/Qf( ,y)d)

QeB

folo) = by) - 3 xQ(ﬁ / f(x,y)dx)

QeB

Hence we have f = f1 + fo. Define fo(x,y) = xo (f(x,y) - @fo(a:,y)da:). Thus,
fo(x,y) =Yg folx,y) and [ fo(x,y)dx =0. Also, we have

1
£z 9l < Mg (e, y)lleg + %:XQ@ fQ 1f (2 )L dx

<g(z) + 2 Z X0
B
Thus, ||[[f1(z,y)llrelle < 2. Moreover,

G lisloy < [ 19z + 3 [ 15 lipds
<Gl o

Now we estimate dry(.,)(c) as follows:

dryiy (@) = [z eR: T f(z,y)| > a}l
<[z eR: [Tfi(2,)] > 5+ Ha e R: [Tha(a,y)|> 3]



We first estimate |[{x € R : |T'fi(x,y)| > §}| using Chebyshev’s Inequality, what we
observed above, and our assumption on 7"

Q 2p
(o eR: Ty > SH < SITACYIE,

<2p T "
—J”” fl(f(fuy)HLé’-” o

20C'P

< — A yllez Iz,
2rCP -

= A DIl 1A @l
21

<

P
- I (2 y)llzee | 2

Next, we estimate [{zx € R: |T fo(x,y)| > §}|. For each @, let @* be the interval such
that @ and @Q* have the same center, and |Q*| = 2|Q)|.

{z e R:ITfala.y)] > ) <05 Q' + o € R-0sQ : [T ol )| > 5]
SO % [ T ylds
20 x.v)

2
il 3 ot plds

T fo(z,y)|dx. First, from [ fo(z,y)dz =0 we conclude that

IA

We now estimate me*
for x e R - Q*,

Tfo(x,y) = ff K(z-s,y—t)fo(s,t)dsdt
RJQ
- [ [ (K(@=sy=1)- K(z-2q.y~1)) fols,t)ds dt
RJQ
where z( is the center of interval Q.

Recall that the Calerén-Zygmund kernal K has the following property: there is a
constant B > 0 such that

f K (2) — K(z —y)|dz < B for all y£0
{lz[>2[y[}

Thus, by our selection of Q*,

[ Tha(ay)ide
S_/R_Q*_/R/C;u((‘r_‘g?y_t)_K(x_xQ>y—t)||fQ(8,t)|dsdtdx

< [ Moty ([ [1(@=sy=0-K(@=aq,y-t)dtds) ds
<8 [ lfo(s.m)llzds

<28 [ [f(e.)lezd



Hence,

o R TRl > GH S I @il + = 3 [ Tt

2 4B
< — oo — ° °°d
<2 Dlizlis + 5 2 [ 1 g
2

<

1 ()l Ny

«

Therefore, combining what we have proved now, for some D >0 and a.e.y,

dry(g) () = [z eR: T f(z,y)| > o}
<[ eR: [Thi(2,y)] > )+ [z e R: [Thiay)|> )]

D
<Gl lles

Thus, we conclude that

TS G, )l e llege < DI (2, 9)l gl
0

Corollary 2.4. For Calderdn-Zygmund operator T', if we have the estimate ||[|Tf (2, y)||za||zz
< Clllf (2, w)lleglleg, then we have the estimate ||| f(x, y)lzzllee < Collllf (2 )Lzl
forall1<p<q.

Proof. This follows from Proposition 2.2 and Proposition 2.3 above.
O

Theorem 2.5. Forp > 2, there exists no C, such that ||| Riz2f (2, y)|cellre < Cull [If (2, 9)lLee [l 2
for all Schwartz function f.

Proof. Assume, for the sake of contradiction, we have such estimate for Ri5 and p > 2,
then by the previous corollary, we would have such estimate for Ri5 and p = 2, which
contradicts Proposition 2.1 above.

O
Corollary 2.6. For p>2, there exists no G, such that ||[|0,0,u(z,y)||e||re <
Cplll1Au(z, y)||zellzz for all Schwartz function u.
Proof. This proposition follows directly from Proposition 2.5 and equation (1).

O

3 Conclusion

In conclusion, we have shown that the double Riesz transform is a counterexample to
this specific endpoint mixed norm estimate of Calderén-Zygmund operators for p > 2.
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