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Abstract

This manuscript present a mathematically self-contained exposition of the charge confine-
ment problem in lattice gauge theory. After introducing the physical foundations of gauge
theory, we motivate a lattice discretization and relate confinement to the behavior of Wilson
loop operators on the lattice.

The bulk of the manuscript organizes proofs of classical results on lattice gauge theory,
with special focus to proofs relying on combinatorial expansions of the partition function,
and duality (Fourier theory) arguments. In particular, we discuss the existence of the high
temperature confining phase and the 4-D U(1) de-confinement phase transition. We conclude
with a theorem on the relation between abelian and non-abelian gauge theories.
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1 Introduction
Beginning in the 1960s, work amongst physicists and mathematical physicists in the Constructive
Quantum Field Theory (CQFT) program aimed to establish heuristic results of quantum field
theorists as rigorous mathematical theory. As described in [GJ87], a primary goal of the program
is to establish both axiom schemes for continuum field theories, and to produce examples of “non-
trivial” field theories in all space-time dimensions satisfying the axioms. A detailed survey of
relevant axiom schemes, and explicit constructions of simple field theories, may be found in [GJ87].

In this paper we review a particularly fruitful approach to the construction of quantum gauge
theories, and more precisely, quantum Yang–Mills theories 1. The latter are a class of field theories
forming the basis for the successful Standard Model of Particle physics, a unified description of
the electromagnetic, weak nuclear, and strong nuclear forces. Unfortunately, the structure of the
non-Gaussian components of the gauge theory action renders their explicit construction especially
difficult, and one of the Clay Millenium prizes concerns the construction of such Yang–Mills theories
in 4-D, with proof of the desired properties [JW06].

The approach taken in this paper is that of lattice Euclidean gauge theory, an approach taken
originally by Wilson [Wil75] in his study of quantum chromodynamics, the SU(3) gauge theory
characterizing the strong nuclear force. The combination of a discrete lattice, and Euclidean
structure (as opposed to the Lorentzian structure native to quantum field theories) allows rigorous
interpretation of the lattice gauge theories as probability measures, and the problem of analyzing
such theories becomes one of statistical mechanics. Borrowing intuition from statistical mechanics
models, one expects scaling limits (and thus the continuum gauge theory) to exist around critical
points of the lattice theory. Thus one is naturally interested in the phase structure of lattice gauge
theories, a unifying theme for the work of this document.

In this paper we are primarily interested in classical proofs of charge confinement/de-confinement
in lattice theories. Originally observed in quantum chromodynamics, charge confinement is the
property that particles transforming non-trivially under a gauge group (said to carry the “charge”
of the corresponding gauge theory) are observed only in configurations of zero net charge, i.e. the
presence of charge is “confined.” Charge confinement in QCD amounted to a negative observation
of quarks, the hypothesized fundamental particles of the strong interaction, and thus a proof from
first principles of such a confinement criterion is strongly desired. Unfortunately, even on the lat-
tice, a proof of confinement in 4-D SU(3) theory is lacking for values of couplings near suspected
phase transitions. One goal of this manuscript is to examine successful proofs in the abelian gauge
theory setting, with hopes of either generalizing the given argument, or identifying a relationship
between abelian and non-abelian theory (as is hypothesized, e.g. between a G-gauge theory and
Z(G)-gauge theory).

First, we review relevant mathematical background in sections 2.1 and 2.2, discussing Lie group
analysis and discrete exterior calculus respectively. Then we turn to a sketch of the structure of
quantum gauge theory in 2.3, and the lattice discretization in 2.4.

In the remaining sections, we discuss classical results concerning the infinite volume limit of
lattice gauge theories, with attention to results on confinement. We begin with a classical theorem
of Elitzur on the preservation of gauge invariance in 3.2. In 3.3 we prove properties of the high
coupling region of the phase diagram, and show charge confinement. Then we turn to the proof of
U(1) deconfinement in 4-D for sufficiently large inverse coupling in 3.4. Finally, we discuss in 3.5 a
useful theorem relating the confinement problem in non-abelian gauge theories, to that in abelian
theories. In particular, the latter allows us to conclude 3-D U(n) theory is confining for all values
of n, and all couplings.

We do not consider here the point of scaling limits of lattice gauge theories, crucial for the
eventual goal of proving confinement/de-confinement results for continuum gauge theories.

1In this paper, we use “gauge theory" and “Yang–Mills theory" interchangeably.
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2 Background

2.1 Mathematical Background I: Analysis on Lie Groups
In this section we review some group-theoretic and representation-theoretic tools that will be of use
throughout the remainder of this document. We begin with a review of Lie-theoretic terminology,
and turn to properties of Haar measure and character theory of Lie groups. Most facts are drawn
from [BtD85].

We begin by recalling some useful definitions.

Definition 1. A Lie Group G is a C∞ manifold, endowed with a smooth group structure. Thus
the multiplication × : G×G→ G and inversion ·−1 : G→ G are smooth diffeomorphisms of G.

Remark 1. The commonly occurring Lie Groups in gauge theory are matrix Lie groups, i.e.
subgroups G ⊂ GLn(R) or ⊂ GLn(C). We will restrict our attention to this specific case, working
with compact subgroups of GLn, e.g. O(n) and SU(n). Note we implicitly endow GLn with the
Euclidean topology given by the isomorphism GLn(R) ' Rn2

(similarly in the C case).

The compactness assumption is particularly useful for analytic methods, since we may define
a finite measure on such G, compatible with the group structure:

Definition 2. Let G be a compact Lie group, and C0(G) the space of continuous functions on
G. Then there exists a left-invariant measure dg on G - termed Haar measure - satisfying the
following properties:

1.
∫

: C0(G)→ R (or C) is linear, monotone, and is volume 1, i.e.
∫
dg = 1

2. (Left Invariance) For any h ∈ G fixed,
∫
f(g)dg =

∫
f(hg)dg.

It will be useful to record the following analog of Fubini’s theorem in the setting of Haar
integration, a formula that will be useful when one has control on the integrand on a subgroup
H ⊂ G. One may show that H a closed subgroup implies the quotient G/H has a well-defined Lie
group structure, and thus a well-defined notion of Haar integration.

Theorem 2.1. Let G be a compact Lie group, and H ⊂ G a closed subgroup. Let dg, d(gH), dH
be the Haar measures on G, G/H, H respectively. Then for any F ∈ C0(G),∫

G

f(g)dg =

∫
G/H

(∫
H

f(gh)dH

)
d(gH) (1)

If the subgroup is contained in Z(G), the center of G, the above formula takes an especially
convenient form.

Theorem 2.2. With the assumptions of the previous theorem, and H ⊂ Z(G) a closed subgroup
of the center, we get for any f ∈ C0(G):∫

G

f(g)dg =

∫
G

(∫
H

f(gh)dH

)
dG (2)

The Haar measure is particularly useful for discussing the representation theory of compact
Lie groups, allowing the development of a theory in direct parallel to the representation theory
of finite groups. As in the setting of finite groups, we define representations, and their associated
characters:

Definition 3. For G a compact Lie group, and V a real, finite-dimensional vector space, a real
representation of G on V is a continuous homomorphism ρ : G → GL(V ). The associated
character is the map χ : G → R given by χ(g) = Tr(ρ(g)). One may similarly define complex
representations, and associated characters.

We say the representation ρ : G → GL(V ) is irreducible if no proper, non-trivial subspace
B ( V satisfies ρ(g)B ⊂ B for all g ∈ G, i.e. there are no proper subspaces of the vector space
fixed under the action of G.

One important observation, following from the cyclicity of trace, is the property that for any
h, g ∈ G χ(hgh−1) = χ(g). Thus one says χ(g) is a class function. We will see in the Peter-Weyl
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theorem that characters of representations occupy a privileged space in the set of such continuous
class functions.

Before proceeding to the Peter-Weyl theorem and its corollaries, we recall the notion of iso-
morphism classes of representations. This notion is critical, as we wish to view irreducible repre-
sentations as building blocks for the general representation theory, so we first must define what we
mean by “different” representations.

Definition 4. Two representations ρ : G → GL(V ), ψ : G → GL(W ) are isomorphic if there
exists a linear isomorphism of vector spaces T : V →W such that for all g ∈ G, v ∈ V

T (ρ(g)v) = ψ(g)T (v).

Proposition 2.1. Two representations ρ : G → GL(V ), ψ : G → GL(W ) are isomorphic if and
only if their characters are equal.

The following theorems illustrates the utility of the representation-theoretic notions introduced
above to general problems of analysis on Lie groups. These theorems and their corollaries will be
used throughout proofs of confinement and de-confinement.

Theorem 2.3 (Peter-Weyl). Let G be a compact Lie group. Then the characters χτ corresponding
to isomorphism classes of irreducible representations τ : G→ GL(V ) form a dense subspace of the
set of continuous class functions on G.

Note by proposition 2.1, the character χτ is well-defined on a isomorphism class of representa-
tions. The utility of irreducible characters as a basis is made clear in the next theorem, establishing
several useful relations among characters.

Theorem 2.4. Let G be a compact Lie group, and χV , χW characters corresponding to (possibly
complex) representations of G. Then the following hold:

1.
∫
G
χV (g) = dim(G).

2. If χV , χW are irreducible characters, then
∫
G

χ̄V (g)χW (g) =

{
1 V 'W
0 otherwise

.

3. If G is in addition abelian, and χV a non-trivial character, then
∫
G
χV (g) = 0.

4. If the representation V of G is faithful, then the corresponding character satisfies |χ(g)| ≤
|χ(1)| for all g ∈ G.
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2.2 Mathematical Background II: Lattice Constructions and Discrete
Exterior Calculus

In this section, we develop the mathematical machinery for dealing with lattice systems. We begin
by establishing notation, and discussing useful notions of “connectedness” on the lattice. We then
review the construction of the dual lattice, and the basic results of discrete exterior calculus. The
latter will be our primary language for the proofs in section 3.

2.2.1 Notation

In this paper, we define a lattice as any subset Λ ⊂ aZd, where d is the space-time dimension and
a the lattice spacing. Unless otherwise specified, we work with a = 1.

The combinatorial units of interest on the lattice are n-cells, which we define to be embedded
unit n-hypercubes in the lattice. We assume the presence of an orientation on the set of n-cells,
denoting the set of oriented, n-cells by Kn(Λ).

For the cases n = 0, 1, 2, called vertices, links/bonds, and plaquettes respectively, we use
special notation. We identify Λ withK0(Λ), and use the notation B(Λ), P (Λ) for the set of oriented
bonds and plaquettes respectively.

An additional word on orientation is warranted here. Let ei, i = 1, · · · , d denote the set of
canonical lattice unit vectors. Then we say an oriented bond b ∈ B(Λ) with ordered endpoints
(x, y) ∈ Λ is positively oriented if y = x + ei for some i. Similarly, given a plaquette P with
endpoints x1, · · · , x4, we say P is positively oriented if there exists a cyclic permutation of the xi
such that xi, xi+1, xi+2, xi+3 (all additions modulo 4) is of the form a, a+ ei, a+ ej , a+ ei + ej for
some a ∈ Λ, 1 ≤ i < j ≤ d. Since such a a is unique for any given plaquette, we may extend ≥
to an ordering on P (Λ) by comparing this unique first vertex. Similarly, one may express explicit
conditions for general n-cells to be positively oriented, and define an ordering ≥, which suffice for
the lattices considered here.

Note also that this explicit notion of orientation gives a notion of the oriented boundary op-
erator, denoted ∂ : Kn(Λ) → Kn−1(Λ). The boundary of an n dimensional cell cn, excluding
orientation, is simply the union of n − 1-cells that are faces of cn. One choice of orientation of
the boundary is as follows: the n − 1 cells in ∂cn come in pairs parallel to each other. One may
assign a positive orientation to the n − 1 cell in each pair larger with respect to the ordering ≥,
and negative orientation to the other.

This concludes the discussion of n-cells, orientation, and boundary. We next turn to definitions
of connectedness on the lattice, a notion on which most of the combinatorial expansions of lattice
theory will eventually rely. First, we define the meaning of two n-cells being connected as cells in
Λ. We say two 0-cells a1, a2 are connected if a1, a2 ∈ Λ, |a1 − a2| = 1. For higher order n-cells
a1, a2, we say they are connected as cells if there exists an n− 1-cell b such that b ⊂ a1, a2. Thus
one sees that two bonds are connected as cells if they share an endpoint, and two plaquettes if
they share a bond.

Next, we aim to generalize connectedness to sets of n-cells, capturing when two plaquettes are
perhaps disconnected, but there exists a sequence of connected plaqeuttes taking one to the other.
So to any set V ⊂ Kn(Λ), associate the connectedness graph G(V ) as follows. The vertex set
of G(V ) is just V , and for a, b ∈ V , G(V ) has an edge between the two if and only if they are
connected as n-cells.

With the associated graph G(V ), we may say that a set of n-cells V is connected if G(V ) is
connected. Otherwise, we can decompose V into its connected components, determined again by
those of G(V ). Similarly, we may say two sets A,B of n-cells are connected if the graph G(A∪B)
is a connected graph.

The final connectedness relation between sets of n-cells A,B is denoted A→ B, indicating that
for all connected components Ai ⊂ A, the sets Ai, B are connected in the sense of the previous
paragraph.

2.2.2 The Dual Lattice

Given a lattice Λ ⊂ Zd, it will often prove useful to construct a “dual” lattice Λ∗, defined formally
by

Λ∗ = Λ +
1

2
Zd.
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This expression indicates that, embedding Zd in an ambient space Rd, the dual lattice is the
lattice arising from translating each vertex (and n-cell) of Λ by 1

2 in each coordinate direction.
Exploiting the Euclidean structure in Rd, we see that this dual lattice has the following nice
properties:

1. There exists a bijective map φ : Kn(Λ)→ Kd−n(Λ∗) for all 1 ≤ n ≤ d. Given a n-cell cn in
Λ, φ associates the unique d− n cell orthogonal to, and intersecting, cn.

2. The infinite lattice is self-dual, i.e. Zd ' (Zd)∗. Note this is not in general true for finite
sized lattices.

2.2.3 Discrete Exterior Calculus

In this section we develop a discrete analog of the theory of differential forms, which will prove
a compact language for duality arguments later in the document. Our discussion mostly follows
[FS82]. First, we define the relevant analogs of differential forms:

Definition 5. Let Kn be the set of unit, oriented n-cells on Zd. An n-form is a map α : Kn → F ,
where F = Z,R, or C. If cn, c−1

n are identical cells differing only by orientation, we require the
orientation condition α(c−1

n ) = −α(cn). The space of n-forms is denoted Λn.

Often, we we will denote Z valued n-forms ΛnZ, and similarly for other rings. Following as
in the continuum case, we next define the natural boundary operator δ : Λn → Λn−1, and
co-boundary operator d : Λn → Λn+1.

Definition 6. Given α ∈ Λn, there exist n + 1 forms dα and n − 1 forms δα defined as follows:
For all cn+1 and cn−1,

dα(cn+1) ≡
∑

cn:cn⊂∂cn+1

α(cn).

And similarly,
δα(cn−1) ≡

∑
cn:cn−1⊂∂cn

α(cn).

There is a natural inner product on Λn, defined on the subspace of square summable n-forms.
Given two square summable n-forms α, β, define

(α, β)Zd =
∑

cn∈K+
n

ᾱ(cn)β(cn),

where K+
n is the set of positively oriented n-cells.

The final operation that will be of use is the discrete Hodge dual operation, which maps
between forms on Zd to forms on the dual lattice. So let (Λn)∗ denote the set of n forms on the
dual lattice (Zd)∗. Recall the dual lattice provides a bijection Kn ↔ (Kd−n)∗. Thus, given a
n-form α, define a d− n-form ∗α on (Λ)∗ by the action:

(∗α)(c∗d−k) ≡ α(ck),

for all c∗d−k ∈ (Kd−n)∗, and associated ck ∈ Kd.
The following proposition establishes properties of the boundary and co-boundary operators,

including their relations under the inner product and Hodge dual.

Proposition 2.2. Let α, β be arbitrary n-forms. Then:

1. δδα = ddα = 0. This fact justifies the identification of δ, d with boundary and co-boundary
operators.

2. The boundary and co-boundary operators are adjoint with respect to (·, ·)Zd , i.e. (α, dβ)Zd =
(δα, β)Zd
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3. (Poincaré Lemma) The homology groups

Hn(Zd) ≡ {α ∈ Λk : δα = 0}/{α ∈ Λk : ∃β ∈ Λk+1 s.t. α = δβ}

are trivial for all n. Thus given a n-form α with δα = 0, there exists a n + 1 form β such
that α = δβ. Moreover, if Ω is the smallest hypercube such that supp(α) ⊂ Ω, then one can
choose β to have support contained in Ω. We also have the following bound on β:

max
cn+1∈Λn+1

|β(cn+1)| ≤
∑

cn∈supp(α)

cn∈K+
n

|α(cn)|.

Finally, we note an exactly analogous statement holds for the co-boundary operation.

4. (Compatibility under Duality) The following are equal as forms:

∗d∗α = δα.

With the exception of the Poincaré Lemma, the result above are the results of short computa-
tions: refer to [FS82] for more details.
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2.3 Physical Gauge Theory
This section provides an introduction to the formal structure of gauge theory, first introduced in
the pioneering work of Yang and Mills [YM54]. Gauge theory itself is a rich subject in geometric
analysis and theoretical physics, the details of which we do not address here. Readers may consult
[BM94] for a rigorous mathematical and physical introduction to the subject.

A key physical insight of gauge theory is the presence of a symmetry space, parameterized by a
(compact) Lie group G, at each point x of the space-time manifold M . In this section we consider
only M = Rd for some space-time dimension d, and G a subgroup of GLn for some n.

In pure gauge theory, the relevant structure is a G-principal bundle over M , on which one
defines a gauge field A via the data of a connection 1-form. For our purposes it is sufficient to
imagine such a bundle E as a space locally diffeomorphic to Rd ×G, but perhaps with non-trivial
global structure. Locally, a gauge field φ on Rd is a smooth map

φ : Rd → gd, (3)

with g the Lie algebra of G. Equivalently, it is useful to represent φ via a differential form A, a
connection 1-form. If φ(x) = (A1(x), · · · , Ad(x)), then the connection 1-form is locally just

A =

d∑
i=1

Aidx
i. (4)

The language of differential forms provides a coordinate-independent way of discussing the
gauge field. In a physical setting, A is called the Yang–Mills vector potential, generalizing the
vector potential of Maxwell’s equations for electromagnetism. Associated with A is the curvature
2-form

F = dA+A ∧A. (5)

At a space-time coordinate x, F is a d× d matrix of elements of g, with jk entry

Fjk(x) =
∂Ak
∂xj

− ∂Aj
∂xk

+ [Aj(x), Ak(x)].

As a 1-form taking values in g, A supplies a mode of lifting closed space-time curves γ : I →M
to curves γ̃(t) : I → E, with I = [0, T ] a closed interval. We require γ̃(t) to always lie over γ(t),
i.e. γ̃(t) = (γ(t), g(t)) locally, with g(t) ∈ G. We lift the curve by the following ODE:

d

dt
g(t) = −

[
A (γ(t))

(
d

dt
g

)]
g(t) (6)

with the following solution:

g(t) = H(A, γ, t)g(0). (7)

By construction of the space E, without the notion of A there is no canonical choice of lifting
curves in M , and thus of comparing different points (x1, g1), (x2, g2) ∈ E. It is precisely the
existence of such an operator H(A, γ, t) that allows such a comparison, and furnishes a notion of
differentiation on E at a point (x, g) ∈ E, in the direction v ∈ g. Moreover, observe that while
(γ(0), H(A, γ, T )g(0)) and (γ(0), g(0)) both lie over γ(0), in general they are not equal. So define
the linear map H(A, γ, T ) : G → G on the set of points lying over γ(0) (the fiber over γ(0)),
which we call the holonomy operator. When H(A, γ, T ) 6≡ I, we say the space E has non-trivial
curvature. One can show [Sei82] that if S ⊂ Rd is a surface with boundary γ, then to leading order
in |S|, the surface area of S,

e
∫
S
F ≈ H(A, γ, T ), (8)

justifying our interpretation of F as a measure of the local curvature of E.
These remarks conclude our general overview of the geometric structures in gauge theory.

We now turn to development of quantum gauge theory, which (unlike the above) lacks a purely
satisfactory mathematical structure. Thus the following constructions are formal in nature.
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To quantize the gauge fields, which we identified above with the connection 1-forms A on the
bundle E, we consider the space A of all such 1-forms, and introduce the physical action, a map
SYM : A → C:

SYM(A) = − 1

2g2

∫
Tr(F ∧ ∗F ), (9)

where F is the associated curvature 2-form, and ∗F denotes the Hodge star operator, mapping the
space k forms to that of (d−k) forms. Moreover, g is a constant, referred to as the theory’s coupling
strength. The quantized gauge theory with Yang–Mills action, which we simply call Yang–Mills
theory, is formally defined by the complex measure on A

dµ(A) =
1

Z
e−iSYM(A)

d∏
j=1

∏
x∈Rd

dAj(x), (10)

where dAj(x) is a Lebesgue measure on the vector space g. However, such a definition cannot
in general yield a finite normalizing constant Z, implying that equation (10) is not a reasonable
explicit definition. Thus one must be more careful to define the measure dA =

∏d
j=1

∏
x∈Rd dAj(x),

such that a subset of the nice properties of Lebesgue measure are retained.
The turn to lattice gauge theory is motivated by two refinements of equation (10). First, one

may introduce a lattice regularization as follows: formally, one imagines imposing the integer lattice
Zd on space-time, and integrating out all spatial degrees of freedom associated with distances less
than a lattice spacing. One then views the gauge field as taking values in G, and connecting nearest
neighbor points of Zd. This procedure is called an ultraviolet cutoff by physicists (one has removed
the high frequency = ultraviolet components of the field), and is accompanied by a restriction of
the lattice to a finite subset Λ ⊂ Zd. The latter procedure is called an infrared cutoff. One hopes
that with suitable estimates, uniform in the lattice extent and spacing, a continuum gauge theory
may eventually may be recovered.

The introduction of cutoffs renders the measure well-defined, but as a second refinement one
goes further, replacing −i → 1 in equation (10). The substitution is associated with a turn to
“imaginary time,” rendering the underlying metric Euclidean, rather than Lorentzian. Termed a
Wick rotation in physics, this procedure (mathematically, an analytic continuation) is justified on
the basis of work by Osterwalder and Schrader, who showed that it is sufficient to construct field
theories in this Euclidean setting, as all relevant quantities of interest are analytic in this time
coordinate, and thus one may analytically continue “back" to a Lorentzian field theory. For a
rigorous discussion of this point, see [FFS92].

Combined, we will see that these two refinements lead naturally to the lattice gauge theory
introduced in the following section. The latter theory defines a finite-dimensional probability
measure, setting our analysis firmly in the realm of equilibrium statistical mechanics.
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2.4 Lattice Gauge Theories and Confinement
2.4.1 Pure Yang–Mills Theory

In this section we introduce a discretization of continuum gauge theories, originally introduced in
the setting of Yang–Mills theory by Wilson [Wil75]. This discretization excludes the addition of
matter fields (e.g. fermions, Higgs fields), and is called “Pure Yang–Mills” lattice gauge theory. In
the next subsection, we expand our definition to include these more general objects.

The following discretization is motivated by a desire to produce a finite-dimensional analog of
the continuum path integral for the gauge theory.

To specify a lattice gauge theory on Λ, we introduce the following data:

1. A Compact Lie Group G, with Lie algebra g. For simplicity, one can imagine G ⊂ GLn(C)
as a closed subgroup of the set of n× n complex matrices, for n ∈ Z≥0

2. A finite-dimensional faithful representation U(g) of G, with character χ(g) = Tr(U(g)). We
use the same notation for G and its representation. We will often use the upper bound for
faithful characters. Physically, this representation characterizes the transformation properties
of the gauge field.

3. An additional finite-dimensional faithful representation U ′(g) of G, with character χ′. Phys-
ically, this representation characterizes the transformation of the quark field.

4. The inverse coupling strength, β ∈ R≥0. The coupling is the continuous parameter of the
system, which defines the phase structure of the theory.

In general, given a gauge group G ⊂ GLn, we will take χ(g) = χ′(g) = Tr(g). But the generality
is useful to separate the (physically distinct) notions of gauge field from that of quarks.

Define a configuration to be a map g : B(Λ)→ G (called “configurations”) with the property
g((y, x)) = g((x, y))−1 ∀{x, y} ∈ Λ. Denote g((x, y)) ≡ gxy, and the set of all configurations
G(Λ). Note that associated to a configuration g and path P, there is a naturally induced map
Wg : P(Λ)→ G given by

WgP =

|P|∏
i=0

g(xi,xi+1). (11)

Note for non-abelian G, the orientation and starting points of the path affect the output of this
operator, called the Wilson operator. We will often drop the subscript g, when the configuration
is clear.

To draw the analogy with the path continuum path integral representation of gauge theories,
we next introduce a discretization of the action. This discretization is not unique, and may only
be formally motivated by showing formal convergence to the continuum action in the a→ 0 limit.
One is motivated by the continuum dependence on the local curvature (a 2-form) to introduce
actions composed of discrete 2-forms, i.e. with plaquette variables only. Given such a 2-form φβ , a
general discretized action will take the form

Sφ(g) ≡
∑

P∈P (Λ)

φβ(P ), (12)

for all g ∈ G(Λ). The most common choice of φ defines the Wilson action, namely

φWβ (P ) ≡ −βRe(χ(Wg(P ))). (13)

The use of χ indicates the Wilson action is a map on configurations of the gauge field. A formal
justification of the convergence of the Wilson action (with the fundamental representation of G,
for G a matrix group) to the continuum Yang–Mills action may be found in [Cha18].

In the more restricted setting of U(1) abelian gauge theory, an alternative form of the Wil-
son action exists, called the Villain action. The form of the action follows from the following
approximate identity, holding for β small:

eβ(cos(x)−1) ≈
∑
n∈Z

e−
β
2 (x−2πn)2

. (14)
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By representing U(1) elements by the angular form

gxy = eiθxy , θxy ∈ [−π, π),

we recognize the left hand side of (14) as the exponentiated Wilson action for the fundamental
representation of U(1), up to an irrelevant constant. So if we view θ : B(Λ) → R as a 1-form
(depending on the configuration g), we define the Villain action via the following choice of φβ :

φVβ (P ) = − log

(∑
n∈Z

e−
β
2 (dθp+2πn)2

)
. (15)

For a proof that the Villain action has the same formal continuum limit as the Wilson action,
see [Kno05].

With this preparation, we can now define a lattice gauge theory dµΛ as follows:

Definition 7 (Pure Y-M Lattice Gauge Theory). Let
〈
Λ, β,G, U(g), U ′(g)

〉
be given. Consider

the (finite) product Haar measure dσ on the set of configurations G(Λ). Then the lattice gauge
theory on Λ, with data

〈
Λ, β,G, U(g), U ′(g)

〉
and choice of Wilson or Villain action (denoted

simply S(g)) is the probability measure on G(Λ)

dµΛ(g) =
1

Z
e−S(g)dσ,

where Z normalizes the measure to unit total mass. Denote expectation with respect to this measure
as
〈
·
〉

Λ
.

We will be primarily interested in the values of functions F ({gxy}) on the set of configurations,
taking values in G, or in a field C or R. We define the support of a function F to be the set of
bonds (x, y) ∈ B(Λ) appearing in the definition of F .

So far, we have defined gauge theory on finite lattices, for which our explicit construction of the
gauge theory measure makes sense. Physically, finite lattice size corresponds to microscopic physics;
however, one is often interested in scaling effects that arise in the macroscopic, or thermodynamic
limit. Mathematically, this corresponds to the limit Λ↗ Zd. The definition of the infinite volume
limit (alternatively called the thermodynamic limit) of a lattice gauge theory is given below:

Definition 8 (Infinite Volume Limit). In space-time dimension d, define Λn = Zn × Zn × · · ·Zn
to be a d dimensional hypercube (here with periodic boundary conditions) of side length n. Given a
collection

〈
Λn, β,G, U(g), U ′(g)

〉
, let dµn be the associated lattice gauge theory. Then the infinite

volume limit is the weak limit of measures dµ∞ ≡ limn→∞ dµΛn , i.e. a measure on configurations
G(Zd) such that for all F : B(Zd) → R of finite support, given n0 such that supp(F ) ⊂ B(Λn0),
we get the following limit:

lim
n→∞

〈
F
〉

Λn
=
〈
F
〉
∞,

where
〈
·
〉
∞ is expectation in the infinite volume theory. Alternatively, we often just write

〈
·
〉

for the infinite volume expectation.

The existence and uniqueness of this limit requires justification, and the latter is unknown for
certain gauge theories. Note one may also define the infinite volume limit through the general
formalism of Gibbs states, the language of which we will often adopt in our proofs. However, it is
generally easier to construct a limit explicitly, given uniform bounds on correlation functions.

In our definition of gauge theories, β is called the inverse coupling strength of this theory,
and we are primarily interested in the existence/uniqueness of the infinite volume limit, as well
as the analyticity of the functions

〈
·
〉
∞(β) as β varies. Points of non-analyticity for a given

expectation
〈
F
〉
∞(β) are called critical points of the theory (and they are said to indicate phase

transitions), and signal qualitative transitions in the theory’s physical behavior. In particular,
Wilson [Wil75] showed that the relevant critical points in gauge theories can be located by studying
the behavior of

〈
W (L)

〉
∞(β), i.e. the Wilson loop expectations. To these critical points, he showed

that qualitative changes in the asymptotics of these Wilson loops correspond precisely to transitions
between confining and de-confining phases. The precise statement of this change is discussed in a
later section.
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To conclude this section, we remark on the general philosophy of approaching a continuum
gauge theory via lattice discretization. As described in [FFS92] and [GJ87], and as is familiar
from the study of scaling limits of statistical mechanics systems, the presence of phase transitions
is crucial for defining a continuum limit of the lattice theory. In particular, around (a particular
class of) critical points, the correlation length ξ defining the exponential fall off of correlations
approaches ∞. Thus, by an appropriate rescaling of the lattice spacing a as β → βc, one can
equate the following two limits:

1. ξ fixed, a→ 0.

2. ξ →∞, a fixed.

The first limit has the chance of being a non-trivial continuum field theory, explaining why the
study of a lattice theory’s behavior in the second limit (i.e. around critical regions) is particularly
important.

2.4.2 Gauge Invariance

Both the Wilson and Villain actions are functions only of products of group elements around
plaquettes. This property is responsible for the invariance of gauge theory measures dµΛ under a
wide class of transformations, called gauge transformations.

Given a map h : Λ → G, the associated gauge transformation is the map on configurations
Hh : G(Λ)→ G(Λ) given by

(Hhg)xy = h(x)gxyh(y)−1.

Gauge transformations offer the freedom to “fix” a gauge in the course of a proof, by strategically
selecting a gauge transformation.

Example 2.1. Givem a path P = (x1, · · · , xn), xi ∈ Λ containing no loops, and a configuration
gxy, the following gauge transformation h is easily seen to set all links in P to the identity link:

h(x1) = 1, h(x2) = g−1
x1x2

, · · · , h(xj) = g−1
xj−1xj , · · · .

More generally, let T ⊂ B(Λ) be any forest of bonds, i.e. directed graph with no cycles (not
necessarily connected). Then the above construction gives a gauge transformation h for any con-
figuration, setting all links in T to the identity.

Gauge invariance singles out a class of functions F ({gxy}) that are invariant under gauge
transformations, i.e. F (Hhg) = F (g) for all Hh, g. These are called gauge-invariant functions
(alternatively, physical observables), and a natural example is the character evaluated on a Wilson
operator for closed loops:

Proposition 2.3. Given an oriented loop L with vertices (x1, x2, · · · , xn), interpret the Wilson
loop operation Wg(L) as a map G(Λ)→ G. Then given a gauge transformation Hh,

χ′(WHhg(L)) = χ′(Wg(L)).

Proof. Follows immediately from the definition of gauge transformations, and from χ′ being a class
function.

It follows from 2.3 that the lattice gauge theory measure is similarly invariant under gauge
transformations for finite Λ.

The above proposition proves part of the following, showing the overall lattice gauge measure
is gauge-invariant.

Even for a non gauge-invariant operator F ({gxy}) there is a gauge-averaged version of the op-
erator, denoted F . Given a gauge transformation Hh, define Fh({gxy}) = F ({Hhgxy}). Moreover,
denote the space of maps h : Λ→ G as H(Λ). Then the gauge averaged operator is defined to be

F ({gxy}) ≡
∫
H(Λ)

Fh({gxy})
∏
x∈Λ

σx,

where σx is the Haar measure on G. It is not difficult to show F is gauge-invariant, and that the
gauge average of a gauge-invariant observable is just the original observable.
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Gauge invariance allows us to reduce expectations of gauge-invariant observables in lattice
theory to a conditional expectation, where the latter is conditioned on a subset s ∈ B(Λ) of links
in a forest fixed to prescribed values g′. Given a gauge-invariant F ({gxy}), let

F ′({gxy}) = F ({gxy}xy 6∈s, {g′}),

dµ′Λ(g) = dµΛ|xy 6∈s,
where we “freeze” all links in the measure in the set s′ to their prescribed values, and integrate
only over remaining links. Then the conditional expectation of F is defined to be〈

F
〉′

Λ
=

∫
F ′({gxy})dµ′Λ(g).

Gauge invariance guarantees that this conditional expectation is equal to the global expectation:

Proposition 2.4. For F gauge-invariant, s ⊂ B(Λ) a forest with prescribed values g′ ⊂ G, and〈
·
〉′

Λ
the conditional expectation constructed above, we have〈

F
〉

Λ
=
〈
F
〉′

Λ
.

Proof. By definition of the expectation
〈
F
〉

Λ
, we can write〈

F
〉

Λ
=

∫ ∫
F ({gxy}xy∈s, {guv}uv 6∈s)e−S({gxy}xy∈s,{guv}uv 6∈s)

∏
xy∈s

dσxy
∏
uv 6∈s

dσuv.

The generalization alluded to in example 2.1 implies there exists a gauge transformation hg,
depending on the configuration links g restricted to s, such that Hhg has the prescribed values g′
on the set of links s. Thus, using invariance of the Haar measure under left multiplication, and
gauge invariance of the action and F , we can apply the gauge transformation, yelding

〈
F
〉

Λ
=

∫ ∫
F ({g′xy}xy∈s, {guv}uv 6∈s)e−S({g′xy}xy∈s,{guv}uv 6∈s)

∏
xy∈s

dσxy
∏
uv 6∈s

dσuv

=

∫
F ′({gxy})

∏
xy∈s

dσxy
∏
uv 6∈s

dσuv

=

∫ 〈
F
〉′ ∏
xy∈s

dσxy

=
〈
F
〉′
.

2.4.3 Confinement in Pure Yang–Mills

Wilson [Wil75] argued that color confinement in lattice gauge theories is not restricted to the theory
of QCD, but is a general feature of the phase structure of pure Yang–Mills. An unproven, but
physically reasonable, assumption is that the setting of pure Yang–Mills theory — with gluons, but
not dynamic matter particles (those that experience the confinement) — is sufficient for the study
of confinement. The following statement expresses the Wilson characterization of color confinement
— see [Wil75] and [Kno05] for physical motivation.

Statement 1 (Confinement Characterization). Let L be (for simplicity) a planar loop in Λ with
dimensions R, T in fixed lattice directions. Given an infinite volume limit dµ ≡ dµ∞ of a lattice
gauge theory, we say particles in the theory are confined on the lattice at inverse coupling strength
β of the following “area law” bound holds for large R, T :〈

W (L)
〉
∞ ≤ C(β)e−c(β)RT , (16)

for constants C, c depending on β and the gauge group. Particles are said to unconfined if the
following “perimeter law” bound holds:〈

W (L)
〉
∞ ≥ C(β)e−c(β)(R+T ). (17)
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A discussion of the physical motivations for these laws may be found in [GL10].
We probe the existence of phase transitions in lattice gauge theories by considering transitions

between these two qualitatively different behaviors of loops on the lattice. Having framed the
problem as one of locating phase transitions in a spin model, we are able to apply expansion
techniques from the general theory of spin systems (in particular, Ising model approaches) to
prove the bounds in Statement 1.

2.4.4 Addition of Matter Fields

In this section, we extend the definition of a pure Yang–Mills gauge theory to include matter
fields, including both Higgs and fermion fields. This expanded theory allows for complete analysis
of Standard Model physics, including the interactions of quarks, other fermion fields, and the
symmetry breaking Higgs field. For a description of the underlying physics of these fields, see
[Sei82]. Although we introduce additional gauge theory measures/expectations in this section, we
reserve the symbols dµΛ,

〈
·
〉

Λ
for the pure Y-M setting.

To introduce a lattice Higgs field, we introduce a finite-dimensional (real/complex), normed
vector space, on which there is a (orthogonal/unitary) representation UH of the gauge group G.
Denote the vector space VH , with norm ‖ · ‖H . Moreover, assume we are given an even polynomial
V (x) of degree ≥ 4, with positive leading term. Then a lattice Higgs field is a map

φ : Λ→ VH ,

to which we associate an action that couples the field to the gauge field, as well as to itself:

SH({φx, gxy}) = −λ
2

∑
(x,y)∈B(Λ)

(φx, UH(gxy)φy) +
∑
x∈Λ

V (‖x‖H
)
.

Here λ ∈ R is the coupling strength of the Higgs field.
Fermion fields require an additional anti-commutative structure, as reflected in their common

representation via Grassmann numbers in the continuum path integral representation. Suppose, in
the discrete setting, we are given a vector space VS , which carries a representation of the Clifford
algebra, i.e. we have Hermitian operators γi ∈ L(VS), i = 0, 1, · · · , d− 1 such that

{γi, γj} ≡ γiγj + γjγi = 2δij .

This is the spin vector space, carrying internal degrees of freedom of the fermion.
In addition, suppose there is a complex vector space VG, the gauge space, carrying a represen-

tation UF of the group G. The fermion vector space is then the tensor product VF = VS ⊗ VG.
A lattice fermion field is a map

ψ : Λ→ {ψαa(x)} α = 1, · · · ,dim(VS) a = 1, · · · ,dim(VG),

where {ψαa(x)} is an orthonormal frame of VF for each x. We also require that each {ψαa(x)}
decomposes as a tensor product

ψαa(x) = uα(x)⊗ va(x), eα ∈ VS , fa ∈ VG.

To construct the fermionic action, we introduce the conjugate vector space V G, carrying the
conjugate representation to UF . Defining V F = VS ⊗ V G, we get a complementary fermion field

ψ : Λ→ {ψαa(x)}.

We introduce the Grassmann algebraA generated by the fermionic fields {ψα,a(x), ψα,a(x)}α,a,x,
i.e. A is generated by linear combinations (over C) of wedge products of fermion field values for
different values of α, a, x.

The fermion action is then given by:

SF ({gxy}, φ(x), ψ) =
∑
x∈Λ

[mψ(x)ψ(x)− κ

2
ψ(x)γµ

(
U(gx,x−eµ)ψ(x− eµ)− U(gx,x+eµ)ψ(x+ eµ)

)
],

in which there are implied sums over the internal α, a indices in each term, and κ is a coupling
strength, m a fermion mass.
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Given the combined action STOT = SF + SH + SYM , we now proceed to define the complete
lattice gauge theory measure dµMΛ , the M indicating the addition of matter fields. We first define
the relevant observables of the theory to be elements of the Grassmann algebra A, but with
the added freedom of coefficients taking values in the set of bounded functions of φ(x), gxy. To
define numerical expectations against the measure, it remains to introduce an evaluation mapping∫
F : A → C. We proceed as in [Sei82], first fixing the value of the map on monomials in the algebra

with the following two relations: ∫
F
∧
α,a

ψα,a(x) ∧ ψα,a(x) = 1

∫
F (monomial of less than full degree in α, a) = 0.

Linearity then defines the map on the remainder of A. Armed with this definition, we define
the gauge theory measure to be

dµMΛ (gxy, φ(x), ψ(x)) =
1

ZMΛ
eSTOT dσ,

and expectation of functions F as〈
F
〉M

Λ
=

1

ZMΛ

∫
dσ

∫
F FeSTOT .

This section is meant only as an introduction to the complete language of lattice gauge theories,
and an indication that the questions we pose in this document about the pure Y-M phase structure
should be additionally explored in this more general setting. However, since our main goal is the
study of confinement, and according to the Wilson criterion 1 it is sufficient to consider pure Y-M
for this purpose, we will seldom return to this most general setting.
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3 Classical Results

3.1 Technical Overview
In the following sections, we repeat selected classical proofs of the infinite volume behavior of
lattice gauge theory, with focus on the pure Yang–Mills case. The results, while not an exhaustive
representation of the technical results in the field, are selected to illustrate the primary techniques
for probing different parameter ranges in a lattice gauge theory, and proving results about Wilson
loop behavior. This introductory section aims to motivate the various upcoming techniques and
results.

1. In section 3.2, we prove Elitzur’s theorem for general lattice gauge theories, illustrating
the qualitative difference between classical spin systems (e.g. the Ising model) and gauge
theories. The latter having a local symmetry group, we show that the existence of gauge
transformations is sufficient to show all expectations of local order parameters, e.g.

〈
σxy
〉

Λ
,

vanish in the infinite volume limit. While not technically involved, the result is a foundational
one in situating gauge theories among the general framework of statistical mechanics.

2. Next in 3.3, we show that lattice gauge theories have a well-defined low β phase, in which
confinement obtains. Key technical inputs are perturbative expansions of the Wilson action
around β = 0, which converge uniformly in |Λ| for β small. This expansion factors naturally
into an expansion in terms of connected paths on the lattice—this expansion is an example
of a cluster expansion, and is borrowed directly from the analysis of spin systems.

3. Section 3.4 establishes the existence of a Kosterlitz-Thouless topological phase transition
in the 4-D U(1) gauge theory. This argument is the first to rely explicitly on dimension-
dependent duality arguments relating expectations in different (“dual”) statistical theories.
Key technical inputs are results in Fourier theory and lattice exterior calculus, which allow
for a rigorous treatment of duality.

4. Finally, in section 3.5 we review some results related to non-abelian lattice gauge theory. In
particular, results on the relation between gauge theories with groups G and Z(G) highlight
Lie-theoretic aspects of the problem of confinement, which are not as visible in the abelian
settings considered earlier. Additionally, this section illustrates the utility of correlation
inequalities, a technically useful tool for relation expectations in different theories via global
“convexity” properties of theories.

It is useful to note that several other methods have been successful in proving properties about
the phase diagrams of lattice gauge theories. Some methods which we do not address here include
reflection positivity techniques, infrared bounds, chessboard estimates, diamagnetic inequalities,
and dimensional reduction.
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3.2 Gauge Invariance of the Infinite Volume Limit
In this section we prove a result of Elitzur, roughly stating that gauge symmetries cannot be
“broken” in the infinite volume limit. To motivate the statement in a gauge theory setting, we
first review the analogous notion of “symmetry breaking” in the Ising model in a magnetic field.
The construction of such a model is likely familiar to readers, but we recall the essential definition
below:

Definition 9. Let Λ ⊂ Zd be a finite lattice. Let a state on the lattice be a map σ : Λ→ Z2 = {±1},
with associated energy

H(σ) = −β
∑

xy∈B(Λ)

σ(x)σ(y)− h
∑
x∈Λ

σ(x). (18)

Denote the set of states as G(Λ). The Ising model on Λ, with coupling β, and magnetic field
strength h, is the probability measure dµIΛ on the set G(Λ), assigning to σ a probability

dµ({σ}) =
1

ZI
e−H(σ). (19)

We define the infinite volume measure as in the gauge theory case, and note [GJ87] that
convexity properties of the model guarantee the existence of the limit. Examining (18) more
carefully, we observe that the map s : G(Λ)→ G(Λ) defined by

(s(σ))(x) ≡ −σ(x),

leaves H(σ) invariant when h = 0, but has a non-vanishing effect whenever h 6= 0. Identifying s
with an action of Z2 on the Ising model measure, we say that the h = 0 Ising model has a global
symmetry group Z2 arising from the flipping of all spins in the model, and that non-vanishing h
explicitly breaks the symmetry.

However, we are ultimately interested in what physicists refer to as spontaneously broken sym-
metries, which we define in the following way. Label the Ising model expectation

〈
·
〉I,h

Λ
, and

construct the infinite volume expectation〈
·
〉I,h

= lim
Λ↗Zd

〈
·
〉I,h

Λ
,

manifestly a function of the couplings β and h. Thus the phase diagram of the Ising model
constructed this way is two dimensional. Suppose 0 ∈ Λ, and consider

〈
σ(0)

〉I,h. For h = 0,
it is clear by symmetry arguments that

〈
σ(0)

〉I,0
= 0, a reflection of the symmetry under the

map s. However, Peierls arguments show (in 2-D) that
〈
σ(0)

〉I,h 6= 0 for h 6= 0, suggesting the
following problem: if we “remove” the symmetry-breaking term by taking the h → 0 limit, does
the expectation converge to 0, its h = 0 value? If so, the symmetry is restored continuously, and
one says the Z2 symmetry is not spontaneously broken (i.e. it may only be broken explicitly, by
setting h 6= 0). The remarkable feature of the 2-D Ising model is that the symmetry breaking is
spontaneous in the low temperature (low β) region:

Theorem 3.1. In the 2-D Ising model, there exists βC such that for β < βC ,

lim
h→0+

〈
σ(0)

〉I,h
= − lim

h→0−

〈
σ(0)

〉I,h 6= 0. (20)

Theorem 3.1 is just another way of expressing the existence of multiple phases in the low
temperature region of the Ising model. In the language of symmetry, we see that spin models with
global symmetries may have spontaneously broken symmetries in regions of parameter space.

The discussion thus far has been a preamble to the setting of gauge theories, for which the
symmetry group is much larger than in the Ising model. In particular, the measure is manifestly
invariant under local gauge transformations, which are defined pointwise at the sites of the lattice.
We wish to show that the addition of local symmetry implies the above spontaneous symmetry
breaking cannot happen. More precisely, given arbitrary gauge data, let

〈
·
〉h

Λ
denote the expectation

in the theory, with an added symmetry breaking term −h
∑
xy∈B(Λ) χ(gxy) to the Wilson action.

Note this action is no longer invariant under local gauge transformations. For simplicity, we will
restrict attention to matrix Lie groups G ⊂ GLn for some n, with character χ simply the trace of
the corresponding matrix.
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Theorem 3.2 (Elitzur). Consider, if it exists, the infinite volume expectation
〈
·
〉h of a lattice

gauge theory with G ⊂ GLn for some n, and with added symmetry breaking term. Then for
ab ∈ B(Zd) fixed,

lim
h→0

〈
χ(gab)

〉h
exists for all β, and is equal to 0.

Proof. Let {Λn} be a sequence of finite lattices in Zd, with the property that the gauge measures
dµΛn converge weakly to an infinite volume limit as n → ∞. Recall that the notation ab ∈ B(Λ)
indicates a, b ∈ Λ are nearest neighbors, and that the bond ab is directed from a to b. So consider
the expectation〈

χ′(gab)
〉h

Λn
=

1

ZΛ

∫ ∏
xy∈B(Λn)

dσxy
(
χ(gab)e

β
∑
P χ(AP )+h

∑
xy χ(gxy)

)
, (21)

where we write AP = Re(χ(Wg(p))). Now perform a variable gauge transformation at a, sending
a→ −I ∈ GLn. Given any configuration {gxy}, the result of this gauge transformation is denoted
{g′xy}, and is given by:

g′xy =

{
−gxy, x or y = a

gxy, otherwise.
(22)

Similarly, under the change of variables gxy → g′xy, the terms of the form AP are invariant, but
χ(gxy)→ χ(g′xy)− χ(δgxy), where

δgxy =

{
−2gxy, x or y = a

0, otherwise.
(23)

Inserting this change of variables into (21), we arrive at the expression

〈
χ(gab)

〉h
Λn

=
1

ZΛ

∫ ∏
xy∈B(Λn)

dσxy
(
− χ(g′ab)e

β
∑
P χ(AP )+h

∑
xy χ(gxy)−h

∑
xy χ(δgxy)

)
,

=
〈
− χ(gab)e

−h
∑
xy∈Ba χ(δgxy)

〉h
Λn
, (24)

where by Ba we denote all bonds leaving a. Thus we may bound the following quantity:∣∣〈χ(gab)
〉h

Λn
−
〈
− χ(gab)

〉h
Λn

∣∣ =
∣∣〈− χ(gab)

{
e−h

∑
xy∈Ba χ(δgxy) − 1

}〉∣∣ (25)

≤ |ec(d)h − 1||
〈
χ(gab)

〉h
Λn
|, (26)

where c(d) is a dimensional constant. The final step requires the boundedness of the character,
which is easily checked for the trace character on matrix groups. By assumption, the Λn ↗ Zd
limit in (26) exists, giving the same inequality for the expectations in the infinite volume setting.
Taking h→ 0, the righthand side of (26) vanishes, implying

〈
χ(gab)

〉h
= 0 as desired.
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3.3 High Temperature Phase
In this section, we follow the argument in the seminal 1977 work of Osterwalder and Seiler [OS78],
in which the authors use convergent low β expansions to construct the infinite volume limit of a
pure Yang–Mills lattice gauge theory, with arbitrary data. In the first subsection, we construct
this low β, or “high temperature”, expansion for expectations of observables, and prove uniform
convergence for a range of couplings. In the following section, we apply the cluster expansion to
prove existence and uniqueness of the infinite volume Gibbs state, as well as exponential clustering
of correlations. Afterwards, we prove quark confinement according to Wilson’s criterion. These
proofs are standard applications of high temperature expansions, unique in their applicability to
all gauge-theoretic data. Throughout this section, we use the Wilson action.

The discussion in [OS78] also extends the cluster expansion to prove existence/uniqueness
properties of the lattice theory with Higgs field coupling. Certain technical conditions on the
Higgs potential are required, but we do not discuss this proof here.

Cluster Expansion

For gauge data
〈
Λ, β,G, U(g), U ′(g)

〉
, write the lattice gauge measure as

dµΛ(g) =
1

ZΛ
e−β

∑
P∈P (Λ) AP dσ =

1

ZΛ

∏
P∈P (Λ)

e−βAP dσ,

where recall AP = Re(χ(Wg(p))). Recalling that U(g) is a faithful representation, we have the
boundedness property

|AP | ≤ χ(1) ≡ D,

with D the dimension of the representation. It will be convenient for the expansion (for positivity
reasons) to add to the action a constant −βD, adjusting the partition function accordingly. We
are free to do this, as the associated scaling of the partition function leaves the measure invariant.
Thus in this section we write

dµΛ(g) =
1

ZΛ
e−β

∑
P∈P (Λ)(AP+D)dσ =

1

ZΛ

∏
P∈P (Λ)

e−β(AP+D)dσ, (27)

where
ZΛ =

∫
e−β

∑
P∈P (Λ)(AP+D)dσ.

Observe that in equation (27), for large β the mass of the measure increasingly centers on config-
urations with small |AP |, motivating the following expansion of the measure about unity:∏

P∈P (Λ)

e−β(AP+D) =
∏

P∈P (Λ)

(1 + [e−β(AP+D) − 1])

=
∑

Q⊂P (Λ)

∏
P∈Q

[e−β(Ap+D) − 1]

≡
∑

Q⊂P (Λ)

∏
P∈Q

ρP ,

with ρ having the evident definition, and the sum taken over all subsets of plaquettes P (Λ).
The boundedness of AP , and the added constant to the action, thus guarantee the very useful
bounds

0 ≤ ρP ≤ C(β), (28)

for C(β) a constant depending only on β (and D, which is fixed throughout the discussion).
With an expansion of the measure in terms of subsets of the set of plaquettes, we hope to

be able to control expectations
〈
F
〉
for large β by bounding the number of contributing subsets.

More precisely, let F : G(Λ)→ S for some set S (either the group G, or a field R,C, with support
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containing only finite many bonds of Λ. Denote Q0 ≡ supp(F ). By definition of gauge theory
expectations, we have 〈

F
〉

Λ
=

1

ZΛ

∫
F ({gxy})

∏
P∈P (Λ)

e−β(Ap+D)dσ

=
∑

Q⊂P (Λ)

∫
F ({gxy})

∏
P∈Q

ρpdσ. (29)

Now, we recall a graph-theoretic notion of plaquette connectedness from section 2.2. Given a
set of plaquettes Q ⊂ P (Λ), we define the associated graph G(Q) with vertex set Q, and edges
between p, q ∈ Q if and only if the two plaquettes share a bond. We say the set Q is “connected”
if G(Q) is connected. This gives a natural notion of connected components of an set Q ⊂ P (Λ).
We also say that two plaquettes have non-trivial overlap if they share at least one bond.

With this definition, given a subsetQ ⊂ P (Λ), there exists a unique decompositionQ = Q1∪Q2,
where Q1 is the union of all connected components of Q containing a plaquette with non-trivial
overlap with a plaquette in Q0. Then, Q2 = Q\Q1. Since F only depends on plaquette variables
represented in Q1, we may split the integration variables in (29), with dσ = dσ1(Q)dσ2(Q) and
dσ1(Q) the product measure over bonds in Q1, and similarly for dσ2(Q). The result is:

〈
F
〉

Λ
=

1

ZΛ

∑
Q⊂P (Λ)

(∫
F ({gxy})

∏
P∈Q1

ρpdσ1(Q)

)(∫ ∏
P∈Q2

ρpdσ2(Q)

)
(30)

Now, for fixed Q1 (and fixed Q0), the above sum over Q amounts to a sum over all Q2 ⊂ P (Λ)
with trivial overlap with Q1 ∪Q0. In summing over Q2, note that∑

Q2⊂P (Λ)
Q2∩(Q0∪Q1)=∅

∫ ∏
P∈Q2

ρP dσ2(Q) = Z
Λ\(Q0∪Q1)

,

where Z
Λ\(Q0∪Q1)

refers to the associated lattice theory on Λ, excluding the vertices contained
in plaquettes in Q0∪Q1. In contrast, we will denote ZΛ\{P} without the overbar, for P a plaquette,
to mean the gauge theory excluding the plaquette from the action, but retaining all vertices (and
thus all adjacent plaquettes).

Finally, we get the representation

〈
F
〉

Λ
=

∑
Q1→Q0

Q1⊂P (Λ)

∫
F ({gxy})

∏
P∈Q1

ρP dσ
Z

Λ\(Q0∪Q1)

ZΛ
, (31)

which is the cluster expansion for finitely supported observables. By the relation A→ B between
plaquette sets, we mean that for all plaquettes P ∈ A, the connected component of P in A (in the
sense of the connectedness graph of section 2.2) shares a bond in common with a plaquette of B.
We say A is “connected to B.” As written, the cluster expansion is valid for any β and lattice Λ,
but its primary utility lies in the following theorem. Here, we prove absolute convergence of the
cluster expansion uniformly in the lattice size, which requires β sufficiently small. For this reason,
we often call the cluster expansion used here a “high temperature” expansion, identifying β with
inverse temperature. We will prove convergence for F ∈ L∞(C(Λ), dµ) of finite support, where
supp(F ) is the set of bonds in C(Λ) on which F depends, and the infinity norm is

‖F‖∞ = inf
t
{t ∈ R : µΛ({|F ({gxy})| > t}) = 0}.

Theorem 3.3. Let F ∈ L∞(C(Λ), dσ) have finite support. For β sufficiently small, there exist
constants a = a(F, d,G, χ), b = b(d,G, χ) such that

∑
Q→Q0

Q⊂P (Λ)
|Q|≥K

∣∣∣∣∣
∫
F ({gxy})

∏
P∈Q1

ρP dσ
Z

Λ\(Q0∪Q1)

ZΛ

∣∣∣∣∣ ≤ a(bβ)K (32)
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Following the discussion in [OS78], we break the proof of the above into several lemmas, some of
strictly combinatorial nature, while others utilizing explicit properties of the measure and cluster
expansion. We begin with a combinatorial result:

Lemma 3.4. Given a finite lattice Λ ⊂ Zd and Q ⊂ P (Λ), let N(K) be the number of subsets
Q1 ⊂ P (Λ) such that |Q1| = K and Q1 → Q holds. Then

N(K) ≤ c1cK2 ,

for c1 a function of |Q|, d, c2 a function of the dimension d.

Proof. Note that any connected component of Q1 must intersect at least one bond b ⊂ P for a
plaquette P ∈ Q. So first, suppose S ⊂ Q1 is a connected set of plaquettes, with 0 ≤ |S| ≡ t ≤ K,
and let a bond b be given.

We claim first that the number of connected sets of size t containing bond b is upper bounded
by D|S| for a D = D(d) a constant. To see this, recall a set of plaquettes S is connected if and
only if G(S), the associated graph, is connected. By the Königsberg Bridge Lemma, the connected
graph G(S) may be covered by a walk beginning at the plaquette Pb ∈ Q containing bond b, of
length 2t, with jumps restricted to adjacent plaquettes. For D1 the number of neighbors of each
plaquette (a function of only d), the number of such walks is upper bounded by D2t

1 ≡ Dt.
Thus given K plaquettes, a partition (K1,K2, · · · ,Kn) with

∑
i |Ki| = K, and a set of bonds

(b1, · · · , bn) of Q, the number of connected sets Ti of plaquettes with |Ti| = Ki, Ti containing bi is
upper bounded by

n∏
i=1

DKi = DK .

Thus it remains to determine the number of such partitions of the above form. If |B(Q)| is
the number of bonds in Q, then the number of partitions is upper bounded by the number of
arrangements of K plaquettes in |B(Q)| urns, i.e.(

|B(Q)|+K − 1

K

)
≤ 2|B(Q)|+K−1.

Combining with the above estimate gives N(K) ≤ c1(|Q|)c2(d)K , as desired.

Next, we turn to a simple estimate on the integral appearing in equation (32), relying on the
boundedness of ρP .

Lemma 3.5. There is a constant c3 = c3(g, χ) such that for all subsets Q ⊂ P (Λ),∣∣∣∣∣
∫
F ({gxy})

∏
P∈Q

ρP dσ

∣∣∣∣∣ ≤ ‖F‖∞(c3β)|Q|. (33)

Proof. This bound follows immediately from the bound (28) on ρP , and the assumption that
F ∈ L∞(C(Λ), dσ).

The final lemma we will need is a bound on the ratio of partition functions, in terms of the size
of the excluded set. Here we will utilize the freedom to choose β small. More precisely:

Lemma 3.6. For β sufficiently small, and Q ⊂ P (Λ) an arbitrary subset of plaquettes, we have

2−|Q| ≤

∣∣∣∣∣ZΛ\Q

ZΛ

∣∣∣∣∣ ≤ 2|Q|,

where we give the same interpretation to Λ\Q as above (i.e. we remove all vertices contained
in the plaquette set Q).

Proof. First, suppose we have the result for |Q| = 1, i.e. the statement

1

2
≤

∣∣∣∣∣ZΛ\{R}

ZΛ

∣∣∣∣∣ ≤ 2, (34)
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for Q = {R} a single plaquette set. Since any finite Q = {P1, · · · , P|Q|} may be written as
Q =

⋃|Q|
i=1

⋃i
j=1 Pj ≡

⋃|Q|
i=1 Ti, with Tj = Tj−1 ∪ Pj , then equation (34) gives

1

2
≤

∣∣∣∣∣ZTj\Tj−1

ZTj

∣∣∣∣∣ ≤ 2,

for all j = 2, · · · |Q|, so the product of these inequalities gives the statement of the lemma. So
it suffices to show (34). So let R ∈ P (Λ) be a fixed plaquette, and consider the difference

ZΛ − ZΛ\{R} =
∑

Q⊂P (Λ)
R∈Q

∫ ∏
P∈Q

ρP dσ,

where the contribution of subsets not containing R vanish in the difference. As in the derivation
of the cluster expansion, we can decompose any plaquette subset Q with R ∈ Q into a subset
Q1 → R, and Q2 ⊂ Λ\(R ∪Q1). Summing over Q2 yields a reduced partition function, and
inserting into the above line gives

ZΛ − ZΛ\{R} =
∑

Q1⊂P (Λ)
Q1→{R}

∫ ∏
P∈Q1

ρP dσZΛ\Q1∪{R}.

We now proceed via induction. Suppose equation (34) has been shown for |Λ| = N ; we will
extend to |Λ| = N + 1. Consider∣∣∣∣∣1− ZΛ

ZΛ\{R}

∣∣∣∣∣ ≤ ∑
Q1⊂P (Λ)
Q1→{R}

∫ ∏
P∈Q1

ρP dσ
Z

Λ\Q1∪{R}

ZΛ\{R}
.

By lemma 3.5 and the inductive hypothesis, we get the above line is bounded above as follows:

≤
∑

Q1⊂P (Λ)
Q1→{R}

(c3β)|Q|2|Q1∪R|+1

≤
∞∑
K=1

c4(c3β)KcK5 ,

where we applied lemma 3.3 to bound the number of connected subsets. But by picking β
sufficiently small, the final line may be made to be less than 1

2 , giving∣∣∣∣∣1− ZΛ

ZΛ\{R}

∣∣∣∣∣ ≤ 1

2
,

which gives equation (34).

Proof of Theorem. Applying the lemmas, we may bound (for β sufficiently small)

∑
Q→Q0

Q⊂P (Λ)
|Q|≥K

∣∣∣∣∣
∫
F ({gxy})

∏
P∈Q1

ρP dσ
Z

Λ\(Q0∪Q1)

ZΛ

∣∣∣∣∣ ≤ ∑
Q→Q0

Q⊂P (Λ)
|Q|≥K

‖F‖∞(c3β)|Q|2|Q|

≤
∞∑

|Q|=K

N(|Q|)‖F‖∞(c3β)|Q|2|Q|

≤
∞∑

|Q|=K

‖F‖∞(2c3c1β)|Q|

≤ ‖F‖∞
(2c3c1β)K

1− 2c3c1β
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≤ ‖F‖∞(2c3c1β)K ,

as desired.

Construction of High T Phase and Properties

In this section, we apply the cluster expansion to prove existence of the infinite volume limit in a
limited parameter region (the “high temperature phase”), as well as some key properties of the limit.
That all the properties of this section follow from the simple cluster expansion is a testament to
the power of the latter - similar tools are unavailable in other regions of a theory’s phase diagram.

We begin with the existence and uniqueness statement.

Theorem 3.7. Let Λn ≡ Zn × · · ·Zn be a d dimensional integer lattice of side length n. Let
dµn ≡ dµΛn be the associated lattice gauge theory. Then for all β sufficiently small, the weak limit
dµn → dµ exists, and is unique.

Proof. We begin with existence, and follow a typical proof strategy for studying the infinite volume
limits of lattice systems. First, we will show that for any function F on the infinite volume lattice
(denoted Λ∞) of finite support, the limit of

〈
F
〉
n

exists as n → ∞. Here we use the cluster
expansion. In the second step, we apply a functional analytic argument to define a positive,
bounded linear functional on the space C0(M), where M = C(Λ∞) is the (compact) metric space
of configurations on the infinite volume lattice. The Riesz-Markov theorem then gives the desired
infinite volume measure.

So to begin, let F be a continuous, bounded function of finite support on Λ∞, the set of which
we denote C0

F (M). Let N be such that supp(F ) ⊂ B(ΛN ). For m,n ≥ N m ≥ n, we consider the
cluster expansion applied to the difference |

〈
F
〉
m
−
〈
F
〉
n
|, noting that in (31), all terms vanish

expect for those arising from Q ⊂ P (Λ), Q→ supp(F ), Q∩(Λm\Λn) 6= ∅. But this implies that all
contributing subsets must have |Q| ≥ dist(supp(F ),Λm\Λn), where dist(A,B) for A,B ⊂ B(Λ) is
the length of the shortest path of adjacent bonds needed to connect the two subsets. So theorem
3.3 implies ∣∣〈F〉

m
−
〈
F
〉
n

∣∣ ≤ a(bβ)dist(supp(F ),Λm\Λn) → 0 as n,m→∞.

Thus the sequence {
〈
F
〉
m
}∞m=1 is Cauchy in R or C, giving the existence of the limit. Next, let

F ∈ C0
F (M) be given. Define the linear functional l : C0

F (M)→ R (or C) by

l(F ) = lim
n→∞

〈
F
〉
n
.

This satisfies l(1) = 1, l(f) ≥ 0 for f ≥ 0, and is bounded by the following:

|l(F )| ≤ ‖F‖∞.

Now, following the discussion in [Kup14] for the Ising model, we recall the following topological
facts, which allow us to uniquely extend l to a positive linear functional l̄ : C(M) → R (or C).
Since G is a compact Lie group, by Tychonoff’s theorem C(Λ∞) =

∏∞
i=1G is a compact space

with topology determined by the metric on C(Λ)

d′(g, g′) =
∑

(x,y)∈B(Λ∞)

2|(x,y)|d′′(gxy, g
′
xy),

where |(x, y)| = max{dist(x, 0),dist(y, 0)} is a measure of the Euclidean distance between the bond
and the origin, and d′′ is a metric on the Lie group. An appeal to the Stone-Weierstrass Theorem
shows that C0

F (M) ⊂ C0(M) is in fact dense, implying there is a unique extension of l to the
desired positive, bounded, linear functional l̄ : C(M) → R (or C). But Riesz-Markov then gives
the existence of a dµ on C(Λ∞) such that for all F ∈ C0

F (M),

lim
n→∞

〈
F
〉
n

=

∫
Fdµ,

which is just the desired infinite volume limit.
To discuss uniqueness, we first note that thus far, we have been using free boundary conditions,

i.e. we include only plaquettes strictly contained in Λ, setting all other bonds outside Λ to be zero.
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The above existence proof works identically with other boundary conditions, but for uniqueness
we must consider all possible choices of limiting sequences, i.e. limits with different Λ ↗ Zd and
different boundary conditions. Independence on the sequence of finite lattices follows immediately
from the above cluster expansion computation, as no direct use of the definition of Λn was used,
other than its limiting properties. Similarly, independence of boundary conditions follows from a
cluster expansion argument: writing

〈
F
〉′
n
,
〈
F
〉′′
n
for the expectations taken with different boundary

conditions, an appeal to equation (32) shows all terms vanishing except those with a connected
path from supp(F ) to ∂Λn, the boundary of the lattice. But the distance d(supp(F ), ∂Λn) → ∞
as n→∞, showing |

〈
F
〉′
n
−
〈
F
〉′′
n
| → 0. Since we have shown both sequences converge identically,

we get that the resulting linear functional (and thus the infinite volume measure) are independent
of boundary conditions. This completes the proof.

Next, we turn to exponential clustering of the correlation functions. In a field-theoretic setting,
recall we identify the inverse correlation length ξ−1 with the lightest mass m of the theory. The
existence of a positive correlation length, finite correlation length is called the “mass gap” property
of the theory.

Theorem 3.8. Let A,B : C(Λ)→ R (or C) be functions on the lattice with finite, disjoint supports
Q1, Q2. Let dist(A,B) be the length of the smallest path of bonds connecting the supports. Then
for β sufficiently small, there exists 0 < ξ < ∞, and a constant c = c(A,B) such that for all Λ,
the exponential clustering property holds:

|
〈
AB
〉

Λ
−
〈
A
〉

Λ

〈
B
〉

Λ
| ≤ ce−

dist(A,B)
ξ (35)

Proof. As in the proof of the infinite volume limit, our goal is to suitably manipulate the cluster
expansion for the two point function, showing that terms in equation (32) vanish for subsets
Q ⊂ P (Λ) with Q < dist(A,B). To do this, we adapt a technique from [Kup14], in which we
consider a copy Λ̄ of the lattice Λ, embedded in Zd alongside Λ such that the two lattices have
non-overlapping plaquette sets. Thus we may consider the gauge theory dµΛ∪Λ̄ on Λ ∪ Λ̄, with its
own copies of the variables Ā ≡ A, B̄ ≡ B. Denote expectation against the union measure dµΛ∪Λ̄

as
〈
·
〉
U
.

By construction, the union lattice measure factors as dµΛ∪Λ̄ = dµΛdµΛ̄, and the variable pairs
(A, Ā), (B, B̄) are independent, i.e.

〈
AĀ
〉
U

=
〈
A
〉
U

〈
Ā
〉
U
.

Thus we get the following concise representation of the two point function:

|
〈
AB
〉

Λ
−
〈
A
〉

Λ

〈
B
〉

Λ
| =

〈
(A− Ā)(B − B̄)

〉
U

(36)

Let Ω = supp((A− Ā)(B − B̄)). We may repeat the construction of the cluster expansion for
the union measure, giving〈

(A− Ā)(B − B̄)
〉
U

=
1

2ZΛ∪Λ̄

∑
Γ⊂Λ∪Λ̄

∫
(A− Ā)(B − B̄)

∏
P∈Γ

ρP dσΛdσΛ̄

=
1

2ZΛ∪Λ̄

∑
Γ⊂Λ∪Λ̄
Γ→Ω

∫
(A− Ā)(B − B̄)

∏
P∈Γ

ρP dσΛdσΛ̄ZΛ∪Λ̄\Γ∪Ω.

Observe that if |Γ| < dist(A,B), then no connected component of Γ is connected to the support
of both supp(A)∪ supp(Ā) and supp(B)∪ supp(B̄). Thus in this case, we may uniquely decompose
Γ = Γ1 ∪ Γ2, Γ1 → supp(A) ∪ supp(Ā), Γ2 → supp(B) ∪ supp(B̄). Thus the integration will factor
into integration over the links in A1 = Γ1 ∪ supp(A)∪ supp(Ā), and those in A2 = Γ2 ∪ supp(B)∪
supp(B̄).

Thus the overall contribution of a term with |Γ| < dist(A,B) factors as

∫
(A− Ā)(B − B̄)

∏
P∈Γ

ρP dσΛdσΛ̄ZΛ∪Λ̄\Γ∪Ω =

(∫
(A− Ā)

∏
P∈Γ1

ρP
∏

xy∈A1

dσxy

)
×

(∫
(B − B̄)

∏
R∈Γ2

ρR
∏

xy∈A2

dσxy

)
ZΛ∪Λ̄\Γ∪Ω (37)
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Here, we may use the symmetry of the two lattices to observe that the expectation is invariant
under A ↔ Ā, independently of the B, B̄. Our freedom to interchange A, Ā stems from the
factorization property of the integral - no connected component of the sets Γ connects the supports
of the A, Ā functions with their B counterparts. But this symmetry under interchange forces the
integral to be zero, showing all contributions to the cluster expansion with |Γ| < dist(A,B) vanish.
Thus equation (32) and the convergence of the cluster expansion give the desired correlation bound.

Proof of Quark Confinement

Here we include a proof that in the region of β small, for which the convergence result in theorem
3.3 holds, we have the following confinement bound:

Theorem 3.9. ∣∣〈χ(C)
〉

Λ

∣∣ ≤ a(β)eb(β) Area(C),

where C is a rectangular loop of size R × T contained entirely in a lattice plane, and Area(C) is
the number of plaquettes in the interior of C.

Note the bound holds independently of the lattice size, indicating confinement in the infinite
volume limit. The proof will rely on key inputs from character theory and the Peter-Weyl theorem,
described in section 2.1. Throughout this proof, W (C) denotes the Wilson operator χ(

∏
xy∈C gxy).

Proof. Consider again the statement of theorem 3.3, which bounds the tail of the cluster expansion
by an exponential in the number of excluded terms. Thus, to show the bound in theorem 3.9,
it suffices to show that all subsets Q ⊂ P (Λ), Q → Q0 ≡ supp(W (C)) with |Q| < Area(C)
have vanishing contribution to the cluster expansion. More precisely, the bound follows from the
following lemma.

Lemma 3.10. Let Q ⊂ P (Λ), Q→ Q0, with |Q| < Area(C). Moreover, suppose the character χτ
in the definition of the gauge theory is non-trivial on the center Z(G) of G. Then∫

W (C)
∏
P∈Q

ρP dσ = 0.

The following proof is adapted from [Sei82].

Proof. Recall the following integration formula for Haar measure:∫
G

F (g)dσ =

∫
G

∫
Z(G)

F (ωg)dωdσ,

where dσ, dω are the Haar measures on G, Z(G) respectively. So the lemma in fact follows from
showing that for each g ∈ G fixed, the integral over the center vanishes:∫

W (ωC)
∏
P∈Q

ρωP
∏

(x,y)∈B(Λ)

dωxy = 0, (38)

where we have introduced the notation ωP, ωC to indicate that in computing the values of the
ρ function and Wilson loop operator, one first pre-multiplies the group element gxy by the element
ωxy in the center (of course, multiplicative ordering is actually irrelevant).

Next, we observe that T ({ωxy}) ≡
∏
P∈Q ρωP is a function on the group Z(G|Q|), and moreover

is a class function by commutativity of the group. Denoting ω∂P =
∏

(x,y)∈∂P ωxy, we can apply
Peter-Weyl to get the expansion

T ({ωxy}) =
∑
γ

aγχγ({ωxy}) =
∑
γ

aγ
∏
P∈Q

χPγ (ω∂P ),

where the sum is taken over the characters for all inequivalent, finite-dimensional, irreducible
representations of the group Z(G|Q|). We have also used the fact that irreducible representations
of abelian groups are one-dimensional, allowing us to factor the character on Z(G)|Q| to a product
of characters on the plaquettes comprising the set Q. We explicitly write the Wilson loop as a
(non-trivial) character χτ on the center, which decomposes into a product of characters acting on
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the bonds contained in C. Inserting the expansion into (38), we see it is sufficient to show each
term in the product vanishes, i.e. for all γ,∫ ∏

P∈Q
χPγ (ω∂P )

∏
(x,y)∈C

χτ (ωxy)
∏

(x,y)∈B(Λ)

dωxy = 0. (39)

Recall from 2.4 that if any of the above links (x, y) ∈ B(Λ) contribute non-trivial representations
of the center, then the integral in (39) immediately vanishes.

We now isolate these non-trivial links, by defining a set Q̄ to be the (x, y) ∈ B(Λ) such that∏
P∈Q

(x,y)∈P

χPγ (ω) 6≡ 1.

We may then factor as follows:∏
P∈Q

χPγ (ω∂P ) =
∏

(x,y)∈Q̄

( ∏
P∈Q

(x,y)∈P

χPγ (ωxy)

)

Since χτ is a non-trivial character on the center Z(G), whenever C 6⊂ Q̄, (39) holds. But of
course, |Q| < Area(C) necessarily implies C 6⊂ Q̄, proving the claim.
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3.4 Existence of U(1) 4D Phase Transition
In this section, we review the argument in the 1982 paper of Fröhlich and Spencer [FS82], in which
the authors prove the existence of a de-confining phase transition in 4-D U(1) lattice gauge theory,
with the Villain action. In light of the existence of the high-temperature confining phase for small
β, we see the existence of a phase transition follows from a proof of the perimeter law for Wilson
loop expectations, for sufficiently large β. In the next section we outline the key steps of the proof,
which revolves around a duality argument. In particular, we derive the dual model to 4-D U(1)
gauge theory, which we will use in the remainder of the argument. In the following sections we
study the dual model further, and establish the desired phase transition.

Summary of Result and Proof Sketch

In this section, we work with a lattice Λ ⊂ Z4, and the gauge group U(1). Identifying U(1) with
the complex numbers eiθ of unit norm, we recall here the definition of the Villain action:

SV ({gxy}) =
∑

P∈P (Λ)

log

(∑
n∈Z

e−
β
2 (dθP+2πn)2

)
,

where dθP ≡
∑
xy∈P θxy is the sum of phases of group elements along edges of the plaquette P ,

and {gxy} a configuration. The associated lattice gauge measure is then:

dµΛ({gxy}) =
1

ZΛ
eSV ({gxy})dσ ≡ 1

ẐΛ

∏
P∈P (Λ)

ϕβ(dθP )
∏

xy∈B(Λ)

dθxy. (40)

In the second equality we have identified Haar integration on U(1) with integration over the
phase angle, requiring a modified partition function

ẐΛ =

∫ ∏
P∈P (Λ)

ϕβ(dθP )
∏

xy∈B(Λ)

dθxy. (41)

We have also isolated the expression in the argument of the logarithm in the Villain action,
giving the Villain function

ϕβ(θ) =
∑
n∈Z

[
− β

2
(θ + 2πn)2

]
.

As in our previous studies of confinement, we are interested in the behavior of Wilson loop
expectations 〈

W (L)
〉
(β) ≡ lim

Λ↗Z4

〈
W (L)

〉
Λ

(β)

in the infinite volume limit. It follows from the high temperature existence proof that
〈
W (L)

〉
(β)

satisfies an area law upper bound for sufficiently small β. In order to prove the existence of phase
transition, it suffices to show the following qualitatively different behavior for large β:

Theorem 3.11. Consider the 4-D U(1) lattice gauge theory dµΛ on finite Λ ∈ Z4, with expectation〈
·
〉

Λ
. Let L be a rectangular loop of dimensions L× T contained in a single lattice plane.

Consider the infinite volume limit of 4-D U(1) lattice gauge theory, with expectation
〈
·
〉
. Then

there is a constant d = d(β) > 0 independent of Λ, such that for sufficiently large β the perimeter
law holds: 〈

W (L)
〉

Λ
(β) ≥ e−d(L+T ) (42)

The proof of theorem 3.11 proceeds in the following steps:

1. Fourier transformation of the measure dµΛ, converting a Wilson loop expectation at coupling
β into the expectation of a “dual operator” D at coupling 1

β , with respect to the transformed
measure. The resulting theory is roughly Gaussian.

2. Following the authors’ work in [FS81], reformulating the measure in Sine-Gordon represen-
tation. This process transforms expectations in the dual theory to convex combinations of
expectations in theories of “low activity”.
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3. Variable transformations give positivity of the low activity measures for sufficiently large β,
allowing a use of Jensen’s inequality for the eventual lower bound.

The duality argument is presented in Part 1, in which the precise nature of the dual operator
D is considered. Details for remaining steps are given in the remaining parts.

Proof 1: Proof of Duality

Now we turn to the duality transformation of the U(1) lattice measure (40) and the associated
Wilson loop expectations. This amounts to an exercise in Fourier series, and in the language of
the exterior calculus discussed in section 2.2.3. We begin by inserting the fourier series expansion

ϕβ(dθP ) =
∑
nP∈Z

ϕ̂β(nP )einpdθP

in the expression (41) for the partition function:

ẐΛ =

∫ ∏
P∈P (Λ)

{ ∑
nP∈Z

ϕ̂β(nP )einpdθP
} ∏
xy∈B(Λ)

dθxy. (43)

We have suggestively labeled the integers in the sum nP , recognizing that in the expansion
of the first product in (43), each summand may be labeled uniquely by a map nP : P → Z.
Recognizing these maps as 2-forms on Λ, we expand the above, giving

ẐΛ =
∑
n∈Λ2

∏
P∈P (Λ)

ϕ̂β(nP )

∫
ei(n,dθ)

∏
xy∈B(Λ)

dθxy

=
∑
n∈Λ2

∏
P∈P (Λ)

ϕ̂β(nP )

∫
ei(δn,θ)

∏
xy∈B(Λ)

dθxy.

Observe that if δnxy 6= 0 for any xy ∈ B(Λ), the exponential integral is 0. So we can restrict
attention to n satisfying δn = 0, for which the integral is simply (2π)|B(Λ)|. The exponent here is
just the total number of oriented bonds in the lattice. Also note that for our choice of the Villain
function, the Fourier coefficient has a simple closed form:

ϕ̂β(n) = ce−
1

2βn
2

.

Collecting the above remarks, we get for the Villain action partition function the representation

ẐΛ = (2π)|B(Λ)|c|P (Λ)|ZΛ,

with
ZΛ =

∑
n∈Λ2

δn=0

∏
P∈P (Λ)

e−
1

2βn
2
P . (44)

With the choice of Villain action, we may further simplify equation (3.4). First, recall from
proposition 2.2 that δn = 0 implies the existence of a 3-form m satisfying

n = ∂m, supp(m) ⊂ Λ.

But duality gives the existence of a 1-form α on the dual lattice Λ∗ with m = ∗α, giving

n = ∗dα.

Observe however that the set of such 1-forms α is not determined by α, with α′ = α + dγ
satisfying n = ∗dα for any function γ : (Z4)∗ → Z. So instead, define the equivalence class of
1-forms:

[α] = {β ∈ (Λ∗)1
Z : β = α+ dγ, γ : (Z4)∗ → Z, supp(γ) ⊂ (Λ)∗}

in which we restrict attention to α taking values in Z.
In order to write the partition function as a sum over such equivalence classes, we need to

express terms involving n in terms of α. A short computation gives:
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∑
P∈P (Λ)

n2
P =

∑
P∈P (Λ)

(∗dα)2
P =

∑
P∈P (Λ∗)

(dα)2
P = (dα, dα)Λ∗ .

Thus
ZΛ =

∑
n:δn=0

e−
1

2β (n,n) =
∑
[α]

α∈(Λ∗)2
Z

e−
1

2β (dα,dα). (45)

Note we drop the subscript on the inner product, since it is evident α acts on the dual lattice.
Moreover, [α] indicates that we choose one representative from each equivalence class in the sum.

In the remainder of the section, we apply the same Fourier technique to compute an alternative
formula for the Wilson loop expectation. So let L be a rectangular loop in the (for simplicity) 0-1
dimension lattice plane of Λ, and let

〈
W (L

〉
Λ

(β) the Wilson loop expectation in the measure (40).
We will need the following two inputs, which are easily verified:

• The nth Fourier series coefficient of ϕβ(θ)eiθ is just ϕ̂β(n− 1).

• Recall the definition of the Wilson loop: W (L) =
∏
xy∈L e

iθxy. Since L is rectangular, there
is a connected surface of plaquettes Σ with ∂Σ = L, with the natural notion of boundary.
But the discretized Stoke’s theorem then gives

W (L) =
∏
P∈Σ

ei(dθ)P . (46)

Now we proceed similarly as to the above computation, inserting the Fourier series expansion
of ϕ(θ)W (L) into the Wilson loop expectation:

〈
W (L)

〉
=

1

Ẑ

∫ ∏
P∈P (Λ)

ϕ(dθP )
∏
P∈Σ

ei(dθ)P
∏

xy∈B(Λ)

dθxy

=
1

ẐΛ

∫ ∏
P∈P (Λ)\Σ

{ ∑
nP∈Z

ϕ̂β(nP )einpdθP
} ∏
P∈Σ

{ ∑
nP∈Z

ϕ̂β(nP − 1)einpdθP
} ∏
xy∈B(Λ)

dθxy

=
1

ẐΛ

∑
n∈Λ2

∏
P∈P (Λ)\Σ

ϕ̂β(nP )
∏
P∈Σ

ϕ̂β(nP − 1)

∫
ei(dθ)P

∏
xy∈B(Λ)

dθxy

=
1

ẐΛ

(2π)L(Λ)
{ ∑
n∈Λ2

δn=0

∏
P∈Λ\Σ

ϕ̂β(nP )
∏
P∈Σ

ϕ̂β(nP − 1)
}

=
1

ẐΛ

(2π)L(Λ)c|P (Λ)|{ ∑
n∈Λ2

δn=0

∏
P∈Λ\Σ

e−
1

2βn
2
P

∏
P∈Σ

e−
1

2β (nP−1)2}
=

1

ZΛ

{ ∑
n∈Λ2

δn=0

∏
P∈Λ

e−
1

2βn
2
P

∏
P∈Σ

e−
1

2βnP−
1

2β
}
,

where we applied the relationship (3.4). If we recall the construction of the equivalence class
[α] of 1-forms from above, we see that the above sum is just〈

W (L)
〉

=
1

ZΛ

∑
[α]

α∈(Λ∗)2
Z

e−
1

2β (dα,dα)
∏
P∈Σ

e
1
β (dα)e−

1
2β .

Thus we identify the dual of the Wilson loop expectation with the expectation of the operator

D∂Σ(α) ≡
∏
P∈Σ

e
1
β (dα)e−

1
2β (47)

on the space of equivalence classes of integral 1-forms α ∈ (Λ∗)2
Z. The expectation is taken against

the measure
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dµ∗([α]) =
1

ZΛ
e−

1
2β (dα,dα), (48)

and is denoted
〈
·
〉∗

Λ
(β). In summary, we have exchanged the problem of studying

〈
W (L)

〉
Λ

(β)
for large β, for that of analyzing 〈

D∂Σ

〉∗
Λ

(β),

whose coupling carries an inverse dependence on β. Thus we expect the latter computation to be
more tractable. We take up the problem of analyzing D∂Σ, called the disorder operator, in the
next section.

Proof 2: Deriving the Sine-Gordon Representation

In this section we continue the proof of theorem 3.11, by proving the perimeter bound on the
disorder operator defined above. The first step is a reformulation of the discrete measure dµ∗Λ([α])
in terms of a continuous Gaussian measure on the space (Z4)∗1 of 1-forms on (Z4)∗. To begin, we
define the Gaussian measure of interest, dµ0

Λ,ε(α):

dµ0
Λ,ε(α) ≡ 1

NΛ,ε
e−

1
2β

{
(dα,dα)Λ∗+ε(α,α)Λ∗

} ∏
xy∈B(Λ∗)

dαxy, (49)

where we have introduced a small regularization term ε > 0 to ensure convergence on the space
(Z4)∗1, and where dα denotes the Lebesgue measure on R.

Although we are only interested in 1-forms with support in Λ∗, we have shown adjointness of
the boundary and co-boundary operators only for forms on Z4 - see proposition 2.2. Thus we
introduce the operator ΠΛ∗ , the orthogonal projection onto the space (Λ∗)2 with respect to the
inner product (·, ·)Z4 . We then have the adjointness statement

(dα, dα)Λ∗ = (α,ΠΛ∗δdα)Λ∗ ,

from which we see that (49) defines a Gaussian measure of mean 0 and covariance VΛ,ε, where

VΛ,ε =
(
ΠΛ∗(δd+ ε)

)−1
, (50)

and inversion is on the space (Λ∗)1.
Recall that a general Gaussian measure is characterized by the following Fourier transform

relationship: ∫
ei

∑
xy∈B(Λ∗) αxyµxydµ0

Λ,ε(α) = e−
β
2 (µ,VΛ,εµ)Λ∗ , (51)

for all µ ∈ (Λ∗)1. We often use the compact notation α(µ) ≡
∑
xy∈B(Λ∗) αxyµxy.

we now consider the ε → 0 limit of the measure. Suppose µ has support in Λ∗. Then observe
that VΛ,ε(µ) = (1 + 1

εdδ)(−∆ + ε)−1µ for ∆ the finite-difference Laplacian on Λ with 0 Dirichlet
boundary conditions. This is just the result of direct computation:

(δd+ ε)(1 +
1

ε
dδ)(−∆ + ε)−1µ = (ε+ dδ + δd)(−∆ + ε)−1µ = µ.

So for µ with δµ 6= 0, Vε →∞ as ε→ 0, implying the right hand side of (51) similarly approaches
0. Another computation using the adjointness of d, δ gives that the orthogonal complement of
{µ ∈ (Λ∗)1 : δµ = 0, supp(µ) ∈ Λ∗} is just {µ ∈ (Λ∗)1 : dµ = 0, supp(µ) ∈ Λ∗}. Collecting these
results gives the following lemma:

Lemma 3.12. Define VΛ = (ΠΛ∗δd)−1 = (−∆)−1 on the space {µ ∈ (Λ∗)1 : δµ = 0, supp(µ) ∈
Λ∗}. Then

lim
ε→0

∫
eiα(µ)dµ0

Λ,ε(α) =

{
e−

β
2 (µ,VΛµ)Λ∗ , if δµ = 0

0, otherwise
. (52)
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This lemma justifies the definition of the measure dµ0
Λ(α) = w-limε→0 dµ

0
Λ,ε(α) on the space of

equivalence classes of 1-forms α, where we identify α ∼ α′ if dα = dα′. This measure is determined
by its Fourier transform ∫

eiα(µ)dµ0
Λ([α]) = e−

β
2 (µ,VΛµ)Λ∗ (53)

on all 1-forms µ with supp(µ) ⊂ Λ∗, δµ = 0.
Observe that the measure defined by (53) is, apart from the integral constraint on α, exactly

the original measure dµ∗([α]) in (48). But we may impose this constraint via a product of delta
functions:

dµ∗([α]) =
1

Ξ

∏
xy∈B(Λ∗)

{ ∑
q′xy∈Z

δ(αxy − q′xy)
}
dµ0

Λ([α]). (54)

Expanding the delta functions in their Fourier series gives the Sine-Gordon representation of
the measure, as described in the following lemma:

Lemma 3.13. Let {zq}∞q=1 ⊂ R be a sequence with
∑∞

(2π)−1q=1 z
−1
q = 1

2 . Then

∑
q′xy∈Z

δ(αxy − q′xy) =

∞∑
(2π)−1qxy=1

2z−1
qxy (1 + zqxy cos(qxyαxy)) (55)

Proof. The lemma follows directly from the Poisson summation formula applied to the shifted
Dirac distribution g(n) ≡ δ(n− αxy), with Fourier transform

ĝ(x) = e−2πiαxyx.

The Poisson summation formula gives that
∑∞
n=−∞ g(n) can be recovered as the sum of its

Fourier transform, sampled at the integers. Thus we get

∞∑
n=−∞

g(n) =

∞∑
qxy=−∞

e−2πiqxyαxy ,

which through pairing of q,−q and rescaling of q, gives

∞∑
n=−∞

g(n) = 1 + 2

∞∑
(2π)−1qxy=1

cos(qxyαxy).

We are free to insert the sequence zqxy , due to the constraint
∑∞

(2π)−1q=1 z
−1
q = 1

2 .

Before inserting the result of the above lemma into our representation (54), we introduce the
following notation:

q ≡ {qxy}xy∈B(Λ∗), cq ≡
∏

xy∈B(Λ∗)

2z−1
qxy .

It then follows that

Ξdµ∗([α]) =
∑
q

cq
∏

xy∈B(Λ∗)

(1 + zqxy cos(qxyαxy))dµ0
Λ([α]). (56)

By selecting the {z} non-negative, we see from (56) a decomposition (convex up to normaliza-
tion) of the measure into expectations taken against the continuous measures∏

xy∈B(Λ∗)

(1 + zqxy cos(qxyαxy))dµ0
Λ([α]), (57)

which are in general signed measures. Our goal for the remainder of the section is to derive
a geometric representation of the measures (57), by further decomposing the products appearing
in (57) into sums over disjoint subsets, with negligible “interactions”. It should be noted that
the motivation for the remainder of the section comes from the authors’ original analysis into the
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K-S phase transition in abelian spin systems and Coulomb gases, for which the decomposition has
a natural physical interpretation as a splitting into neutral clusters of gas molecules. That the
clusters are neutral and sparse allows for strong bounds on their contributions to the partition
functions for high β. Our developments for the U(1) gauge theory follow similar arguments, but
with different interpretation.

Before proceeding, we formalize the notions of the previous paragraph in the following definition.

Definition 10. A current distribution, or density, is a mapping

ρ : B(Λ)→ 2πZ

of finite support. Moreover, we define an ensemble E to be a collection {ρi} of current densities,
such that the following properties hold:

1. For all i, supp(ρi) ⊂ Λ∗.

2. For i 6= j, supp(ρi) ∩ supp(ρj) = ∅.

Finally, if E = {ρi} is an ensemble satisfying the additional property that

fori 6= j,dist(ρi, ρj) ≡ dist(supp(ρi), supp(ρj)) ≥ 2
k
2 ,

then E is a k-ensemble.

Lemma 3.14. ∏
xy∈B(Λ∗)

(1 + zqxy cos(qxyαxy)) =
∑
γ∈I

cγ
∏
ρ∈E1

γ

[1 +K(ρ) cos(α(ρ))], (58)

where

1. I is a finite set, and each E1
γ a 1-ensemble.

2. for all γ, cγ > 0.

3. The following bound holds on K(ρ), where N1(supp(ρ)) is the number of links b with dist(supp(ρ), b) ≤
1:

0 < K(ρ) ≤ 3N1(supp(ρ))
∏

xy⊂supp(ρ)

z|ρxy|.

Proof. We begin with the easily verified trigonometric identity

[1 +K1 cos(α(ρ1))][1 +K2 cos(α(ρ2))] =
1

3
[1 + 3K1 cos(α(ρ1))] +

1

3
[1 + 3K2 cos(α(ρ2))]

+
1

6
[1 + 3K1K2 cos(α(ρ1 − ρ2))] +

1

6
[1 + 3K1K2 cos(α(ρ1 + ρ2))],

(59)

which naturally decomposes the products on the left hand side of (58). We now proceed as
follows:

1. First, identify each qxy with a 1-form ρxy with supp(ρxy) = {xy}, ρxy(xy) ≡ qxy.

2. For a pair of bonds xy, x′y′ ∈ B(Λ∗) with xy ∩ x′y′ 6= ∅, insert the expansion (59) into the
left hand side of (58), and expand the resulting product. This step produces a sum of terms
of the same form as the left hand side of (58), but with no summand containing both xy, x′y′.

3. Complete step (2) for each term in the resulting sum, and for each pair of overlapping bonds.
The resulting expansion is a sum of the form∏

xy∈B(Λ∗)

(1 + zqxy cos(qxyαxy)) =
∑
λ∈I

cλ
∏
ρ∈Eλ

[1 +K ′(ρ) cos(α(ρ))], (60)
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where the Eλ are ensembles, and each K ′(ρ) is a product of factors of 3 (corresponding
to the number of iterations η(ρ) of the expansion step (2)) and factors zρxy for all xy ∈
B(Λ) ∩ supp(ρ). Thus we have the bound

|K ′(ρ)| ≤ 3η(ρ)
∏

xy∈supp(ρ)

z|ρxy| (61)

4. If any of the Eλ are not 1-ensembles, for any ρ1, ρ2 ∈ Eλ with dist(ρ1, ρ2) <
√

2, applying the
expansion (59) produces a larger set {E ′}, which are 1-ensembles. This procedure terminates,
and yields the desired decomposition.

Observe that the cλ formed through this expansion are products of 1
3 ,

1
6 , implying cλ > 0 holds.

Similarly, tracing through the above procedure shows η(ρ) ≤ N1(supp(ρ)), which combined with
(61) gives the bound in the statement of the lemma.

Corollary 3.14.1.

dµ∗Λ([α]) =
1

Ξ

∑
γ∈I

dγ
∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ))]dµ0
Λ([α]), (62)

where dγ and N 1
γ have the same properties as in lemma 3.13

Proof. Note it follows immediately from lemma 3.14 and (56) that the following representation of
dµ∗Λ([α]) holds:

dµ∗Λ([α]) =
1

Ξ

∑
γ∈I

dγ
∏
ρ∈N 1

γ

[1 +K(ρ) cos(α(ρ))]dµ0
Λ([α]). (63)

It remains to observe that if δρ 6= 0, then since distinct densities ρ1, ρ2 ∈ N 1
γ share no plaquettes

in their supports, the product (63) decomposes into a sum over products of the form∏
i

ρi∈A⊂N 1
γ

K(ρi) cos(α(ρi))dµ
0
Λ([α]), (64)

for subsets A ⊂ N 1
γ . For subsets A containing ρ, we see in light of (52) that∫

cos(α(ρi))dµ
0
Λ([α]) = 0,

implying (64) may be omitted (this follows from our definition of dµ0
Λ via (52)). Therefore, in the

sum (63) we only retain current densities satisfying δρ = 0.

The representation (62) is motivated by the authors’ analysis into the K-S transition in abelian
spin systems and Coulomb gases (see [FS81]), for which (62) has a natural physical interpretation.
In the setting of Coulomb gases, current densities correspond to roughly neutral clusters of weakly
interacting particles. This weak interaction manifests in our case as strong upper bounds on the
terms K(ρ) cos(α(ρ)), for large β.

Proof 3: Change of Variables

We next introduce a linear transformation of the coordinate α. Lemma 3.15 illustrates that the
combinationD∂Σ(α)]dµ0

Λ([α]) takes an especially simple form under this change of variables, leaving
us with the task of bounding the multiplicative terms in the measure. We consider this in the
following sub-section.

Recall that we have the following relationship between our desired Wilson loop expectation,
and the Disorder expectation:
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〈
W (L)

〉
Λ

(β) =

∫
D∂Σ(α)dµ∗Λ([α]),

where Σ ⊂ P (Λ) is a set of plaquettes with boundary ∂Σ = L the rectangular Wilson loop.
Define the following 2-form σ ∈ (Λ∗)2

Z, for p∗ ∈ P (Λ∗) arbitrary:

σ(p∗) ≡

{
1 if (p∗)∗ ∈ Σ

0 otherwise
. (65)

Then define the following auxiliary 2-forms τ , εΛ:

τ ≡ −δ(∆)−1σ, (66)

and
εΛ ≡ −ΠΛ∗δd(∆)−1σ. (67)

We are interested in the measure dµΛ([α]) under the change of coordinates

α→ α+ τ (68)

A justification of this transformation comes in the following computational lemma:

Lemma 3.15. The following properties of the variable transformation α→ α+ τ hold:

1.
σ = εΛ + ΠΛ∗dτ (69)

2. (εΛ, εΛ)Λ∗ is perimeter-dominated in the infinite volume limit, i.e.

(εΛ, εΛ)Λ∗ ≤ C(β)(L+ T ), (70)

as Λ∗ ↗ Z4, where 2(L+ T ) is the perimeter of the Wilson loop.

3. Under the change of coordinates (68),

D∂Σ(α)dµ0
Λ([α])→ e−

1
2β (εΛ,εΛ)dµ0

Λ([α]), (71)

and ∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ))]→
∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ)− (εΛ, µρ)Λ∗)], (72)

where µρ ∈ (Λ∗)2 takes values in 2πZ, and satisfies δµρ = ρ.

Proof. Part 1 The proof of (1) is a direct computation:

ΠΛ∗dτ = −ΠΛ∗dδ(∆)−1σ = −ΠΛ∗(dδ + δd)(∆)−1σ + ΠΛ∗δd(∆)−1σ

= −ΠΛ∗∆(∆)−1σ − εΛ = σ − εΛ,

where we have crucially used that ∆ is the finite difference Laplacian with 0 boundary conditions
on ∂Λ∗, and thus that ΠΛ∗(dδ + δd) = −∆.

Part 2 Next, consider the behavior of (εΛ, εΛ)Λ∗ in the limit as Λ∗ ↗ Z4. Using the adjointness of
δ, d in this limit, we have first that

(ΠΛ∗dτ, εΛ)→ (ddτ, d(∆)−1σ) = 0,

implying (using (69))
|(εΛ, εΛ)Λ∗ − (σ, εΛ)Λ∗ | → 0.

So it suffices to consider (σ, εΛ)Λ∗ → (dσ, d(∆)−1σ)Λ∗ = (∗dσ, ∗d(∆)−1σ)Λ. An elementary
computation yields

(∗dσ)xy =

{
1 if xy ∈ L
0 otherwise.
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Thus ∗dσ is supported on the Wilson loop. Next, recall that the gradient of the Green’s function
of the lattice laplacian, d(∆)−1σ, is evaluated as the convolution of σ with the kernel of d(∆)−1.
This kernel decays asymptotically as 1

r3 , implying the kernel is everywhere bounded by c
1+r3 for

a constant c. So consider xy ∈ L, and consider the contributions of the plaquettes P ∈ Σ to this
convolution. Thus we get the upper bound

(∗d(∆)−1σ)xy ≤
T∑
x=1

L∑
y=1

c

1 + (y2 + x2)
3
2

.

Upper bounding this sum by an integral over R2, we conclude that the contribution is bounded
by a constant. Adding the contributions over the perimeter of the Wilson loop, we conclude

(∗dσ, ∗d(∆)−1σ)Λ ≤ c′(L+ T )

for some constant c′. This concludes the proof of perimeter decay in the limit.

Part 3 Finally, we turn to (3). We approach (71) by transforming the terms independently. First,
we consider the transformation of the ε-regularized measure, excluding terms with ε dependence
(which vanish in the limit):

dµ0
Λ,ε([α])→ dµ0

Λ,ε([α])e−
1
β (dα,dτ)Λ∗ e−

1
2β (dτ,dτ)Λ∗ .

Inserting (69) and observing the following (which follow from the definitions of σ, ε):

(dα, εΛ)Λ∗ = 0,

(dα, dτ)Λ∗ =

{
(dα)p∗ if p ∈ Σ

0 otherwise
,

we finally conclude

dµ0
Λ,ε([α])→ dµ0

Λ,ε([α])e
1
β (σ,ε)Λ∗ e−

1
2β (εΛ,εΛ)Λ∗

∏
p∈Σ

e−
1
β (dα)p∗ e−

1
2β . (73)

Now consider D∂Σ(α) under the same change of variables:

D∂Σ(α) =
∏
p∈Σ

e
1
β (dα)p∗ e−

1
2β →

∏
p∈Σ

e
1
β (dα)p∗ e−

1
2β e

1
β (dτ)p∗

= e−
1
β (σ,εΛ)Λ∗

∏
p∈Σ

e
1
β (dα)p∗ e

1
2β (74)

Combining the transformations (73) and (74) give (71) as desired. Thus it remains to show
(72). To see this, observe that the variable transformation has the direct effect∏

ρ∈N 1
γ

δρ=0

[1 +K(ρ) cos(α(ρ))]→
∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ) + τ(ρ))].

Now we use the Poincaré lemma to conclude from δρ = 0, that there exists a 2-form µρ taking
values in 2πZ, with supp(µ(ρ)) ⊂ Λ∗, and δµρ = ρ. Thus we may compute

τ(ρ) = (τ, ρ) = (τ, δµρ) = (dτ, µρ) = (σ, µρ)− (εΛ, µρ),

implying∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ) + τ(ρ))]→
∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ) + (σ, µρ)− (εΛ, µρ))].

The statement (72) then follows by the 2π periodicity of cos(x), recognizing (σ, µ(ρ)) ∈ 2πZ.
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Combining the above lemma with the explicit form of the measure dµ∗Λ([α]) gives the following
corollary:

Corollary 3.15.1.〈
W (L)

〉
Λ

(β) =
1

Ξ
e−

1
2β (εΛ,εΛ)

∑
γ∈I

dγ

∫ ∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α]) (75)

The variable transformation focuses attention on the multiplicative factors coming from the
activities of current ensembles. With an appropriate bound on the fluctuations of each term from
unity (which will arise only for high β), and the perimeter bound on the 2-form εΛ, we will be close
to concluding the proof of Theorem 3.11.

Proof 4: Renormalization and Bounds on Effective Activity

In this section we explore the formal similarities between our expression in (75) and the high
temperature expansion of section 3.3. As in the latter expansion, we wish to bound the terms

K(ρ) cos(α(ρ)− (εΛ, µρ)Λ∗), (76)

for β large. Unfortunately, our bounds on K(ρ) from lemma 3.14 are insufficient - thus we first
exploit the properties of our ensemble construction to extract an “effective activity” z(β, ρ̄) from
(76), with this activity exponentially decreasing with β. This will require the introduction of a
“renormalized” ensemble ρ→ ρ̄, the definition of which follows naturally from the following lemma.

Lemma 3.16. Fix a bond xy ∈ B(Λ∗), and let G(α) be a function with no dependence on αxy.
Then one may “integrate out” the link xy in the following sense:∫

eiραxyG(α)dµ0
Λ([α]) = e

− β
2nxy

ρ2
∫
e−iραxyG(α)dµ0

Λ([α]), (77)

with nxy = |{p∗ ∈ P (Λ∗) : xy ∈ ∂p∗}|, and αxy = 1
nxy

(δdα)xy − αxy.

Before proceeding to the proof, we note that by tracing the definitions of d, δ, it is clear that
αxy is independent of αxy, depending only on values of α on adjacent links. This justifies the
interpretation of the lemma as “integrating out” links. Moreover, one may compute nxy = 6 in
4-D, the case of interest here.

Proof. To ensure convergence of all integrals, we return to the ε-regularized measure dµ0
Λ,ε(α).

First, recall the definition

dµ0
Λ,ε(α) =

1

NΛ,ε
e−

1
2β

{
(dα,dα)Λ∗+ε(α,α)Λ∗

} ∏
xy∈B(Λ∗)

dαxy.

Observe that the measure naturally factors into a product measure

dµ0
Λ,ε(α) = dρ∼xy(α)

∏
p∗

xy∈∂p∗⊂P (Λ∗)

e−
1

2β (dα)2
p∗dαxy,

in which dρ∼xy(α) is a measure without any explicit dependence on αxy. Now consider the change
of variables

αxy → αxy + i
β

nxy
ρ,

under which the left hand side of (77) (with ε-regularization) becomes
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∫
eiραxyG(α)dµ0

Λ,ε([α]) =

∫ ∏
p∗

xy∈∂p∗⊂P (Λ∗)

eiραxyG(α)e−
1

2β (dα)2
p∗dαxydρ∼xy(α)

=

∫ ∏
p∗

xy∈∂p∗⊂P (Λ∗)

G(α)e
− 1

2β ((dα)p∗+i β
nxy

ρ)2

e
iρ(αxy+i β

nxy
ρ)
dαxydρ∼xy(α)

=

∫ ∏
p∗

xy∈∂p∗⊂P (Λ∗)

G(α)e
− β

2n2
xy
ρ2

e
iρ(αxy− 1

nxy
(dα)p∗ )

e−
1

2β (dα)2
p∗dαxydρ∼xy(α)

= e
− β

2nxy
ρ2

eiραxye−iρn
−1
xy (δdα)xy

∫ ∏
p∗

xy∈∂p∗⊂P (Λ∗)

G(α)e−
1

2β (dα)2
p∗dαxydρ∼xy(α)

= e
− β

2nxy
ρ2
∫
e−iραxyG(α)dµ0

Λ,ε(α). (78)

Taking the ε→ 0 limit gives the result.

The above lemma illustrates that in the process of integrating out a single link, we extract
an exponentially damping factor e−

β
2nxy

ρ2

. We will wish to apply this lemma repeatedly to the
Disorder loop expectation, but we must be careful to consider only a set of links on disjoint pla-
quettes, i.e. those for which no new dependency relationships may arise over repeated applications
of lemma 3.16. Thus, define the geometric constant (for b ∈ B(Λ) a fixed bond)

c−1 = |{b′ ∈ B(Λ) : b′ 6= b,∃P ∈ P (Λ)s.t.b, b′ ∈ ∂P}| (79)

One may show c−1 = 18 in 4-D. Next, we construct the desired set of sparse bonds:

Lemma 3.17. Given a current density ρ, there is a set Bρ ⊂ supp(ρ) with the following properties:

• For all x1y1, x2y2 ∈ Bρ distinct, there is no plaquette P ∈ P (Λ∗) such that x1y1, x2y2 ∈ ∂P

• ∑
xy∈Bρ

|ρxy|2 ≥ c‖ρ‖22 (80)

Moreover, if ρ1, ρ2 ∈ E1 are distinct current densities in a 1-ensemble E1, then one may
choose Bρ1 ,Bρ2 independently, such that the above properties hold.

Proof. Given a current density ρ, the construction of Bρ follows simply by selecting from each
plaquette P ∈ P (Λ∗), P ∩ supp(ρ) 6= ∅, the bond b ⊂ P such that |ρ(b)| is maximal among bonds
in P . One must be careful to eliminate bonds b, b′ ⊂ P ∈ P (Λ∗) constructed using this method (by
taking that bond on which |ρ| takes a larger value). The resulting set Bρ is then seen to satisfy the
desired properties. Moreover, given distinct densities ρ1, ρ2 ∈ E1, the property dist(ρ1, ρ2) ≥ 2

√
≥1

implies no two bonds b1 ∈ supp(ρ1), b2 ∈ supp(ρ2), are subsets of a common plaquette. Thus we
may proceed with the construction of Bρ1 ,Bρ2 independently, such that the desired properties hold
for both sets.

We intend to apply lemma 3.16 to all links xy ∈ Bρ for each current density. This goal motivates
the definition of a “renormalized” current density ρ̄ via the property

α(ρ̄) =
∑
xy∈Bρ

ᾱxyρxy +
∑

xy∈∼Bρ

αxyρxy, (81)

where we recall the definition of ᾱ from lemma 3.16, and where we define ∼ Bρ ≡ supp(ρ)\Bρ.
That this definition is appropriate follows from the next lemma, in which we systematically extract
a factor exponentially damping for high β from the expression (76).

First, given a current density ρ we define the effective activity z(β, ρ̄) as follows:
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z(β, ρ̄) = K(ρ)e
− β2

∑
xy∈Bρ

ρ2xy
nxy (82)

From the bounds in (80), and the computation nxy = 6 in dimension 4, we get

z(β, ρ̄) ≤ K(ρ)e−
β

216‖ρ‖
2
2 . (83)

Lemma 3.18.〈
W (L)

〉
Λ

(β) =
1

Ξ
e−

1
2β (εΛ,εΛ)

∑
γ∈I

dγ

∫ ∏
ρ∈N 1

γ

δρ=0

[1 + z(β, ρ̄) cos(α(ρ̄)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α]), (84)

with normalization
Ξ =

∑
γ∈I

dγ

∫ ∏
ρ∈N 1

γ

δρ=0

[1 + z(β, ρ̄) cos(α(ρ̄))]dµ0
Λ([α]) (85)

Proof. We need only systematically apply lemma 3.16 to the representation of dµ0
Λ([α]) in 3.15.1.

First, we insert the identity

cos(α(ρ)− (εΛ, µρ)Λ∗) =
1

2
ei(α(ρ)−(εΛ,µρ)Λ∗ ) +

1

2
e−i(α(ρ)−(εΛ,µρ)Λ∗ ), (86)

into (75), yielding

∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α]) =

∑
E1
γ⊂N 1

γ

∑
σ(ρ)=±1

∏
ρ∈E1

γ

1

2
K(ρ)eiσ(ρ)(α(ρ)−(εΛ,µρ)Λ∗ )

=
∑
E1
γ⊂N 1

γ

∑
σ(ρ)=±1

∏
ρ∈E1

γ

1

2
K(ρ)e−iσ(ρ)(εΛ,µρ)Λ∗

∏
xy∈Bρ

e±iρxyαxy
∏

xy∈∼Bρ

e±iρxyαxy . (87)

We may now apply lemma 3.16 to the integration over all links xy ∈ Bρ, observing that this
integration replaces αxy with αxy, the latter a function of the links adjacent to xy. But recalling
the construction of Bρ, we see the integrations of 3.16 for fixed ρ may each be done independently,
yielding

∫ ∏
ρ∈N 1

γ

δρ=0

[1 +K(ρ) cos(α(ρ)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α])

=
∑
E1
γ⊂N 1

γ

∑
σ(ρ)=±1

∏
ρ∈E1

γ

1

2
K(ρ)e−iσ(ρ)(εΛ,µρ)Λ∗

∏
xy∈Bρ

e
− β

2nxy
ρ2
xy

∫ ∏
xy∈Bρ

e∓iρxyαxy
∏

xy∈∼Bρ

e±iρxyαxy

=

∫ ∏
ρ∈N 1

γ

δρ=0

[1 + z(β, ρ) cos(α(ρ)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α]). (88)

Inserting this equality into the expression (75) proves (84) for the Wilson loop expectation
value. The calculation for the partition function (85) is identical.

In order to complete the goal of showing that the terms (76) are small for large β, we need
a bound on the behavior of K(ρ). But this bound follows directly from lemma 3.14, where we
showed

K(ρ) ≤ 3N1(supp(ρ))
∏

xy∈supp(ρ)

zρxy .

Recall the freedom we had to select suitable {zq}, subject only to the constraint
∑∞

(2π)−1q=1 z
−1
q =

1
2 . Thus now we pick
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zq = eβ0q
2

,

with β0 chosen to ensure the constraint. This gives

0 < K(ρ) ≤ 3N1(supp(ρ))
∏

xy∈supp(ρ)

eβ0|ρxy|2 ≤ eβ1‖ρ‖22

for some β1. But inserting this bound into (83) gives the desired bound on the effective activity:

0 < z(β, ρ̄) ≤ e(β1− β
216 )|ρxy|2 , (89)

which has the distinct advantage of being small for β large. In particular, for β > 216β1 the
effective activity satisfies

z(β, ρ̄) < 1,

a bound that will be crucial in the application of Jensen’s inequality in the following section.

Proof 5: Perimeter Law Bound

To summarize our progress so far, observe that 3.18 establishes the expectation of the Wilson loop
operator as a product of a perimeter-bounded exponential, and a ensemble product of perturbations
about unity, the size of these perturbations being exponentially damped for large β. In this section
we carefully apply Jensen’s inequality to establish a lower bound on the expectation value, and
apply elementary geometric estimates to establish the desired perimeter bound.

First, note that by (89), for sufficiently large β the following measure is non-negative for all
ensembles N 1

γ appearing in the decomposition (84):∏
ρ∈N 1

γ

δρ=0

[1 + z(β, ρ̄) cos(α(ρ̄))]dµ0
Λ([α]).

As a positive measure, write
〈
·
〉
N 1
γ
for expectation against the above measure, with added nor-

malization. As a positive measure, we may apply Jensen’s inequality to bound below expectations.
To this end, we will use the following lemma:

Lemma 3.19. For α, θ, z ∈ R with z sufficiently small,

1 + z cos(α− θ) ≥ (1 + z cos(α))eE(α,θ)eO(α,θ)eF (z,θ), (90)

where
E(α, θ) ≡ (1 + z cos(α))−1z cos(α)(cos(θ)− 1),

O(α, θ) = (1 + z cos(α))−1z sin(α) sin(θ),

and

F (z, θ) = −2

(
z

1− z

)2

θ2.

Moreover, E(α, θ) satisfies the following bound:

E(α, θ) ≤ 1

2

z(β, ρ̄)

1− z(β, ρ̄)
θ2. (91)

Proof. To prove (90), we begin with the identity

1+z cos(α− θ) = (1+z cos(α))
[
1+

z cos(α)(cos(θ)− 1) + z sin(α) sin(θ)

1 + z cos(α)
] ≡ (1+z cos(α))[1+g(α, θ)],

for g(α, θ) with the natural definition. Taylor’s theorem with remainder (first in α, then in θ, gives

ln(1 + g(α, θ)) ≥ g(α, θ)− 1

2

1

(1 + c)2
g(α, θ)2 (92)
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for some c ∈ [0, g(α, θ)). But a simple computation shows that for z sufficiently small, |g(α, θ)| ≤ 1
2 ,

so we get

g(α, θ)− 1

2

1

(1 + c)2
g(α, θ)2 ≥ g(α, θ)− 2g(α, θ)2.

Using the elementary identities

| sin(θ)| ≥ |θ|, |1− cos(θ)| ≤ 1

2
θ2, 2(a2 + b2) ≥ (a− b)2, (93)

we can bound g(α, θ) above as

2g(α, θ)2 ≤
( z

1− z
)2

(cos(α)
2
(cos(θ)− 1)2 + sin(α)

2
sin(θ)

2
)

≤
(

z

1− z

)2

2(1− cos(θ)) ≤ 2

(
z

1− z

)2

θ2.

Inserting this inequalities into (92) and exponentiating, we recover (90) as desired.
The proof of (91) follows an identical logic, employing the identities in (93).

The estimates in lemma 3.19 imply we may use Jensen’s inequality as follows:

∫ ∏
ρ∈N 1

γ

δρ=0

[1 + z(β, ρ̄) cos(α(ρ̄)− (εΛ, µρ)Λ∗)]dµ
0
Λ([α])

≥
∫ ∏

ρ∈N 1
γ

δρ=0

[1 + z(β, ρ̄) cos(α(ρ̄))]eE(α(ρ̄),(εΛ,µρ)Λ∗ )eO(α(ρ̄),(εΛ,µρ)Λ∗ )eF (z(β,ρ̄),(εΛ,µρ)Λ∗ )dµ0
Λ([α])

≥ ZN 1
γ

∏
ρ∈N 1

γ

δρ=0

{
e
−
〈
E(α(ρ̄),(εΛ,µρ)Λ∗ )

〉
N1
γ e
−
〈
O(α(ρ̄),(εΛ,µρ)Λ∗ )

〉
N1
γ e

〈
F (z(β,ρ̄),(εΛ,µρ)Λ∗ )

〉
N1
γ
}
. (94)

Observe O(α, θ) is odd as a function of α, so its expectation (an even function of its argument)
vanishes. Moreover, F (z, θ) is a constant with respect to the expectation, so its expectation value
follows trivially. Now define the following function:

γ(z) =
1

2

z

1− z
+ 2

z2

(1− z)2
.

Then by combining the representation of the Wilson loop expectation from lemma 3.18 with
the bound on E(α, θ) from lemma 3.19, we get

〈
W (L)

〉
Λ

(β) ≥ e−
1

2β (εΛ,εΛ)

{∑
γ∈I

λN 1
γ

∏
ρ∈N 1

γ

δρ=0

e−γ(z(β,ρ̄))(εΛ,µρ)2
Λ∗

}
, (95)

where we have defined λN 1
γ

= dγ
ZN1

γ

Ξ . Recalling the definition of Ξ in 3.18, we see∑
γ∈I

λN 1
γ

= 1. (96)

It remains to appropriately bound the terms γ(z(β, ρ̄))(εΛ, µρ)
2
Λ∗ . This is accomplished in the

following lemma, using geometric estimates:

Lemma 3.20. There exists d(β) such that for β sufficiently large,

γ(z(β, ρ̄))(εΛ, µρ)
2
Λ∗ ≤ d(β)|εΛ(p(ρ))|2, (97)

where p(ρ) ∈ P (Λ∗) satisfies the following properties:
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1. There exists b ∈ supp(ρ), b ⊂ p(ρ)

2. For ρ1, ρ2 ∈ N 1
γ distinct current densities, p(ρ1) 6= p(ρ2).

Proof. Recall that by the Poincaré lemma, we have supp(µρ) ⊂ Ωρ, where for given ρ, Ωρ is the
smallest hypercube containing supp(ρ). Thus we have

|(εΛ, µρ)Λ∗ | ≤ max
P∈Ωρ

|εΛ(P )| max
P∈P (Λ∗)

|µρ(P )||Ωρ|, (98)

with |Ωρ| denoting the cardinality of Ωρ. Given the ensemble N 1
γ 3 ρ, select a plaquette P (ρ)

such that properties (1) and (2) of the lemma hold. This is possible due to the definition of a
1-ensemble, guaranteeing non-overlapping supports of constituent densities. Thus it remains to
bound the individual terms on the right hand side of (98). It immediately follows by the Poincaré
lemma that

max
P∈P (Λ∗)

|µρ(P )| ≤ ‖ρ‖1 ≤ ‖ρ‖22,

with the last inequality following immediately from ρ taking values in 2πZ. Next, observe isoperi-
metric inequalities give a bound on the cardinality of Ωρ, i.e.

|Ωρ| ≤ dL(ρ)4,

for some constant d, where L(ρ) is the number of links in the support of ρ. A similar argument
shows

max
p∈Ωρ

|εΛ(p)| ≤ bL(ρ)4|εΛ(p(ρ))|.

Collecting the above results gives

|(εΛ, µρ)Λ∗ | ≤ CL(ρ)8|εΛ(p(ρ))|‖ρ‖22, (99)

for some constant C. Now observe that there are finitely many current densities ρ ∈ N 1
γ (and

finitely many γ), so for β sufficiently large we have z(β, ρ) ≤ 1− δ for all ρ, and for a fixed δ > 0.
From this we conclude

γ(z(β, ρ))(εΛ, µρ)
2
Λ∗ ≤ d(β)|εΛ(p(ρ))|2, (100)

as desired.

Combining the bound in (97) with the lower bound (95) on the Wilson loop expectation, we
get that for β sufficiently large,〈

W (L)
〉

Λ
(β) ≥ e−{

1
2β+d(β)}(εΛ,εΛ)Λ∗ . (101)

Recalling the perimeter behavior (70) of the inner product appearing in (101), we see that the
perimeter behavior of the Wilson loop expectation follows. This completes the proof of theorem
3.11, as all estimates hold in the Λ→ Z4 limit.
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3.5 Results on Non-abelian Gauge Theory
Discussion of Results

Thus far, we have only considered non-abelian gauge theories in the perturbative β small regime.
Proofs of the phase structure of non-abelian theories in higher dimensions turn out to be quite
difficult, and it remains unknown whether the 4-D SU(3) theory of the strong nuclear force is
confining, as is experimentally observed. However, a result due to Fröhlich [Frö79] establishes a
general relationship between confinement in G-gauge theories, and Z(G)-theories, where Z(G) is
the center of G. This relationship proves insufficient to show confinement in most interesting cases,
but the techniques offer a unified way of viewing confinement in general Lie group theories as a
product of confinement in subgroups of the center. In this section we convey the proof in [Frö79],
which is simplified by excluding the coupling of Higgs fields. However, the general proof is a simple
extension of what is presented below.

Our major goal is the following theorem:

Theorem 3.21. Given a compact Lie group G with center Z(G), let χq be an irreducible character
determining the action of the Wilson loop, and χ the irreducible character used in the definition
of the Yang–Mills action. Suppose χq is non-trivial on Z(G). Then if the area law holds for the
theory with gauge group Zχ ≡ χ(Z(G)), it additionally holds for the full G-lattice theory.

Recall that one describes condition χq being non-trivial on Z(G) as having “fractionally charged”
quarks. The above theorem is of intrinsic interest, but the following result will allow us to approach
confinement in Z(G)-theories by related questions in classical spin systems of lower dimensions
(such results are called “dimensional reduction" results). These relationships, reflected in the
following theorem, will be useful in applications:

Theorem 3.22. Under the same assumptions as in theorem 3.21, if exponential clustering of spins
obtains in a ν − 1 dimensional generalized Ising model with spins in Zχ, then the area law holds
in the ν dimensional Zχ-gauge theory.

Using results on the generalized Ising models and theorem 3.22 as input, the ultimate interest
will lie in the following two corollaries, establishing general confinement for low dimensional non-
abelian lattice gauge theory:

Corollary 3.22.1. Given a compact Lie group G, the two dimensional lattice theory corresponding
to G confines fractionally charged quarks for all β.

Corollary 3.22.2. In three dimensions, the U(n) gauge theory with n arbitrary confines fraction-
ally charged quarks for all β.

Proof

Proof of Theorem 3.21. We first recall definitions of the lattice gauge measure under consideration.
Let χq be the irreducible character associated with the quarks, such that χq(τ) 6≡ 1 for τ ∈ Z(G).
Additionally, let χ be another irreducible character on G with which we define the Wilson action:

SW ({gxy}) = −β
∑

P∈P (Λ)

Re(Wg(P )), (102)

and associated probability measure

dµΛ({gxy}, β) =
1

ZΛ
e−SW ({gxy})

∏
xy∈B(Λ)

dσxy, (103)

where we recall that W is the Wilson loop, i.e. the ordered product of link variables comprising
the plaquette P . To simplify notation, in this section we will write gC ≡

∏
xy∈C gxy, given a

configuration {gxy} on the lattice and rectangular loop C ⊂ Λ. Moreover, recall the notation dθC
for the sum of angular coordinates along a curve C, in the complex representation g = eiθ.

Now we observe some algebraic aspects of χ and χq. As characters on Z(G), both χ, χq

are irreducible characters on an abelian group. Thus the representations corresponding to the
characters are 1-dimensional when restricted to Z(G). But this implies the representation Uχ,
restricted to Z(G), satisfies
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Uχ(g) = χ(g) ∈ C,

i.e. the representation acts via complex multiplication by the character value (similarly for χq).
Moreover, G compact and Z(G) a closed subgroup together give that the image χ(Z(G)) is a
compact subgroup of C, and thus we have χ(Z(G)) ⊂ S1. This allows us to parameterize χ(Z(G))
in exponential form eiθ, θ ∈ [−π, π), and to write the Haar measure on χ(Z(G)) as dλ(θ). As
irreducible representations of subgroups of S1, Without loss of generality there exists integer q
such that we can write

χq(τ) = eiqθ, χ(τ) = eiθ, (104)

for some θ depending on τ . The following identites will be useful, following from τ a central element
of the group:

χq((gτ)C) = χq(gCτC) = χq(gC)eiqdθC (105)

χ((gτ)C) = χ(gCτC) = χ(gC)eidθC (106)

Now we turn to the computation of the Wilson loop expectation value, where we represent the
latter using the character χq.〈

χq(gC)
〉
(β) =

1

ZΛ

∫
χq(gC)e−SW ({gxy})

∏
xy∈B(Λ)

dσxy

=
1

ZΛ

∫ ∏
xy∈B(Λ)

dσxy

∫ ∏
xy∈B(Λ)

dλxy(θ)χq((τg)C)e−SW ({τgxy})

=
1

ZΛ

∫ ∏
xy∈B(Λ)

dσxyχ
q(gC)

∫
eiqdθCe−SW ({τgxy})

∏
xy∈B(Λ)

dλxy(θ). (107)

Writing out SW ({τgxy}), we see

SW ({τgxy}) = −βRe
∑

P∈P (Λ)

χ(gP τP )

= −βRe
∑

P∈P (Λ)

eidθPχ(gP ).

But we may expand the complex exponential, giving

Re
(
eidθPχ(gP )

)
= Re

(
(cos(dθP ) + i sin(dθP ))(Reχ(gP ) + i Imχ(gP ))

)
= cos(dθP ) Reχ(gP )− sin(dθP ) Imχ(gP )

≡ cos(dθP )JP − cos
(
dθP +

π

2

)
KP . (108)

If one defines the probability measure

dµJ,K ≡
1

Z ′(g)
eβ

∑
P∈P (Λ) cos(dθP )JP−cos(dθP+π

2 )KP
∏

xy∈B(Λ)

dλxy(θ) ≡

eβ
∑
P∈P (Λ) cos(dθP )JP−cos(dθP+π

2 )KP ∏
xy∈B(Λ) dλxy(θ)∫

eβ
∑
P∈P (Λ) cos(dθP )JP+cos(dθP+π

2 )KP ∏
xy∈B(Λ) dλxy(θ)

(109)

with expectation denoted
〈
·
〉
J,K

, we may rewrite (107) as

〈
χq(gC)

〉
(β) =

1

ZΛ

∫ ∏
xy∈B(Λ)

dσxyχ
q(gC)Z ′(g)

〈
eiqdθC

〉
J,K

. (110)

Our goal is to apply a correlation inequality to appropriately bound the expectation
〈
·
〉
J,K

,
which is a measure on ZΛ

χ with couplings KP , JP a function of an ambient configuration {gxy}.
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Correlation inequalities are useful for these types of uniform bounds, in which we aim to dominate
a theory with fluctuating coupling constants by one with specified constants.

Before stating the desired inequality, originally proven in [MMSP78], we first define the gauge
theory on Zχ. For a configuration g : B(Λ)→ Zχ, define an action

A(g) ≡ −β
∑

P∈P (Λ)

cos(dθP ),

and associated gauge theory measure

dµ′Λ(β′) =
1

Z ′
e−A

∏
xy∈B(Λ)

dλxy(θ) (111)

with expectation denoted
〈
·
〉
Zχ

.

Lemma 3.23. For arbitrary α ∈ R, q ∈ Z, assuming

β[|JP |+ |KP |] ≤ β′ (112)

for all P ∈ P (Λ), we have

±
〈

cos(qdθC + α)
〉
J,K
≤
〈

cos(qdθC)
〉
Zχ
. (113)

Proof. See [MMSP78].

If d is the dimension of the representation corresponding under which quarks transform, then
since χq(1) = d, and |χq(g)| ≤ d for all g, we conclude that (112) is satisfied if 2dβ ≤ β′. We
therefore conclude

|eiqdθC (β)| ≤ 2
〈

cos(qdθC)
〉
Zχ

(2dβ). (114)

Inserting (114) into (110), and using the bound on |χq(g)|, we conclude

|
〈
χq(gC)

〉
(β)| ≤ 2d

〈
cos(qdθC)

〉
Zχ
. (115)

For confining Zχ-theory, the right hand side of (115) is upper bounded by an area law. Thus
the desired bound follows for the full gauge theory, proving the theorem.

We do not discuss here the proof of 3.22, but interested readers are referred to [Frö79] and
the references therein. Assuming the two theorems, corollary 3.22.1 follows from the observation
that the Zχ generalized Ising model in 1 dimension has exponential clustering, a fact that may be
obtained through explicit analysis of the latter spin model.

Corollary 3.22.2 follows from the identification of Z(U(n)) with a U(1) subgroup, and the
application of the well known result that U(1) is confining in 3-D for all β (see [GM81]).

Note it does not follow from 3.21that confinement obtains in SU(n) gauge theories in 3-D and
4-D, as Z(SU(n)) = Zn is known to have phases with non-confining behavior in those dimensions
[FS82].
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