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J. Bitz, J. Echevarŕıa Cuesta, and E. Kilgore

August 31, 2018

Abstract

We extend to a two-dimensional case the work of Peluse [1] concerning three-term
polynomial progressions in finite fields. Specifically, let A ⊂ F2

p and P,Q : F2
p → F2

p be
given by two-variate polynomials with single-variate highest-degree terms. We prove
that any such A containing no non-trivial progressions of the form x, x+ P (µ, ν), x+

Q(µ, ν) is of size O(p2−
1
24 ). We also explore cases when P and Q are instead single-

variate rational functions lying in Fp(x), and achieve an exponential bound conditional
on a conjecture requiring sophisticated algebraic geometry to verify.

1 Introduction

Intuitively, if n people attending a conference start befriending each other, eventually there
must be at least three people that are friends with each other, even before everyone has
become friends. The Mantel–Turán Theorem proves this intuition by stating that any graph
on n vertices with at least bn2/4c+ 1 edges must contain a triangle.

In the same vein, a central question in combinatorial number theory is to wonder what
conditions on a subset of the integers would guarantee that it contains an arithmetic pro-
gression. Just as with the friendships above, it does not seem irrational to conjecture, as
Erdős and Turan did in 1936, that all we need is for the subset to be big enough. To be
able to talk about the size of a subset of the integers in any precise way, however, we need
the following definition.

Definition 1.1. The upper density of a set A ⊂ Z is defined as

lim sup
N→∞

|A ∩ [1, N ]|
N

.

Remark 1.2. The lower density can be defined in an analogous fashion. We note the need
to use the limit superior in the definition above as opposed to a simple limit because lower
and upper densities do not always agree (for instance, the set of numbers whose decimal
expansion begins with the digit 1 has lower density 1/9 and upper density 5/9). When
upper and lower densities agree, the subset is said to have asymptotic density.

Erdős and Turan hence conjectured that any set of integers with positive upper density
contains arbitrarily long arithmetic progressions, which started a cascade of results through-
out the 20th century. In 1953, Roth proved the conjecture for progressions of lengh three
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using analytic methods. Sixteen years later Szemerédi extended the result to progressions
of length four using a sophisticated combinatorial argument. This was only a preview of
1975, however, the year in which Szemerédi resolved Erdős and Turan’s 1936 conjecture.
Although these are some highlights, there were many other intermediary results. In partic-
ular, analogous questions were raised about polynomial progressions. For instance, in 1998,
Bergelson and Leibman showed that, if P,Q ∈ Z[y] with P (0) = Q(0) = 0, then any sub-
set of the integers with positive upper density contains a nontrivial polynomial progression
x, x+ P (y), x+Q(y).

At the turn of the 21st century, Green and Tao showed that the sequence of prime
numbers contains arbitrarily long arithmeic progressions. Since the primes have asymptotic
density zero, Erdős and Turan’s conjecture did not apply directly. Nevertheless, they did
use Szemerédi’s Theorem, along with a transference principle that extends the theorem to
subsets of the integers which are pseudorandom in a sense that they made precise. Therefore,
the question still remains of whether arbitrarily long arithmetic progressions exist in the
primes simply because there is enough of them or because of their pseudorandomness. In
trying to answer questions along this same line, the attention has hence recently been
redirected towards finite subsets of the integers. Indeed, proving bounds here is stronger
than in the asymptotics and might help provide a proof of Green and Tao’s theorem that
only uses density arguments. Roth’s original work actually showed that

|A ∩ |1, N ]|
N

= Ω

(
1

log logN

)
is sufficient to guarantee the existence of a three-term progression in A. Since then, the best
bound shown to suffice has been found by Bloom in 2016, namely,

|A ∩ |1, N ]|
N

= Ω

(
(log logN)4

logN

)
.

In parallel, people have started to ask similar questions about polynomial progressions.
However, these sort of questions are extremely hard in the integers (for instance, if a subset
A ⊆ [1, N ] contains a sequence x, x+y, x+y2, then y ≤

√
N , which greatly limits the values

that y can take on). People have hence begun to study progressions in finite fields instead.
The first ones to provide quantitative bounds for the polynomial Szemerédi Theorem in
finite fields were Bourgain and Chang. In 2017, they showed that if A is a subset of Fp
which does not contain any nontrivial progressions x, x+ y, x+ y2, then

|A| = O(p14/15).

At the end of their paper, the authors instigated further research into the topic by asking
three questions. The first one asked whether similar bounds could be found for general
progressions of the form x, x + P (y), x + Q(y) where P,Q ∈ Z[y] are linearly independent
and P (0) = Q(0) = 0. This was answered in the affirmative by Peluse:

Theorem 1.3 (Peluse). Let P,Q ∈ Z[y] be two linearly independent polynomials with
P (0) = Q(0) = 0. There exists a constant cP,Q > 0 depending only on P and Q such
that if the characteristic of Fq is at least cP,Q, then any A ⊂ Fq containing no nontrivial
progression
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x, x+ P (y), x+Q(y), y 6= 0,

satisfies

|A| = O(q1−1/24).

Under Peluse’s guidance, our objective was to answer another of Bourgain and Chang’s
questions which asked about similar progressions with rational functions instead. Trying to
adapt Peluse’s argument to this more general case, we decided instead to tackle the easier
question of proving that any subset of Fp that lacks the configuration

x, x+ y, x+
1

y2

has size O(p1−c) for some c > 0. As described below, we got very far in this direction, even-
tually reducing our proof to a bound on a sum of products of sums that are hybrids between
Salié and hyper-Kloosterman sums. Unfortunately, we realized that finding a bound on
such object was out of our reach, so we opted to investigate what non-trivial generalizations
we could make of Peluse’s argument in the 2-dimensional case. This report hence explores
the current work that we have done in that direction, as well as an account of some of the
key material that we have had to learn along the way to tackle these questions. The main
theorem that we want to prove is hence

Theorem 1.4. Let P,Q : F2
p → F2

p be given by P = (P1, P2) and Q = (Q1, Q2) where, for
each i = 1, 2, the polynomials Pi, Qi ∈ Fp[µ, ν] are linearly independent, have single-variate
highest-degree terms with different degrees for a given i, where both Pi, Qi have the same
variable in their leading term for fixed i, and Pi(0) = Qi(0) = 0. There exists a constant
cP,Q > 0 depending only on P and Q such that if p ≥ cP,Q, then any A ⊂ F2

p containing no
nontrivial progressions of the form

x, x+ P (µ, ν), x+Q(µ, ν), µ, ν 6= 0

satisfies

|A| = O
(
p2−

1
24

)
.

2 Discrete Fourier Analysis

In order to tackle these problems we first need to develop a few tools to help us work with
the objects we will consider. The first of these is Fourier analysis over finite fields. In order
to understand this we first define an additive character on Fp.

Definition 2.1. Let F be a field. An additive character of F is a group homomorphism
from the additive group of F to the multiplicative group C×. The set of additive characters
of F is labeled F̂.

Of course, this is a special case of a character, which can be defined on any group.

Definition 2.2. Let G be a group. A character of G is a homomorphism G→ C×.
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To help us in describing these explicitly we will introduce a bit of notation. For any
prime p, let

ep(x) := e
2πix
p .

Since Fp is generated by any non-zero element we can see that

Lemma 2.3. The additive characters of Fp are exactly the functions

χn(x) = ep(nx), where n ∈ {0, . . . , p− 1}.

Proof. The additive group of Fp is just the cyclic group Z/pZ. Any non-zero element in this
group has order p, so any additive character χ : Fp → C× must send all elements of Fp to
p-th roots of unity in C. Furthermore, such a homomorphism is entirely determined by the
value it takes on 1 ∈ Fp. Therefore, there is exactly one such homomorphism for every p-th
root of unity, as desired.

In fact, we may extend this definition to direct products of fields (since these remain
additive groups) and we have the secondary result:

Corollary 2.3.1. The additive characters over Fnp are the functions

χm1,...,mn(x) = ep

 n∑
j=1

mjxj

 , where mj ∈ 0, . . . , p− 1, and x = (x1, . . . , xn).

For the sake of brevity, we have chosen not to include any of the proofs for the results
on Fourier analysis that follow, but rather simply state them as facts. For proofs and more
detailed discussion see [2]. For convenience, we will introduce

Ex∈Sf(x) =
1

|S|
∑
x∈S

f(x),

where S is some set and f : S → C. We can obviously interpret this as the expected value
of f over the set S. We will also denote by V (Fnp ;C) the set of complex valued functions on
Fnp .

Remark 2.4. The space V (Fnp ;C) defined above is a vector space. Moreover, it is an inner
product space with inner product

〈f, g〉 = Ex∈Fnp f(x)g(x).

With this we are ready to begin looking at our Fourier transform. The most important
result is

Theorem 2.5. The additive characters χ ∈ F̂np form an orthonormal basis of V (Fnp ;C)
under the inner product defined above. We denote the map from characters χm1,...,mn to

their basis coefficients corresponding to a particular f by f̂ : F̂np → C.

In particular, this immediately gives us

Corollary 2.5.1 (Fourier Inversion). For any f ∈ V (Fnp ;C) we can write

f(x) =
∑
χ∈F̂np

f̂(χ)χ(x).
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So finally we arrive at

Definition 2.6. Let f ∈ V (Fnp ;C) a function. The Fourier transform of f is defined

as the map f̂ : F̂np → C mapping a character χ ∈ F̂np to the coefficient of χ in the basis
expansion above.

From this definition, and our earlier result, we immediately obtain

Lemma 2.7. The Fourier transform is given by

f̂(χ) = Ex∈Fnp f(x)χ(x),

where χ denotes the complex conjugate of χ.

Having defined the Fourier transform, we also will need a few basic results for later on,
which will look rather familiar to those who are acquainted with Fourier transforms in an
analysis context

Theorem 2.8 (Plancherel). For any f, g ∈ V (Fnp ;C) we have

Ex∈Fnp f(x)g(x) =
∑
χ∈F̂np

f̂(χ)ĝ(χ).

which gives us

Corollary 2.8.1 (Parseval). If f ∈ V (Fnp ;C) then

‖f‖2 := Ex∈Fnp f(x)f(x) =
∑
χ∈F̂np

|f̂(χ)|2.

3 Progress in Rational Case

In this section we seek to record an overview of the advances that we made in the case
of progressions of the form x, x + y, x + 1

y2 in Fp. For any f1, f2 : Fp → C such that

‖f1‖, ‖f2‖ ≤ 1, define

F (x) =
1

p

∑
y∈F∗p

f1(x+ y)f2

(
x+

1

y2

)
and let E[f1] := Ex∈Fpf1. We want to show that

‖F − E[f1] · E[f2]‖ ≤ cp−δ‖f1‖ · ‖f2‖
for some δ > 0. Expanding f1, f2 in Fourier sums gives

F (x) =
1

p

∑
y∈F∗p

∑
n1,n2∈Fp

f̂1(n1)f̂2(n2)ep(n1(x+ y))ep

(
n2

(
x+

1

y2

))

=
1

p

∑
y∈F∗p

∑
n1,n2∈Fp

f̂1(n1)f̂2(n2)ep

(
n1y + n2

1

y2

)
ep((n1 + n2)x)

=
∑

n1,n2∈Fp

f̂1(n1)f̂2(n2)cn1,n2ep((n1 + n2)x)
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with

cn1,n2 =
1

p

∑
y∈F∗p

ep

(
n1y + n2

1

y2

)
=


(p− 1)/p if n1 = n2 = 0

−1/p if n1 6= 0, n2 = 0
1

p

∑
y∈F∗p

ep

(
n1y + n2

1

y2

)
if n2 6= 0.

It follows that

F (x) =
p− 1

p
f̂1(0)f̂2(0)− 1

p

∑
n1∈F∗p

f̂1(n1)f̂2(0)ep(n1x) +
∑
n1∈Fp

∑
n2∈F∗p

f̂1(n1)f̂2(n2)cn1,n2ep((n1 + n2)x)

= f̂1(0)f̂2(0)− 1

p

∑
n1∈Fp

f̂1(n1)f̂2(0)ep(n1x) +
∑
n1∈Fp

∑
n2∈F∗p

f̂1(n1)f̂2(n2)cn1,n2ep((n1 + n2)x)

= E[f1] · E[f2]− 1

p
E[f2]f1(x) +

∑
n1∈Fp

∑
n2∈F∗p

f̂1(n1)f̂2(n2)cn1,n2
ep((n1 + n2)x)

= E[f1] · E[f2]− 1

p
E[f2]f1(x) +

∑
s∈Fp

ep(sx)
∑
n∈F∗p

f̂1(s− n)f̂2(n)cs−n,n

and hence

F (x)− E[f1] · E[f2] = −1

p
E[f2]f1(x) +

∑
s∈Fp

ep(sx)
∑
n∈F∗p

f̂1(s− n)f̂2(n)cs−n,n.

Since we have the restrictions ‖f1‖, ‖f2‖ ≤ 1, in the asymptotics, as p grows, we obtain

‖F (x)− E[f1] · E[f2]‖ = O

∥∥∥∥∥∥
∑
s∈Fp

ep(sx)
∑
n∈F∗p

f̂1(s− n)f̂2(n)cs−n,n

∥∥∥∥∥∥


and by Parseval,

‖F (x)− E[f1] · E[f2]‖ = O

 1
√
p

∑
s∈Fp

∣∣∣∣∣∣
∑
n∈Fp

f̂1(s− n)f̂2(n)K(s− n, n)

∣∣∣∣∣∣
2


1/2


with K(x, y) :=
√
pcx,y if y 6= 0 and 0 otherwise. Using quadratic Gauss sum evaluation,

we notice that we can actually write

K(x, y) =


1
√
p

∑
z∈F∗p

ep

(
xz + y

1

z2

)
if x 6= 0, y 6= 0

σp −
1
√
p

if x = 0, y 6= 0

0 if y = 0
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where

σp =

{
1 if p ≡ 1 (mod 4)

i if p ≡ 3 (mod 4).

Now let x, y 6= 0. By the change of variables z 7→ z/x we have

K(x, y) =
1
√
p

∑
z∈F∗p

ep

(
z + a

1

z2

)
,

where a = x2

y . We notice that this is very close to a Kloosterman sum. Moreover, by making

the change of variables z 7→ 2z/x instead, we can also apply Theorem 2 of [3] to write

K(x, y) =
1
√
p

∑
b,t∈F∗p

(
b

p

)
ep

(
b+ t+ a

1

bt

)
,

which we recognize as some sort of hybrid between a Salié sum and the high-dimensional
generalization of Kloosterman sums, the hyper-Kloosterman sum (note that we have intro-
duced the Legendre symbol). Going back to the change z 7→ z/x, since a 6= 0, Theorem 3
of [4] thus tells us that

√
p
∑
z∈F∗p

ep

(
z + a

1

z2

)
= O(p).

Combining this result with our previous observations, we thus have

K(x, y) = O(1)

for all x, y ∈ Fp.
Having shown this, we thus find ourselves in the same territory as Bourgain and Chang’s

argument. As they show in [5], we have

1
√
p

∑
s∈Fp

∣∣∣∣∣∣
∑
n∈Fp

f̂1(s− n)f̂2(n)K(s− n, n)

∣∣∣∣∣∣
2


1/2

= O(Ω1/5‖f1‖ · ‖f2‖)

where

Ω2 =
∑

x,y,s,s′,u

K(x, s− x)K(x+ u, s− x)K(x, s′ − x)K(x+ u, s′ − x)

×K(y, s− y)K(y + u, s− y)K(y, s′ − y)K(s+ u, s′ − y).

When studying progressions of the form x, x+ y, x+ y2, their method is very specific to
their case, so we cannot recover anything. On the other hand, when working on progressions
of the form x, x+ y, x+ 1

y , Bourgain and Chang rely on results from [6] to bound Ω. They
are able to do this because the equivalent of our K function in their proof is a Kloosterman
sum, which has been widely studied. Unfortunately, our K function as defined above is not
quite a Kloosterman sum, so we cannot invoke Corollary 3.3 in [6]. On the other hand, if
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we were able to show that the function K : F2
p → C satisfies the requirements of Corollary

1.6 in [6] (i.e., that it is a trace function modulo p of a bountiful sheaf), we would be done.
Unfortunately, however, since the material was out of our reach, we had to stop at this stage
of the proof, which hence remains incomplete.

4 Background on Varieties and their Dimension

Our approach to the problem of finding polynomial progressions relies heavily on some
advanced machinery from algebraic geometry that bounds the size of sets given by the zero
locus of sets of polynomials. We will not need to completely understand these results to
apply them, but the one unavoidable notion is that of the dimension of a variety. The
exposition below is self-contained but admittedly short — for more detail, see Chapter 9
of [7]. We begin with a definition.

Definition 4.1. Let F be a field, and S = {fα} a collection of polynomials in F[X1, . . . , Xn].
The variety corresponding to S is the subset

V (S) = {x ∈ Fn : fα(x) = 0 for all α}.

Note that, if some x ∈ V is a zero of all the fα, it is also a zero of gfα + hfβ for any g
and h also in F[X1, . . . , Xn]. Therefore, the set of all polynomials vanishing on V is in fact
an ideal.

This correspondence between ideals and subsets of affine space is at the heart of alge-
braic geometry - it allows us to answer geometric problems using commutative algebra, and
algebraic problems using geometry. In light of this, if V ⊂ Fn is a variety, we will let I(V )
denote the ideal given by the set of all polynomials which vanish on V . Likewise, for some
ideal I ⊂ F [X1, . . . , Xn], we let V (I) denote the variety given by the set of points on which
all polynomials in I vanish.

Remark 4.2. Beware that the operation of taking the variety corresponding to an ideal and
the ideal corresponding to a variety are not always inverses. For example, let J = 〈x2〉 ⊂
R[x, y]. Then, V (J) is the y-axis in R2, but I(V (J)) = 〈x〉.

However, by Hilbert’s Nullstellensatz, for any polynomial f vanishing on V (J), we have
fk ∈ I for some k ∈ N. Therefore, I(V (J)) =

√
J , and the statement I(V (J)) = J if J is a

radical ideal.

Varieties become useful to our argument because we may take F to be a finite field Fp,
and express a set of interesting points in Fnp as the zeros of certain polynomials generating
an ideal I. Our goal will be to determine |V (I)|, which is very difficult to compute directly.
Instead, we will assign a notion of dimension to V (I), and then utilize already-proven results
which link the dimension of a variety over a finite field to the number of points it contains.

The road to a rigorous definition of the dimension of a variety is long and torturous. To
begin, we set up some notation. For the rest of this section, F is a field and all polynomials
lie in the ring F [X1, . . . , Xn]. For some α ∈ Zn≥0, we set

Xα :=
∏

Xαi
i , |α| :=

∑
αi.

Such an α is called a multi-index. We may also define a partial order ≤ on the set Zn≥0
of all multi-indices, such that α ≤ β when αi ≤ βi for all i ≤ n. The next definition is
important enough that we give it its own call-out:
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Definition 4.3. A monomial is an element in F[X1, . . . , Xn] of the form Xα. An ideal I
is said to be a monomial ideal if it is generated by monomials.

Example 4.4. 1) I = 〈x2, y〉 ⊂ R[x, y] is a monomial ideal.

2) J = 〈x2 − y, y〉 is a monomial ideal, because it may be written as J = 〈x2, y〉.

3) K = 〈x2−y, y+x〉 is not a monomial ideal, because it cannot be written with a generating
set of monomials.

Because of this especially nice description, monomial ideals are particularly easy to work
with. Our quality of life is improved even more by the following theorem.

Theorem 4.5 (Hilbert’s Basis Theorem). Let R be a Noetherian domain. Then, R[X] is
also Noetherian.

Repeated application of this theorem shows that F[X1, . . . , Xn] is Noetherian, and hence
all of its ideals are finitely generated (not just the monomial ones). Therefore, we may write

any monomial ideal as being generated by a finite number of terms 〈Xα(1)

, . . . , Xα(m)〉. Given
this, we would now like to characterize V (I) for monomial ideals.

Proposition 4.6. Let I be a monomial ideal. For any S ⊂ [1, . . . , n], define

HS := {z ∈ Fn : zi = 0 for all i ∈ S},

the subspace of all points in Fn where all coordinates lying in S are 0. Then, for some
S1, . . . , Sk all subsets of [1, . . . , n], we have

V (I) =

k⋃
i=0

HSi .

Proof. Suppose that some monomial ideal I has a single generator, i.e. I = 〈Xα〉. Then,
we have

V (I) =
⋃
i≤n
αi>0

Hi. (1)

In other words, Xα will vanish so long as any one of the terms appearing with non-zero
degree are zero. Now, if I has m generating monomials, V (I) will be an intersection of
terms resembling Equation 1, i.e.

V (I) =

m⋂
i=0

⋃
j∈Si

Hj , (2)

where Si is the set of all variable indices appearing in generator i. Distributing the inter-
sections over the unions and noting that HS ∩HT = HS∩T gives us the desired result.

So, we may express the variety corresponding to a monomial ideal as a union of subspaces
HSi , each with dimension (in the standard linear-algebraic sense) n − |Si|. We may then
make our first partial definition of the dimension of a variety in the case of monomial ideals.
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Definition 4.7. Let I be a monomial ideal. Then, with

V (I) =

k⋃
i=0

HSi ,

the dimension of I is

dim I := max
i
{dimHSi} = n−min

i
{|Si|}.

The following proposition describes an equivalent way of defining dimension in terms of
the monomials not appearing in a given monomial ideal. This formulation is marginally less
concrete, but turns out to have nicer theoretical properties that we will make use of shortly.

Definition 4.8. Let I be a monomial ideal. The affine Hilbert function HFI(s) is
defined as the number of monomial terms of total degree ≤ s not contained in I.

Proposition 4.9. For any monomial ideal I, there exists a constant cI such that, for all
s > cI , HFI(s) is a polynomial in s of degree dim I.

In other words, the dimension of monomial ideal corresponds to the growth rate of that
ideals complement as we increase the maximum allowed degree of terms.

We would like to extend the notion of affine Hilbert functions to general ideals. The way
of doing this is as follows.

Definition 4.10. Let I be an ideal. Let F [X1, . . . , Xn]≤s be the finite dimensional F-vector
space of polynomials with degree ≤ s, and let I≤s be the F-vector space of polynomials in
I of degree ≤ s. The affine Hilbert function of I is defined as

HFI := dimF[X1, . . . , Xn]≤s/Is,

where the above is a vector space quotient.

Note that, if F[X1, . . . , Xn]≤s has a basis given by all monomials of total degree ≤ s. If
I is a monomial ideal, the above quotient simply removes those monomials in I from this
basis, and our definition here agrees with the one specifically given for monomial ideals. It
will turn out that HFI(s) is, for large enough s, always a polynomial for large enough s.

To arrive at this result, however, we first need to deal with a small issue that appears
in dealing with multi-variate polynomial - ambiguity in determining a specific leading term.
In the single-variate case, this is of course the term of highest degree. However, in order to
choose a leading term in an expression like xy2 + x2y, we require the concept of a graded
order.

Definition 4.11. Let F be a field and n ∈ N. The graded lexicographic order with
y1 > · · · > yn is the total order on monomials in F[y1, . . . , yn] such that yα > yβ if

1) |α| > |β|, or

2) |α| = |β| and αk > βk, where k is the smallest index i for which αi 6= βi.

Example 4.12. If we order three variables y1 > y2 > y3, then we have y1y2y
2
3 < y1y

2
2y3.

Definition 4.13. Let P ∈ F[X1, . . . , Xn]. The leading term of P , denoted LT(p), is the
monomial term in P which is largest in the graded lexicographic order described above.
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Now, we may provide the final link that get us to a notion of dimension for general
ideals.

Definition 4.14. Let I be an ideal. The leading term ideal LT (I) is the ideal generated
by leading terms in I, i.e.

LT (I) := 〈{LT (f) : f ∈ I}〉.

Proposition 4.15. Let F be an algebraically closed field. Then, for any ideal I, we have
HFI(s) = HFLT (I)(s) for large enough s.

The above proposition is significant because LT (I) is a monomial ideal. We may then
apply Proposition 4.9 to see that see that HFI(s) is also a polynomial for large s. We may
then finally define the dimension of a general ideal.

Definition 4.16. Let I be an ideal. The dimension of I is the degree of HFI(s), which
is a polynomial for all s large enough.

In this paper, we will be interested in showing that an ideal I ⊂ F[X1, . . . , Xn] has
dimension zero. According to the above definition, it is sufficient to show that LT (I)
contains terms of the form Xki

i for each i. Then, HFLT (I)(s) must be constant for any s
large, since the set of monomials not in LT (I) has bounded total degree. Therefore, the
degree of HFLT (I)(s) as a polynomial must be zero, and dim I = degHFI(s) = 0 as well.

5 Finding Progressions

The problem we are interested in answering is how big (relative to p2) a set A ⊂ F2
p must

be before we must find a progression of the form x, x + P (µ, ν), x + Q(µ, ν) for two fixed
polynomial functions P,Q : F2

p → F2
p of the form

P (µ, ν) = (P1(µ, ν), P2(µ, ν)), Q(µ, ν) = (Q1(µ, ν), Q2(µ, ν))

and x = (x, y) ∈ A ⊂ F2
p, with P (0, 0) = Q(0, 0) = 0, each Pi, Qi linearly independent. In

particular we are interested in the asymptotics of this size as p gets large.
This seems a bit difficult to work with, so we will take a functional approach which has

become common in additive combinatorics for dealing with this sort of problem. Namely,
we will try to understand the sum

ΛP,Q(f, g, h) := Ex,y,µ,ν∈Fpf(x, y)g(x+ P1(µ, ν), y + P2(µ, ν))h(x+Q1(µ, ν), y +Q2(µ, ν))

for f, g, h ∈ V (F2
p;C).

Remark 5.1. We are particularly interested in this sum, as we have

ΛP,Q(1A, 1A, 1A) =
1

p4
∣∣{((x, y), (x+ P1(µ, ν), y + P2(µ, ν)), (x+Q1(µ, ν), y +Q2(µ, ν))) ∈ A3

}∣∣ ,
since the product inside the expectation operator is 1 if and only if the corresponding
sequence lies in A×A×A. Therefore, understanding the behavior of ΛP,Q will allows us to
bound the number of progressions of the form we are interested in.
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Remark 5.2. In fact, we can reduce this problem a bit further by comparing this ΛP,Q to
the frequency with which we would expect a random progression to lie in A × A × A. In

particular this is given simply by the cube of the density of A in F2
p: α

3 :=
(
|A|
p2

)3
.

It is not too hard to see that bounding this difference well enough will give us some
guaranteed number of non-trivial progressions, when α (hence the size of A) is big enough.

(i.e. to get an interesting result we must only show that for some |A|p2 = α = o(1) the

quantity p4ΛP,Q(1A, 1A, 1A) > |A| to guarantee some non-trivial progressions, since we have
only |A| trivial progressions of the form (x, x, x). For a detailed proof of this see the proof
of corollary 1.2 in [5].)

To perform this comparison we will introduce one last bit of notation, define:

ΛP (f, g) = Ex,y,µ,ν∈Fpf(x, y)g(x+ P1(µ, ν), y + P2(µ, ν))

Then we have

Lemma 5.3. We claim that

|ΛP,Q(1A, 1A, 1A)− α3| ≤ |ΛP,Q(1A, 1A, 1A − α)|+ α|ΛP (1A, 1A − α)|

.

Proof. We obtain this by noting that

|ΛP,Q(1A, 1A, 1A)− α3| = |ΛP,Q(1A, 1A, 1A − α) + ΛP,Q(1A, 1A, α)− α3|
= |ΛP,Q(1A, 1A, 1A − α) + ΛP,Q(1A, 1A − α, α) + ΛP,Q(1A, α, α)− α3|
= |ΛP,Q(1A, 1A, 1A − α) + αΛP (1A, 1A − α)|
≤ |ΛP,Q(1A, 1A, 1A − α)|+ α|ΛP (1A, 1A − α)|.

So we have reduced our problem to bounding these two sums sufficiently well.

6 Bounding ΛP

We will begin by bounding the simpler of these two terms, ΛP .
Our goal is to bound this sum and to do so we will apply finite Fourier analysis, and the

Weil bound.

Theorem 6.1 (Weil). Let χ be an additive character on a finite field Fq (of characteristic
p), and P ∈ Fq[x] a polynomial. Then we have∑

x∈Fq

χ(P (x))�deg(P )
√
p.

To apply this, we will show the following relation:

Lemma 6.2.

ΛP (f, g) =
∑

χ1,χ2∈F̂2
p

f̂(χ2)ĝ(χ1)[Ex,y∈Fpχ1(x, y)χ2(x, y)][Eµ,ν∈Fpχ1(P1(µ, ν), P2(µ, ν))]

12



Proof. We use Fourier inversion.

ΛP (f, g) =
1

p4

∑
x,y,µ,ν∈Fp

f(x, y)g(x+ P1(µ, ν), y + P2(µ, ν))

=
1

p4

∑
x,y,µ,ν∈Fp

f(x)
∑
χ1∈F̂2

p

ĝ(χ1)χ1(x+ P1(µ, ν), y + P2(µ, ν))

=
1

p4

∑
x,y,µ,ν∈Fp

∑
χ1,χ2∈F̂2

p

f̂(χ2)ĝ(χ1)χ1(x, y)χ2(x, y)χ1(P1(µ, ν), P2(µ, ν))

=
∑

χ1,χ2∈F̂2
p

f̂(χ2)ĝ(χ1)[Ex,y∈Fpχ1(x, y)χ2(x, y)][Eµ,ν∈Fpχ1(P1(µ, ν), P2(µ, ν))]

since χ an additive character.

In order for the sum over x, y to be non-zero, by orthogonality of characters, we must
have χ1 = χ2, and in this case the sum is 1. Thus we obtain∑

χ∈F̂2
p

f̂(χ)ĝ(χ)[Eµ,ν∈Fpχ(P1(µ, ν), P2(µ, ν))]

We may apply the Weil bound to the sum over ν with µ fixed, and the trivial bound
(|eix| = 1) to obtain:

ΛP (f, g)�P1

1
√
p

∑
χ∈F̂2

p

f̂(χ)ĝ(χ) =
1
√
p

∑
χ∈F̂2

p

f̂(χ)ĝ(χ) ≤ 1
√
p
‖f‖‖g‖

by Plancherel and Cauchy–Schwarz. Thus in the case of f = g = 1A we have

ΛP (1A, 1A)�P1

α
√
p

where, as above, α = |A|
p2 .

7 Bounding ΛP,Q

We now turn to bounding the remaining term. This one is not so straightforward in how
we may apply our Fourier theory, and requires some significant preparation through the
application of Cauchy–Schwarz, and algebraic manipulation. In the application of this
”Cauchy–Schwarz Method” we follow exactly the method of Peluse in [1], generalized to
some extra dimensions.

So we have

Lemma 7.1. Let f, g, h : F2
p → R, then

ΛP,Q(f, g, h) ≤ |VP,Q|
1/8

p
‖f‖ · ‖f1‖ · ‖f2‖3/4|Λ′P,Q(h, h)|1/8.

13



Where VP,Q is an affine algebraic variety over F2
p determined by the polynomials P,Q and

Λ′P,Q(f, g) := Ex,y∈Fp,(µ,ν)∈VP,Qf(x, y)g(x+ Γ1(µ, ν), y + Γ2(µ, ν))

where Γi some polynomials over Z[µ1, . . . , µ8, µ1, . . . , ν8] determined by P,Q to be given
explicitly later.

Proof. By Cauchy–Schwarz we may first bound |ΛP,Q(f, g, h)|2 by

‖f‖2Ex,y,µ1,ν1,µ2,ν2∈Fpg

(
x+ P1(µ1, ν1)
y + P2(µ1, ν1)

)
g

(
x+ P1(µ2, ν2)
y + P2(µ2, ν2)

)
h

(
x+Q1(µ1, ν1)
y +Q2(µ1, ν1)

)
h

(
x+Q1(µ2, ν2)
y +Q2(µ2, ν2)

)
.

Changing variables: x 7→ x − P1(µ1, ν1), y 7→ y − P2(µ1, ν1) (and dividing through by
our constant) we then have

Ex,y,µi,νi∈Fp
i=1,2

g

(
x
y

)
g

(
x− P1(µ1, ν1) + P1(µ2, ν2)
y − P2(µ1, ν1) + P2(µ2, ν2)

)
h

(
x− P1(µ1, ν1) +Q1(µ1, ν1)
y − P2(µ1, ν1) +Q2(µ1, ν1)

)
×h
(
x− P1(µ1, ν1) +Q1(µ2, ν2)
y − P2(µ1, ν1) +Q2(µ2, ν2)

)
.

We can then collect 4-tuples (µ1, µ2, ν1, ν2) in fibers of T1(µ1, µ2, ν1, ν2), T2(µ1, µ2, ν1, ν2)
where

T1(µ1, µ2, ν1, ν2) := P1(µ2, ν2)− P1(µ1, ν1), T2(µ1, µ2, ν1, ν2) := P2(µ2, ν2)− P1(µ1, ν1).

Doing so, we obtain

1

p4

∑
x,y,z,w∈Fp

g

(
x
y

)
g

(
x+ z
y + w

)
1

p2

∑
µi,νi∈Fp
i=1,2

T1(µ1,µ2,ν1,ν2)=z
T2(µ1,µ2,ν1,ν2)=w

h

(
x− P1(µ1, ν1) +Q1(µ1, ν1)
y − P2(µ1, ν1) +Q2(µ1, ν1)

)
h

(
x− P1(µ1, ν1) +Q1(µ2, ν2)
y − P2(µ1, ν1) +Q2(µ2, ν2)

)
.

Then again taking a modulus squared of our quantities so far, and applying Cauchy–Schwarz
to the terms depending only on x, y, z, w (thus obtaining 4 powers of ‖g‖) we have that
|ΛP,Q(f, g, h)|4/‖f‖4‖g‖4 is bounded by

1

p8

∑
x,y,z,w∈Fp

∑
µ,ν∈Fp4

T1(µ1+2i,µ2+2i,ν1+2i,ν2+2i)=z
T2(µ1+2i,µ2+2i,ν1+2i,ν2+2i)=w

i=1,2

∏
j=1,2

h

(
x− P1(µ1+2j , ν1+2j) +Q1(µ1+2j , ν1+2j)
y − P2(µ1+2j , ν1+2j) +Q2(µ1+2j , ν1+2j)

)

×h
(
x− P1(µ1+2j , ν1+2j) +Q1(µ2+2j , ν2+2j)
y − P2(µ1+2j , ν1+2j) +Q2(µ2+2j , ν2+2j)

)
by Cauchy–Schwarz. We may sum the inner sum over z, w to obtain

1

p8

∑
x,y∈Fp
(µ,ν)∈X

∏
j=1,2

h

(
x− P1(µ1+2j , ν1+2j) +Q1(µ1+2j , ν1+2j)
y − P2(µ1+2j , ν1+2j) +Q2(µ1+2j , ν1+2j)

)
h

(
x− P1(µ1+2j , ν1+2j) +Q1(µ2+2j , ν2+2j)
y − P2(µ1+2j , ν1+2j) +Q2(µ2+2j , ν2+2j)

)
,

14



where we denote by X the set of (µ, ν) given by summing over the fibers of T1, T2 we
had previously.

We may again change variables, this time with x 7→ x − Q1(µ1, ν1) + P1(µ1, ν1), y 7→
y − Q2(µ1, ν1) + P2(µ1, ν1). Then collecting terms in fibers of T3(µ, ν) := H1(µ3, ν3) −
H1(µ1, ν1), T4(µ, ν) := H2(µ3, ν3) − H2(µ1, ν1), where Hi(µ, ν) := Qi(µ, ν) − Pi(µ, ν), as
well as T5(µ, ν) := Q1(µ2, ν2)−Q1(µ1, ν1) and T6(µ, ν) := Q2(µ2, ν2)−Q2(µ1, ν1) we have

1

p8

∑
x,y,z,w,z′,w′∈Fp

h

(
x
y

)
h

(
x+ z
y + w

)
h

(
x+ z′

y + w′

) ∑
(µ,ν)∈X
T3(µ,ν)=z
T4(µ,ν)=w
T5(µ,ν)=z

′

T6(µ,ν)=w
′

h

(
x+ z +Q1(µ4, ν4)−Q2(µ3, ν3)
y + w +Q2(µ4, ν4)−Q2(µ3, ν3)

)
.

Then taking the modulus squared again, and applying Cauchy–Schwarz to the outer three
terms depending only on x, y, z, w, z′, w′ (for 6 copies of ‖h‖), we see that

|ΛP,Q(f, g, h)|8

‖f‖8 · ‖g‖8 · ‖h‖6

is bounded by

1

p10

∑
x,y,z,w,z′,w′∈Fp

∑
(µ,ν)∈X×X

T3(µ1,...,4,ν1,...,4)=z
T3(µ5,...,8,ν5,...,8)=z
T4(µ1,...,4,ν1,...,4)=w
T4(µ5,...,8,ν5,...,8)=w

T5(µ1,...,4,ν1,...,4)=z
′

T5(µ5,...,8,ν5,...,8)=z
′

T6(µ1,...,4,ν1,...,4)=w
′

T6(µ5,...,8,ν5,...,8)=w
′

h

(
x+ z +Q1(µ4, ν4)−Q1(µ3, ν3)
y + w +Q2(µ4, ν4)−Q2(µ3, ν3)

)
h

(
x+ z +Q1(µ8, ν8)−Q1(µ7, ν7)
y + w +Q2(µ8, ν8)−Q2(µ7, ν7)

)
.

Changing variables a final time to x 7→ x − z − Q1(µ4, ν4) + Q1(µ3, ν3), y 7→ y − w −
Q2(µ4, ν4) +Q2(µ3, ν3) and summing over z, w, z′, w′ ∈ Fp we then have

1

p10

∑
x,y∈Fp

∑
(µ,ν)∈VP,Q

h

(
x
y

)
h

(
x+ Γ1(µ, ν)
y + Γ2(µ, ν)

)
where Γi(µ, ν) := Qi(µ8, ν8) − Qi(µ7, ν7) − Qi(µ4, ν4) + Qi(µ3, ν3), and VP,Q the variety
defined by common zeros of the polynomials

R(1,i)(µ, ν) := Pi(µ4, ν4)− Pi(µ3, ν3)− Pi(µ2, ν2) + Pi(µ1, ν1)

R(2,i)(µ, ν) := Pi(µ8, ν8)− Pi(µ7, ν7)− Pi(µ6, ν6) + Pi(µ5, ν5)

R(3,i)(µ, ν) := Qi(µ6, ν6)−Qi(µ5, ν5)−Qi(µ2, ν2) +Qi(µ1, ν1)

R(4,i)(µ, ν) := Hi(µ7, ν7)−Hi(µ5, ν5)−Hi(µ3, ν3) +Hi(µ1, ν1).

So then we may rewrite this final sum as

|VP,Q|
p8

Λ′P,Q(h, h)

and we have our bound.
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It thus remains only to bound |VP,Q| and Λ′P,Q(h, h) to obtain our result. It turns out
that a bound on this size of VP,Q will be necessary to bound the other term, so we will focus
only on this.

In order to make this sum more tractable we again use Fourier inversion to obtain a
character sum:

Λ′P,Q(h, h) =
∑

χ1,χ2∈F̂ 2
p

f̂(χ2)ĝ(χ1)[Ex,y∈Fpχ1(x, y)χ2(x, y)][E(µ,ν)∈VP,Qχ1(Γ1(µ, ν),Γ2(µ, ν))],

so by orthogonality of characters this is∑
χ∈F̂2

p

f̂(χ)ĝ(χ)[E(µ,ν)∈VP,Qχ(Γ1(µ, ν),Γ2(µ, ν))].

It hence suffices to bound

E(µ,ν)∈VP,Qχ(Γ1(µ, ν),Γ2(µ, ν))

where we may safely ignore the case where χ is the trivial character in our case, since
f = g = h which has Ex,yh = 0, and thus has 0 leading Fourier coefficient.

To bound this sum in other cases, we apply a theorem of Kowalski [8]

Theorem 7.2 (Kowalski). Let χ be an additive character, V an affine variety, f ∈ Fp[x1, . . . , xn].
So long as f is not constant on some section of V of size O(|V |), we have∣∣∣∣∣∑

x∈V
χ(f(x))

∣∣∣∣∣�f,V
|V |
√
p
.

So it remains only to bound the size of VP,Q, and the fibers of nΓ1(µ, ν) + mΓ2(µ, ν),
which themselves clearly give an affine variety, which we will call Wn,m

P,Q .

Wn,m
P,Q =

{
(µ, ν, µ′, ν′) ∈ VP,Q × VP,Q

∣∣∣Γ(n,m)(µ, µ′, ν, ν′) = 0
}

where
Γ(n,m) := n(Γ1(µ, ν)− Γ1(µ′, ν′)) +m(Γ2(µ, ν)− Γ2(µ′, ν′)).

This is difficult in general, but we can accomplish this thanks to a theorem of Lang and
Weil.

Theorem 7.3 (Lang–Weil). Let V (I) be an affine variety over Fnp . Then

|V (I)| �I p
dim(V ).

So we need only bound the dimensions of these varieties sufficiently well to obtain our
result.

Observe that obtaining dimension bounds for V and W of 8 and 15 respectively (so we
may apply the bound of Kowalski, gives us the bound

|Λ′P,Q(h, h)| ≤ ‖h‖2 p
15/2

|VP,Q|
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so then our inequality of 7.1 becomes

ΛP,Q(f, g, h) ≤ ‖f‖ · ‖g‖ · ‖h‖
p1/16

From this, and our bound 5.3, we have

|ΛP,Q(1A, 1A, 1A)− α3| � ‖1A‖
2‖1A − α‖
p1/16

+
α2

√
p

where as previously α = |A|
p2 .

Since this is only an order of magnitude estimate we may drop the lower order term from
ΛP and obtain a worst case bound on ΛP,Q(1A, 1A, 1A) of

ΛP,Q(1A, 1A, 1A) ≥ α3 −O
(
‖1A‖2‖1A − α‖

p1/16

)
= α3 −O

(
α3/2

p1/16

)
so multiplying through by p4 to obtain a count on progressions we find that this is bounded
below by.

|A|3

p2
−O

(
|A|3/2p1−1/16

)
so we see that for |A| � p2−1/24 the left hand term will dominate our error term, and will
trivially exceed p2 so we are guaranteed non-trivial progressions obtaining our result.

8 Bounding Variety Dimensions

The Cauchy–Schwarz based argument in the previous sections proves our desired result, so
long as we are able to bound the dimension of the varieties

VP,Q = V (〈R(1,1), R(1,2), R(2,1), R(2,2), R(3,1), R(3,2), R(4,1), R(4,2)〉) ⊂ F16
p

and

Wn,m
P,Q = V (〈R(1,1)(µ1, . . . , ν8), R(1,2)(µ1, . . . , ν8),

R(2,1)(µ1, . . . , ν8), R(2,2)(µ1, . . . , ν8),

R(3,1)(µ1, . . . , ν8), R(3,2)(µ1, . . . , ν8),

R(4,1)(µ1, . . . , ν8), R(4,2)(µ1, . . . , ν8),

R(1,1)(µ9, . . . , ν16), R(1,2)(µ9, . . . , ν16),

R(2,1)(µ9, . . . , ν16), R(2,2)(µ9, . . . , ν16),

R(3,1)(µ9, . . . , ν16), R(3,2)(µ9, . . . , ν16),

R(4,1)(µ9, . . . , ν16), R(4,2)(µ9, . . . , ν16),

Γ(n,m)(µ1, . . . , ν16)〉) ⊂ F32
p

Essentially, we must prove that each condition given by one of the R polynomials is indepen-
dent, i.e. that dimVP,Q ≤ 8 and dimWn,m

P,Q ≤ 15 for each n,m. To this end, we follow the
methods used by Peluse in [1]. It is sufficient to intersect VP,Q with eight hyperplanes and
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get an object whose dimension as a variety is 0. For technical reasons beyond the scope of
this paper (see again [1]) , it is also sufficient to calculate the dimension of VP,Q and Wn,m

P,Q

as varieties over Q. Working over an algebraically closed field, note that Proposition 4.15
gives us dim I = dim LT(I) for any ideal I. Therefore, our strategy will be to add equations
representing eight hyperplanes to the ideal giving VP,Q, or 15 to Wn,m

P,Q . Then, we will verify

that for each µi and νj , a term of the form µki or νkj appears as a leading term in this new
ideal. This means that the affine Hilbert function HF (s) counting the number of leading
terms of degree less than s is bounded, and therefore has degree zero.

For the general case, we have yet to find a set of eight hyperplanes which, when added
to the ideal for VP,Q, can be combined with the R and S polynomials to produce all of the
necessary leading terms. Our progress so far amounts to the following.

Proposition 8.1. Let VP,Q be the variety defined above. Then, dimVP,Q ≤ 12.

Proof. If αi = degPi ∈ Z2
≥0 and βi = degQi, we may write

P1(µ, ν) =
∑

i+j=|α1|

c
(1)
i,j µ

iνj + lower order terms

P2(µ, ν) =
∑

i+j=|α2|

c
(2)
i,j µ

iνj + lower order terms

P2(µ, ν) =
∑

i+j=|β1|

d
(1)
i,j µ

iνj + lower order terms

P2(µ, ν) =
∑

i+j=|β2|

d
(2)
i,j µ

iνj + lower order terms.

Now, choose a point a = (x1, . . . x8, y1, . . . y8) ∈ F16
p such that a is contained in the top-

dimensional component of VP,Q. 1 Then, for each i ≤ 8, we intersect with the hyperplane

µi − x1 = 0.

This gives us each µi as a possible leading term. Furthermore, we may extract another four
νj terms as follows. Consider

R(1,1) = P1(µ1, ν1)− P1(µ2, ν2)− P1(µ3, ν3) + P1(µ3, ν4).

Up to now, we have not specifically chosen a monomial order on the µi and νj , which
we specify now as a graded lexicographic order with

µ8 < ν8 < µ6 < ν6 < µ7 < ν7 < µ1 < ν1 < µ2 < ν2 < µ3 < ν3 < µ4 < ν4 < µ5 < ν5.

(This order was chosen to make the first set of variables in the definition of each R(i,j) the
leading terms of that particular polynomial). In this case, the leading term of R1 will be of
the form cµi1ν

j
1 for some i + j = |α1|. If i = 0, we have a leading term of the form νj1 , as

desired. Otherwise, we note that

R(1,1) − cµi−11 νj1(µ1 − x1)

1For technical reasons, since VP,Q can be made up of several disjoint components with different dimen-
sions, we need to choose our planes to intersect the highest-dimensional component.
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also lies in this ideal. Subtracting off this multiple of the linear term µ1 − x1 removes the
leading term cµi1ν

j
1 , and adds several lower-order terms, each of total degree |α| − 1 (recall

that x1 is a scalar constant). We may repeat this process for all terms of total degree |α| in
µ1 and ν1, with the exception of the term cν

|α|
1 , if it exists. If so, after we remove all other

terms of degree |α|, we see that cν
|α|
1 is the leading term in our ideal. Otherwise, we may

remove all degree |α| terms in R(1,1) (note that we must do this in the other three sets of µ
and ν as well, but since the four copies of P1 are all in independent variables, the procedure
is exactly the same).

Repeating this process, we may continue decreasing the degree until either we arrive at
a leading term of the form νk1 , or the resulting polynomial has total degree 1. In this second
case, if there is no term of the form cν1, then every term of P1 must have been only in
the variable µ. So, to get both µ1 and ν1 as leading terms, we may take the hyperplane
ν1 − y1 = 0 rather than µ1 − x1 = 0, and the µ1 leading term instead comes from R(1,1)

itself.
We can repeat this process for R(2,1), R(3,1), and R(4,1) to get three more leading terms

in ν8, ν6, and ν7. Adding an additional four hyperplanes of the form νi− yi for i = 2, 3, 4, 5
shows that way may exhibit all sixteen variables as leading terms of some polynomial in the
relevant ideal, i.e. its corresponding variety has dimension zero. We have done this with a
total of 12 hyperplanes, so dimVP,Q ≤ 12.

Conjecture 8.2. dimVP,Q ≤ 8.

In order to reach this bound, would need to exhibit the remaining four νi as leading terms
without adding them directly as was done at the end of the above argument. To do this, we
must necessarily use information coming from the relationship between the R(i,1)’s and the
R(i,2)’s, since further manipulation of the R(i,1)’s alone only gives us information about the
variety corresponding to the ideal 〈R(1,1), R(2,1), R(3,1), R(4,1)〉, which has dimension greater
than or equal to twelve (since it is based on four constraints in a 16-dimensional space).

For rather trivial cases, we may bypass this conjecture and the need to bound variety
dimensions entirely. For example, suppose P1 and Q1 are functions only of µ, and P2 and
Q2 are functions only of ν. Then, the search for a sequence x, x+P (µ, ν), x+Q(µ, ν)} in A
can be done via a pigeonhole argument using already-known results for the one-dimensional
case.

We have also verified the following special case.

Proposition 8.3. Suppose that

P (µ, ν) =

(
µa + lower order terms
νb + lower order terms

)
Q(µ, ν) =

(
µc + lower order terms
νd + lower order terms

)
.

with a 6= c and b 6= d. Then, dimVP,Q ≤ 8 and dimWn,m
P,Q ≤ 15 for all n and m.

Proof. Examining the definition of the R(i,j) polynomials which define VP,Q, we see that we
immediately have as leading terms µ4, ν4, µ8, ν8, µ6, ν6, µ7, and ν7. Note that the conditions
a 6= c and b 6= d guarantee that no cancellations occur in R(4,i), in which we subtract Pi
from Qi. This allows us to extract the µ7 and ν7 leading terms. Then, by adding eight
additional hyperplanes µi−xi and νj −yj as before, we have all possible leading terms, and
dimVP,Q ≤ 8.
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To bound dimWn,m
P,Q , the same logic as above gives us sixteen leading terms, one from

each of the first sixteen polynomials determining Wn,m
P,Q - eight νi’s and eight νj ’s. With an

additional eight hyperplanes νj − yj , we have all possible νj ’s as leading terms. Then, by
adding seven more hyperplanes, we must recover the remaining eight µi’s as leading terms.
This is exactly the work of Peluse in [1] - although our polynomials are in two variables,
Peluse’s argument only deals with the terms of highest degree in each polynomial. By
assumption, the polynomials R(i,1) have leading terms µaj or µbj , so the exact same logic
carries through, completing the proof.

One interpretation of this result is that, so long as the only highest-order term of the
Pi and Qi is not mixed in both µ and ν, then P and Q behave enough like single-variable
polynomials that the varieties VP,Q and Wn,m

P,Q are also very similar to the single-variate
case.

9 Further Work

Since massaging the above 16-variable equations (and later on, 32-variable equations when
dealing with Wn,m

P,Q ) into the correct form has proven difficult, our work focused on a specific
family of functions P and Q. Outside this case, however, nothing is currently known, so
other results of any form would be new and interesting.
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