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Abstract

We prove a quantitative local limit theorem for the number of descents in a random
permutation. Our proof uses a conditioning argument and is based on bounding the
characteristic function φ(t) of the number of descents.

We also establish a central limit theorem for the number of 3-term arithmetic pro-
gressions (3-APs) in a random subset of Z/nZ. We conjecture that there is no local limit
theorem for 3-APs, but a proof of this remains elusive. A promising avenue of proof
is to condition on the size of the subset and show that the resulting distributions are
too far apart for different sizes. This has proven difficult because the distances between
these conditioned distributions on are the same order as their standard deviations such
that the constant multiple between them is not very large.

1 Introduction
Let {Xn} be a sequence of discrete random variables taking integer values with mean µn
and standard deviation σn. For example, Xn could be the number of heads that occur
in n coinflips. Our goal is to understand to what degree such a sequence converges to a
normal distribution. In the example of coinflips, the Xn themselves do not converge in any
meaningful way, since µn is increasing in n, so we normalize by considering convergence of
Yn = Xn−µn

σn
to the standard normal distribution Z instead.

One notion of convergence of a sequence of random variables is convergence in distribu-
tion. This concerns pointwise convergence of cumulative distribution functions. We write
that {Yn} converges in distribution to Z, or Yn

d−→ Z, if

|P(Yn ≤ t)− P(Z ≤ t)| → 0

for each t ∈ R. If this condition holds, the sequence {Xn} satisfies a central limit theorem.
The example of coinflips satisfies a central limit theorem. But what if we wanted to know,
for instance, the probability of getting exactly half heads, that is, P(Xn = n/2) (for even n)?
The central limit theorem only tells us the probability of having at most half heads, that is,
P(Xn <

n
2
) = P(Yn < 0)→ P(Z < 0) = 1

2
. To satisfy this, we would need∣∣∣∣P(Xn = k)− 1√

2πσn
e−( k−µnσn

)
2
/2

∣∣∣∣→ 0,
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but this is not meaningful since both terms go to 0 trivially. To find an error bound that
makes the convergence meaningful, observe that a normal distribution with standard devia-
tion σ has height Θ( 1

σ
). Therefore, we want∣∣∣∣P(Xn = k)− 1√

2πσn
e−( k−µnσn

)
2
/2

∣∣∣∣ = o

(
1

σn

)
uniformly in k. If this condition holds, the sequence {Xn} satisfies a local limit theorem.
Equivalently, we require∣∣∣∣σnP(Xn − µn

σn
= k

)
− 1√

2π
e−k

2/2

∣∣∣∣ = o(1).

Geometrically, this is equivalent since when the Gaussian is normalized, its height is scaled
by σn. If there is a bound on this last rate of convergence, the local limit theorem is said to
be quantitative. Equivalently, there is a quantitative bound if the rate of convergence of the
first difference is better than o(1/σn).

1.1 Descents

One variable of interest to us is the number of descents in a random permutation. A permu-
tation π has a descent at index j if π(j) > π(j + 1). The number of descents in π, denoted
D(π), is the number of such indices j. We define the indicator random variable for the jth
descent

Xj =

{
1 π(j) > π(j + 1)

0 else
,

so the number of descents can be written

Dn =
n−1∑
j=1

Xj.

To sample random permutations, uniformly and independently pick random integers 1 ≤
aj ≤ n − j + 1 for each 1 ≤ j ≤ n. The aj correspond to permutations like so: let
S = {1, . . . , n}, and for each j, in order from 1 to n, define π(j) to be the jth remaining
element of S, and remove π(j) from S. Under this correspondence, π(j) > π(j + 1) if and
only if aj > aj+1. Therefore, Xj can be equivalently defined by

Xj =

{
1 aj > aj+1

0 else
.

With this method of sampling, we can compute some basic facts about D. At each index
j, there is either a descent or an ascent (π(j) < π(j + 1)) and these both occur with equal
probability, so E[Xj] = 1

2
. Therefore, E[D] = n−1

2
. With similar reasoning as in computing
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the expectation of Xj, we get E[XjXj+1] = 1
3!

= 1
6
. Also, it is important to note that Xj is

independent of all other Xk except for Xj−1 and Xj+1. Now we compute

Var(D) = E[D2]− E[D]2

= E

[
n−1∑
i=1

n−1∑
j=1

XiXj

]
−
(
n− 1

2

)2

=
n−1∑
i=1

E[X2
i ] +

∑
|i−j|=1

E[XiXj] +
∑
|i−j|>1

E[XiXj]−
(n− 1)2

4

=
n− 1

2
+

2(n− 2)

6
+

(n− 1)2 − (n− 1)− 2(n− 2)

4
− (n− 1)2

4

=
n+ 1

12
.

In Section 3, we establish a quantitative local limit theorem for Dn:

Theorem 1.1.∣∣∣∣P (Dn = x)− 1√
2πσn

e−(x−µnσn
)
2
/2

∣∣∣∣ = O
(
n−1+ε

)
= O

(
1

σn
n−

1
2

+ε

)
.

1.2 3-term arithmetic progressions

The other random variable of interest is the number of 3-term arithmetic progressions (3-
APs) in a random subset of Z/nZ, with the presence of each element determined by a coinflip.
We require n odd and not a multiple of 3 to avoid issues of divisibility. For 1 ≤ i ≤ n, let xi
be the indicator random variable for i ∈ S ⊆ Z/nZ. The xi are independent and each has
expectation 1

2
. We define the number of 3-term arithmetic progressions in S as

An =
1

2

n∑
i=1

n−1∑
j=1

xixi+jxi+2j.

This definition does not consider triples that contain the same element twice to be an arith-
metic progression, and the factor of 1

2
causes multiple triples with the same elements to be

considered the same progression. The expectation of An is E[An] = 1
8

(
n
2

)
. The variance of

An is computed in section 4.
In section 4, we prove a central limit theorem for An, stated as follows:

Theorem 1.2. ∣∣∣∣P (An − µnσn
≤ x

)
− P(Z ≤ x)

∣∣∣∣ = O
(
n−1/4

)
.

Based on experimental results and heuristics in section 4, we conjecture that there is no
local limit theorem for An.

Conjecture 1.3. ∣∣∣∣P (An = x)− 1√
2πσn

e−(x−µnσn
)
2
/2

∣∣∣∣ 6= o

(
1

σn

)
.
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2 Background

2.1 Number of triangles in a random graph

Previous papers have studied the distribution of the number of triangles Tn in a random graph
Gn,p, which is the undirected graph on n vertices where each of the

(
n
2

)
edges have probability

p of appearing in the graph. Let Rn = Tn−µ
σ

be the normalized Tn and N (x) = 1√
2π
e−x

2/2

be the standard normal probability density function. Gilmer and Kopparty [1] establish
the existence of an LLT for Tn, so Tn is pointwise approximated by a discrete Gaussian
distribution.

Theorem 2.1. (Gilmer, Kopparty; 2014) Uniformly for all k ∈ Z,

P(Tn = k) =
1√

2πσn
exp

(
−((k − µn)/σn)2/2

)
+ o(1/σn).

We note that this is a qualitative result, where the error is o(n−2) = o( 1
σ
). Berkowitz

[2] expanded on their work and established a quantitative bound on the distance between
the distribution of Tn and the Gaussian distribution. In particular, he shows the following
result:

Theorem 2.2. (Berkowitz; 2017) Uniformly for all k ∈ Z,

P(Tn = k) =
1√

2πσn
exp

(
−((k − µn)/σn)2/2

)
+O(n−2.5+ε).

2.1.1 Methods used to establish an LLT for Tn

Here we summarize the methods used by Gilmer and Kopparty [1] in proving that an LLT
exists for Tn. With some calculations, we have the mean E[Tn] = µn = p3

(
n
3

)
and the variance

σ2 = Θ(n4). A crucial formula for the proof is the following:

Proposition 2.3 (Fourier Inversion Formula). If Y is a random variable with support in the
discrete lattice L = 1

b
(Z− a) for a, b ∈ R, and φ(t) = E[eitY ] is the characteristic function of

Y , then for all y ∈ L,

P(Y = y) =
1

2πb

∫ πb

−πb
e−ityφ(t) dt.

If we let φn(t) = E[eitRn ], then σnP(Rn = x) = 1
2π

∫ πσ
−πσ e

−itxφ(t) dt. By the standard
Fourier inversion formula, N (x) = 1

2π

∫∞
−∞ e

−itxex
2/2 dt. Thus,

|σnP(Rn = x)−N (x)| ≤
∫ πσn

−πσn

∣∣∣φn(t)− e−t2/2
∣∣∣ dt+ 2

∫ ∞
πσn

e−t
2/2 dt.

Thus, since the second term goes to 0 as n goes to infinity, we just have to show∫ πσn

−πσn

∣∣∣φn(t)− e−t2/2
∣∣∣ dt = o(1).
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For any constant A, we can write∫ πσ

−πσ

∣∣∣φn(t)− e−t2/2
∣∣∣ dt ≤ ∫ A

−A

∣∣∣φn(t)− e−t2/2
∣∣∣ dt+

∫
A≤|t|≤πσ

(|φn(t)|+ |e−t2/2|)dt.

Since we have a CLT, the first integral on the right goes to 0. Hence, we have reduced
the problem of proving an LLT to one of sufficiently bounding the characteristic function
|φn(t)|. To get a quantitative LLT, we must also bound

∣∣∣φn(t)− e−t2/2
∣∣∣ for small values of

t. The overall strategy used to bound the |φn(t)| involves finding an event that occurs with
high probability and allows Rn to be written as the sum of n i.i.d. random variables Xi after
conditioning on the event. The full proof can be found in [1].

Using the p-biased Fourier basis, Berkowitz [2] shows
∫ πσn
−πσn

∣∣∣φn(t)− e−t2/2
∣∣∣ dt = O(n−1/2+ε).

In section 4 below, we set up and apply this tool for 3-term arithmetic progressions in order
to bound

∣∣∣φn(t)− e−t2/2
∣∣∣ for small values of t, although we conjecture that there is no bound

for larger t.

3 Descents in a permutation
Let π ∈ Sn be a permutation. Define D(π) = |{1 ≤ j < n | π(j + 1) < π(i)}| to be the
number of descents in π. Viewing Dn as a random variable on uniformly distributed permu-
tations, a central limit theorem is known [3] and in this section, we prove Theorem 1.1, a
local limit theorem. In the proof, we will apply the following bound.

Lemma 3.1. (Gilmer, Kopparty; 2014) Let B be a Bernoulli random variable that is 1 with
probability p. Then ∣∣eiθB∣∣ ≤ 1− 8p(1− p) ·

∥∥∥∥ θ2π
∥∥∥∥2

where ‖x‖ is the closest integer to x. As a result, for |θ| < π,

∣∣eiθB∣∣ ≤ 1− 8p(1− p) ·
(
θ

2π

)2

.

As covered in 1.1, we write Dn =
∑n−1

j=1 Xj, where Xj is the indicator random variable
for aj > aj+1. Each Xj depends only on aj and aj+1, so Xj is independent of all other Xk

except for Xj−1 and Xj+1. This lemma computes the dependence:

Lemma 3.2. Given the values of Xj−1 and Xj+1, the distribution of Xj does not depend on
j or n.

Proof. The descents Xj−1 to Xj+1 depend only on aj−1 to aj+2. Every combination of values
of aj−1 to aj+2 is equally likely, so it suffices to consider the case n = 4, j = 2.

Although it is not necessary for the local limit theorem, the exact distribution of Xj can
be computed. In the n = 4 case, each pair of values of X1 and X3 appears in exactly 6
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permutations. The following probabilities are established by looking at all 6 cases for each
pair.

P(Xi = 1 | Xj−1 = 1, Xj+1 = 1) = 1/6,

P(Xi = 1 | Xj−1 = 1, Xj+1 = 0) = 1/2,

P(Xi = 1 | Xj−1 = 0, Xj+1 = 1) = 1/2,

P(Xi = 1 | Xj−1 = 0, Xj+1 = 0) = 5/6.

Theorem 3.3. The sequence of random variables Dn satisfies a local limit theorem. Quan-
titatively,

P(Dn = x) =
1√

2πσn
e−((x−µn)/σn)2/2 +O(n−1+ε).

Proof. To bound the characteristic function of Dn, we condition on the values of Xj for
odd j. For simplicity, assume n is even. (When n is odd, one must also observe that
P(Xj = 1 | Xj−1 = 1) = 1/3 and P(Xj = 1 | Xj−1 = 0) = 2/3 are constant.) The even Xj

are independent of each other, so conditioned on the odd Xj, Dn is a sum of independent
random variables. After conditioning, we compute

∣∣E[eitDn/σ]
∣∣ =

∣∣∣∣E[e
it(C+

∑
odd j

Xj)/σ

]

∣∣∣∣
=
∏
odd j

∣∣E[eitXj/σ]
∣∣

≤
∏
odd j

(
1− 8pj(1− pj)

(
t

2πσ

)2
)

by Lemma 3.1, where pj is the probability associated to Xj by the given values of the odd
Xj. But there are only finitely many possible values of pj (4 of them), so there is some value
p that maximizes the quantity above, and we can bound

∣∣E[eitDn/σ]
∣∣ ≤ ∏

odd j

(
1− 8p(1− p)

(
t

2πσ

)2
)

≤
∏
odd j

(1−Θ(t2/n))

= (1−Θ(t2/n))n/2

≤ e−Θ(t2)/2

= e−Θ(t2).

Now we obtain the final bound for the local limit theorem. As shown in [3], we have a
central limit theorem

sup
−∞<x<∞

∣∣∣∣P(Dn − µ
σ

< t

)
− P(Z < t)

∣∣∣∣ ≤
√

12

n
.
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For y < 0, P(Dn − µ ≤ yσ) = 1
2
P(|Dn − µ| ≥ |y|σ) ≤ 1

2y2
by Chebyshev’s Inequality.

Similarly, P(Dn − µ ≥ yσ) ≤ 1
2y2

for y > 0.
Thus,

∣∣∣∣P(Dn − µ
σ

< t

)
− P(Z < t)

∣∣∣∣ =



12√
n

P(Dn−µ
σ
≤ y) + P(Z ≤ y) ≤ 1

2y2
+O(e−Θ(y2)/ |y|) for y < 0

P(Dn−µ
σ
≥ y) + P(Z ≥ y) ≤ 1

2y2
+O(e−Θ(y2)/ |y|) for y > 0

.

For a characteristic function φ(t) for a variance X, using integration by parts we can
write

φ(t) =

∫
R
eitxP(X = x) dx = −it

∫
R
eitxP(X ≤ x) dx.

Hence, we have the following (where |. . .| is a repetition of the same integrand):∣∣∣φn(t)− e−t2/2
∣∣∣ ≤ |t|∫

R

∣∣∣∣P(Dn − µ
σ

< y

)
− P(Z < y)

∣∣∣∣ dy
≤ |t|

∫
|y|>kσ

∣∣∣∣P(Dn − µ
σ

< y

)
− P(Z < y)

∣∣∣∣ dy + |t|
∫
|y|≤kσ

|. . .| dy

≤ |t|
∫
|y|>kσ

(
1

2y2
+
e−Θ(y2)

y

)
dy + |t|2kσ

√
12

n
.

Take k = O(n−
1
2

+ε). Then since σ = Θ(n), we have
∣∣∣φn(t)− e−t2/2

∣∣∣ ≤ |t|O(n−
1
2

+ε).
Thus, for any ε > 0, we compute∫ πσ

−πσ

∣∣∣φn(t)− e−t2/2
∣∣∣ dt ≤ ∫ nε

−nε

∣∣∣φn(t)− e−t2/2
∣∣∣ dt+

∫
nε<|t|<πσ

(|φn(t)|+ |e−t2/2|)dt

≤
∫ nε

−nε

∣∣∣φn(t)− e−t2/2
∣∣∣ dt+

∫
nε<|t|<πσ

e−Θ(t2)dt

= O(n−
1
2

+ε).

4 3-term arithmetic progressions
Throughout this section, we define a random variable An to be the number of 3-term arith-
metic progressions in a randomly chosen subset S ⊂ Z/nZ, where each element in Z/nZ
has probability 1

2
(also denoted p) of appearing in the subset. The elements of the prob-

ability space can thus be described as x ∈ {0, 1}n where xi is 1 with probability p and 0
with probability 1 − p. Further, the random variable An can be thought of as a function
An : {0, 1}n → N.
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4.1 Variance of An

In this section, we describe a p-biased Fourier basis for functions on the probability space,
exactly analogous to the method of Berkowitz [2], which we use to find the variance of An
and will use in the next section to try to prove an LLT for An. In order to do this, we first
define χi : {0, 1}n → R by

χi := χi(x) :=
xi − p√
p(1− p)

=


−
√

p
1−p if xp = 0√

1−p
p

if xp = 1

so that χi is a normalized version of xi. Further, we can extend this to define, for an arbitrary
set S ⊆ Z/nZ,

χS :=
∏
i∈S

χi.

Note that if we take the inner product of two functions f, g : {0, 1}n → R to be E[fg], then
{χS | S ⊆ Z/nZ} forms an orthonormal basis for functions on our probability space. Then
if we define the Fourier transform f̂ : {0, 1}n → R of an arbitrary function f : {0, 1}n → R
by

f̂(S) := E[f(x)χS(x)],

from the orthonormality of our basis we get

f(x) =
∑

S⊆Z/nZ

f̂(S)χS(x).

We will use this expansion to calculate the variance of An and bound the pointwise
distance of the characteristic function from that of the discrete Gaussian for small t.

It will now be useful to normalize the random variable An. We take the mean of An
to be µn := E[An]. We write the variance of An as σ2

n := E[A2
n] − E[An]2. So we define

Z : {0, 1}n → R by

Z = Zn :=
An − µn
σn

and we will often refer to the characteristic function of Z defined by φZ(t) := E[eitZ ].
Before moving on to calculate the Fourier coefficients Ân(S), we will first note that there

are
(
n
2

)
possible (non-trivial) 3-term arithmetic progressions in Z/nZ. There are first n

choices for the start of the arithmetic progression, then n− 1 choices for a non-trivial sepa-
ration distance d, and finally both d and −d will have counted the same 3-term arithmetic
progression from different starting points, so we divide by 2 to yield n(n−1)

2
=
(
n
2

)
. Addition-

ally, each 3-term arithmetic progression occurs with probability p3 (each of the three terms
in the progression occur independently with probability p). This allows us to calculate

µn = E

[∑
Λ

1Λ

]
=
∑

Λ

E[1Λ] =
∑

Λ

p3 = p3

(
n

2

)
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where 1Λ is the indicator function for a particular 3-term arithmetic progression Λ in Z/nZ.
Furthermore, the fact that our basis for functions on the probability space is orthonormal

allows us to calculate variance according to this formula, derived from Parseval’s Theorem.

σ2 =
∑
S 6=∅

Ân(S)2.

We now work with the 3-term arithmetic progression indicator functions 1Λ a bit more.
We use i ∈ Λ to denote that i is a term in the 3-term arithmetic progression Λ. Therefore,
the indicator function can be expressed as

1Λ(x) =
∏
i∈Λ

xi =
∏
i∈Λ

(√
p(1− p)χi + p

)
= p3 + p2

√
p(1− p)

∑
i∈Λ

χi + p2(1− p)
∑

i1 6=i2∈Λ

χ{i1,i2} + p3/2(1− p)3/2.

Note that any two elements of Z/nZ appear in exactly 3 3-term arithmetic progressions
and any one element appears in exactly 3

2
(n− 1) 3-term arithmetic progressions. Hence, by

summing over all 3-term arithmetic progressions, we have

An = p3

(
n

2

)
+

3

2
(n− 1)p2

√
p(1− p)

∑
i∈Z/nZ

χi

+ 3p2(1− p)
∑

{i1,i2|i1 6=i2}⊂Z/nZ

χ{i1,i2} +
∑

Λ

p3/2(1− p)3/2χΛ.

Thus, we have the Fourier Transform of An:

Ân(S) =



p3
(
n
2

)
if S = ∅

3
2
(n− 1)p2

√
p(1− p) if |S| = 1

3p2(1− p) if S = {i1, i2}

p3/2(1− p)3/2 if S = Λ

0 else

and we can use Parseval’s Theorem to give us the variance of An:

σ2
n =

∑
S⊂Z/nZ
S 6=∅

Ân(S)2

=
∑

i∈Z/nZ

(
3

2
(n− 1)p2

√
p(1− p)

)2

+
∑

{i1,i2}∈Z/nZ

(
3p2(1− p)

)2
+
∑

Λ

(
p3/2(1− p)3/2

)2

=
9

4
n(n− 1)2p5(1− p) + 9

(
n

2

)
p4(1− p)2 +

(
n

2

)
p3(1− p)3

= Θ(n3).

9



This means that σn = Θ(n3/2).

4.2 A CLT for 3-term APs

In this section, we establish a central limit theorem for the number of 3-term arithmetic
progressions in Z/nZ, An.

Theorem 4.1. ∣∣∣∣P (An − µnσn
≤ x

)
− Φ(x)

∣∣∣∣ = O
(
n−1/4

)
.

We prove this theorem using the method of dependency graphs detailed in Chatterjee’s
notes [4] (Lecture 6). This method bounds the Wasserstein distance of a distribution from
the normal based on the dependency graph. We define the Wasserstein distance as such,
where Ω is the probability space:

Wass(µ, ν) = sup

{∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ∣∣ f : Ω→ R is 1-Lipschitz
}
.

The Wasserstein distance is a metric that is stronger than the L1 distance of the cumu-
lative distribution functions of two distributions [4]. In other words, a vanishing bound on
the Wasserstein distance between a distribution and the standard normal would immediately
establish a central limit theorem for that distribution.

More formally, we define the Kolmogorov distance as:

Kolm(µ, ν) = sup
x∈R
|µ((−∞, x])− ν((−∞, x])|.

So the Kolmogorov distance is the largest difference in the cumulative distribution func-
tions. We write the Wasserstein distance between two random variables X ∼ µ and Y ∼ ν
as Wass(X, Y ) = Wass(µ, ν), and similarly, Kolm(X, Y ) = Kolm(µ, ν). A useful bound for
the Kolmogorov distance between a random variable and the standard normal is stated and
proved in [4]:

Lemma 4.2 (Chatterjee, 2007). For a pair of r.v.’s W,Z where Z ∼ N(0, 1),

Kolm(W,Z) ≤
√

2

π
Wass(W,Z).

Thus, the distance between the cdf of a random variable W and the standard normal,
Z is bounded by the square root of the Wasserstein distance between W and Z (with a
constant factor). So the problem of deriving a central limit theorem for W is reduced to
bounding Wass(W,Z).

A formal statement of the method of dependency graphs is as follows. Suppose there are
a collection of random variables, {Xi | i ∈ V }, indexed by the vertices of a graph G = (V,E)
such that (i, j) ∈ E iff Xi, Xj are dependent. Such a graph is referred to as a dependency
graph. Let D = 1 + ∆(G), where ∆(G) is the maximum degree of G. We have the following:
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Lemma 4.3 (Chatterjee, 2007). Suppose that E[Xi] = 0, σ2 = Var(
∑
Xi), W =

∑
Xi
σ

and
Z ∼ N(0, 1). Then,

Wass(W,Z) ≤ 4√
πσ2

√
D3
∑

E|Xi|4 +
D2

σ3

∑
E|Xi|3.

For the problem of 3-term arithmetic progressions, we will write Λ to denote a particular
3-term AP. We define V = {Λ ⊆ Z/nZ | Λ is a 3-AP} and XΛ = 1Λ∈S−E[1Λ∈S] = 1Λ∈S−p3.
Note that there are

(
n
2

)
3-term APs in Z/nZ, not counting degenerate 3-term arithmetic

progressions, so |V | =
(
n
2

)
. Further, note that XΛ1 and XΛ2 are independent iff Λ1∩Λ2 = ∅.

We have the following properties:
Lemma 4.4. The degree of the dependency graph is D = O(n).
Proof.

deg(Λ1) = |{Λ2 | Λ1 ∩ Λ2 6= ∅}|
= |{Λ2 | (Λ2)1 ∈ Λ1 ∨ (Λ2)2 ∈ Λ1 ∨ (Λ2)3 ∈ Λ1}|
≤ 3 |{Λ2 | (Λ2)1 ∈ Λ1}|

=
9

2
(n− 1).

So ∆(G) ≤ 9
2
(n− 1) and D ≤ 9

2
(n− 1) + 1. Thus, D = O(n).

Proposition 4.5. The mth moment of XΛ is bounded by E|XΛ|m ≤ 1 for all m ≥ 1.
Proof. XΛ is a random variable which takes values at 1− p3 and p3, so its absolute value is
bounded by 1. Thus, its mth absolute moment is also bounded by 1.

Furthermore, we note that Var (
∑
Xi) = Var (

∑
1Λ − p3) = σ2

n and W =
∑
Xi
σ

= An−µn
σn

.
We now proceed with the proof of theorem 4.1.

Proof. (Theorem 4.1)
Applying lemma 4.3 to W = An−µn

σn
and using the bound on the Kolmogorov distance

from 4.2 we get:

∣∣∣∣P (An − µnσn
≤ x

)
− Φ(x)

∣∣∣∣ ≤
√

2

π
Wass(W,Z)

≤
√

2

π

√
4√
πσ2

√
D3
∑

E|XΛ|4 +
D2

σ3

∑
E|XΛ|3

Now, using the established properties that |V | =
(
n
2

)
≤ n2, D = O(n), E|XΛ|m ≤ 1 for

all m ≥ 1, and σ2 = Θ(n3), we get

∣∣∣∣P (An − µnσn
≤ x

)
− Φ(x)

∣∣∣∣ = O

(√
1

n3

√
n3n2 +

n2

n9/2
n2

)
= O(n−1/4).
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4.3 Attempt to show LLT for An

We recall from section 2.1.1 that since we have a CLT, we can reduce the problem of proving
an LLT to one of bounding

∣∣∣φZ(t)− e−t2/2
∣∣∣. Using the p-biased Fourier basis developed

above, we proceed to show the following bound for small values of t using the same method
as Berkowitz [2]:

Proposition 4.6. For |t| �
√
n,

∣∣∣φZ(t)− e−t2/2
∣∣∣ ≤ O

(
t3e−t

2/3

√
n

+
t√
n

)
.

Proof. To begin, we decompose Z = X + Y , where

Q =
1√
n
,X =

∑
k∈Z/nZ

Qχk, Y =
∑

k∈Z/nZ

(Ẑ(k)−Q)χk +
∑
|S|≥2

Ẑ(k)χk.

We first bound the distance from the characteristic function of X to the normal distri-
bution: Since we normalized X using Q, X is a random variable with mean 0 and variance
1. Since

Ln := nE[|Qχk|3] = O

(
1√
n

)
<∞,

then by Berry–Esseen, if t ≤ 1
4Ln

, we have

|E[eitX ]− e−t2/2| ≤ 16Lnt
3e−t

2/3.

Next we consider Y . By Cauchy–Schwarz, orthogonality of our basis, and Parseval’s
Theorem, we have

E[|Y |] ≤
√

E[|Y |2] =
√

Var(Y ) =

√ ∑
k∈Z/nZ

(Ẑ(k)−Q)2 +
∑
|S|≥2

Ẑ2(S).

Now using our above calculation of the variance σ2
n of An,∑

|S|≥2

Ẑ(S) =
9
(
n
2

)
p4(1− p)2 +

(
n
2

)
p3(1− p)3

σ2
n

= Θ

(
1

n

)
.

In addition, using our calculation of Ân,

nσnẐ
2(k)− σ2

n = nÂn
2
(k)− σ2

n = O(n2)

nẐ2(k)− 1 = O

(
1

n

)
Ẑ2(k)− 1

n
= O

(
1

n2

)
.
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Since Ẑ(k) +Q = O
(

1√
n

)
and Q2 = 1

n
,

∣∣∣Ẑ(k)−Q
∣∣∣ ≤ ∣∣∣∣∣ Ẑ(k)− 1

n

Ẑ(k) +Q

∣∣∣∣∣ = O

(
1

n3/2

)
.

Hence, we have E[Y ] = O
(

1√
n

)
. Thus, we conclude that if t < 1

4Ln
= O(

√
n),∣∣∣φZ(t)− e−t2/2

∣∣∣ =
∣∣∣E[eitZ − e−t2/2]

∣∣∣ =
∣∣∣E[eit(X+Y ) − e−t2/2]

∣∣∣
≤
∣∣E[eit(X+Y ) − eitX ]

∣∣+
∣∣∣E[eitX − e−t2/2]

∣∣∣
≤ E[tY ] + 16Lnt

3e−t
2/3 (using the mean value theorem on eitX)

= O

(
t3e−t

2/3

√
n

+
t√
n

)
.

Remark 4.7. The bound we find for the absolute distance between the characteristic func-
tion of Z and that of the standard normal is a decent bound for small t if we want to show
an LLT for An. However, we are unable to prove any meaningful bound for larger t, and
below we explore the reasons for why this is impossible.

4.4 Experimental results and conjectures

As we could not decrease the bound achieved in the previous section and prove a bound for
larger values of t, we decided to simulate the number of 3-term arithmetic progressions in a
random subset of Z/nZ in order to verify whether or not an LLT actually holds and found
that one does not.

As figure 1 demonstrates, the number of 3-term arithmetic progressions in a random
subset of Z/nZ does not follow the Gaussian distribution pointwise. However, after some
inspection, one might notice that oscillations in the histogram that are close together are
spaced out almost evenly. Furthermore, the oscillations themselves appear fairly Gaussian,
as if the entire distribution is the sum of several spaced out Gaussians. Given that the
spacings appear to be O(n) and the entire distribution ranges from 0 to

(
n
2

)
= O(n2), we

would expect there to be O(n) of these smaller Gaussians. It is thus reasonable to conclude
that the number of 3-term arithmetic progressions in a random subset of Z/nZ depends on
some other random variable which can take O(n) values.

This other random variable is the size of a random set of Z/nZ. From figure 2 we can see
that the number of 3-term arithmetic progressions in a random subset of Z/nZ with fixed
size does, in fact, follow the Gaussian distribution pointwise. From now on, we call this
random variable An,k, where k is the size of the subset of Z/nZ.

We conjecture that the distance between these smaller distributions, E[An,k+1]−E[An,k], is
sufficiently smaller than the standard deviation of the distributions themselves,

√
Var(An,k).

In other words, there is a non-trivial interval between E[An,k] and E[An,k+1] where for all x

13



Figure 1: Histogram of the number of 3-term arithmetic progressions in 100000 random
subsets of Z/101Z.

in the interval, P(An,k = x) and P(An,k+1 = x) are both very small. In particular, we suspect
that those two probabilities are significantly smaller than the Gaussian approximation of
P(An = x) would suggest.

This train of thought will be made more precise in sections 6 and 7.

4.4.1 Continuous sets

One thing that comes to mind after observing that An does not have an LLT due to the
dependence on the size of the random set, is whether An would have an LLT if the existence
of each element of the set was made continuous. That is to say, the variable xi which denotes
whether an element i of Z/nZ is in our random set S, is now a uniform random variable on
[0, 1] instead of a Bernoulli random variable on {0, 1} with p = 1

2
. The number of 3-term

arithmetic progressions Ān is still defined in a similar manner,

Ān =
1

2

n∑
i=1

n−1∑
j=1

xixi+jxi+2j.

We simulated this to see if it possibly followed the Gaussian distribution pointwise.
From figure 3, we conjecture that it is very likely that there is an LLT for Ān. However,
we successfully can show that there is a CLT for Ān. Namely, define µ̄n = E[Ān] and
σ̄2
n = Var(An). Then the following theorem holds:
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Figure 2: Histogram of the number of 3-term arithmetic progressions in random subsets of
Z/53Z of size k for k = 0 to 53, separated by color and . Each k used 10000 samples. (The
graph should extend to 1378 on the x axis, but there is very little content in the large k that
are very far out so we zoomed in on the bulk of the distribution.)

Theorem 4.8. ∣∣∣∣P (Ān − µ̄nσ̄n
≤ x

)
− Φ(x)

∣∣∣∣ = O
(
n−1/4

)
.

Notably, this is exactly the same bound achieved in Theorem 4.1. This CLT is a conse-
quence of the fact that the dependency graph of the indicator functions 1Λ does not change
if we make the underlying xi uniform on [0, 1] instead of Bernoulli on {0, 1}. However, the
following lemma is what gives us the exact same bound as for the standard case, An:

Lemma 4.9. σ̄2
n = Θ(n3).

Proof. First, note that

µ̄n = E

[∑
Λ

1Λ

]
=
∑

Λ

E[1Λ] =
1

8

(
n

2

)
.
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Figure 3: Number of 3-term "arithmetic progressions" in 1000000 random "continuous sets"
of Z/23Z

Now, we can also calculate

E
[
Ā2
n

]
= E

(∑
Λ

1Λ

)2
 = E

[∑
Λ1

∑
Λ2

1Λ11Λ2

]

= E

[∑
Λ1

∑
Λ2

∏
j∈Λ1∪Λ2

xj

]

= E

∑
Λ1

3∑
i=0

∑
Λ2 s.t.
|Λ1∩Λ2|=i

∏
j∈Λ1∪Λ2

xj


=
∑
Λ1

3∑
i=0

∑
Λ2 s.t.
|Λ1∩Λ2|=i

(
1

2

)6−i

=
∑
Λ1

3∑
i=0

(
1

2

)6−i

(#{Λ2 | |Λ1 ∩ Λ2| = i}).

The particular quantity #{Λ2 | |Λ1 ∩ Λ2| = i} is examined further and calculated in
section 6.2. For now we take the particular values we need as given and note that the
quantity does not depend on our choice of Λ1.
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E
[
Ā2
n

]
=

(
n

2

)(
1

8
+

1

16
(6) +

1

32

(
9

2
n− 39

2

)
+

1

64

(
1

2
n2 − 5n+

25

2

))
.

Now, given that σ̄2
n = E

[
Ā2
n

]
− µ̄2

n, we have

σ̄2
n =

1

64

(
n

2

)(
n− 25

54

)
= Θ(n3).

5 Attempts to get CLT for An,k

In order to prove a CLT for An,k, we use the method of exchangeable pairs detailed in
Chatterjee’s notes [4] (Lecture 7). Like the method of dependency graphs used in section 4,
this method bounds the Wasserstein distance of a distribution from the normal distribution.

Definition 5.1. (W,W ′) is an exchangeable pair of random variables if (W,W ′)
d
= (W ′,W ).

The following is a formal statement of the method of exchangeable pairs.

Lemma 5.2. (Chatterjee, 2007) If (W,W ′) is an exchangeable pair, E[W 2] = 1 and there
exists λ ∈ (0, 1) such that E[W −W ′|W ] = −λW , then

Wass(W,Z) ≤

√(
2

π

)
Var

(
E
[

1

2λ
(W ′ −W )2 | W

])
+

1

3λ
E[|W ′ −W |2],

where Z ∼ N(0, 1).

Let An,k be the number of 3-term arithmetic progressions given the subset size = k, and
W be An,k standardized. We want to show that W converges in distribution to a normal
distribution. We construct W ′ as follows. We have a random subset S ⊆ Z/nZ with size k.
Randomly choose two elements I, J ∈ Z/nZ, swap their status regarding their inclusion in
S, and call the new subset S ′ (i.e. if I ∈ S iff J ∈ S ′ and J ∈ S iff I ∈ S ′). Now define A
to be the number of 3-term arithmetic progressions in S and define W to be standardized
A, namely A−µn,k

σn,k
. Similarly, define A′ to be the number of 3-term arithmetic progressions

in S ′ and define W ′ to be A′−µn,k
σn,k

.

Remark 5.3. Let W and W ′ be an exchangeable pair, each with mean 0 and variance 1,

and let Λ be a 3-term arithmetic progression in Z/nZ. Define 1Λ⊆S =

{
1 Λ ⊆ S

0 else
.

Then A =
∑

Λ⊆Z/nZ 1Λ⊆S. Also note that

µn,k = E[
∑

Λ⊆Z/nZ

1Λ⊆S] =
∑

Λ⊆Z/nZ

P(Λ ∈ S) =

(
n

2

)(k
3

)(
n
3

) .
17



In order to apply the method, we first must show that E[W ′−W | W ] = −λW for some
λ ∈ (0, 1).

Lemma 5.4. Let λ = 3(n−k)

(n2)
. Then E[W ′ −W | W ] = −λW.

Proof. We have

E[A′ | A] =
∑

Λ⊆Z/nZ

E[1Λ⊆S′ | A] =
∑

Λ⊆Z/nZ

P(Λ ⊆ S ′ | A).

Now

P(Λ ⊆ S ′ | A) = P(Λ ⊆ S ′ | Λ ⊆ S,A)P(Λ ⊆ S | A) + P(Λ ⊆ S ′ | Λ 6⊆ S,A)P(Λ 6⊆ S | A).

Note that
P(Λ ⊆ S | A) =

A(
n
2

)
P(Λ 6⊆ S | A) = 1− A(

n
2

)
as there are A 3-term arithmetic progressions in S and

(
n
2

)
3-term arithmetic progressions

total in Z/nZ.
We have

P(Λ ⊆ S ′ | Λ ⊆ S,A) = 1− 3(n− k)(
n
2

)
since the probability of Λ 6⊆ S ′ is the probability of one of its 3 elements being selected to
be swapped along with one of the elements outside of S.

Taking this into account in our previous expression, we have

P(Λ ⊆ S ′ | A) =

(
1− 3(n− k)(

n
2

) )(
A(
n
2

))+ P(Λ ⊆ S ′ | Λ 6⊆ S,A)

(
1− A(

n
2

)) .
Finally, we examine

P(Λ ⊆ S ′ | Λ 6⊆ S,A) =
3∑
i=0

P(Λ ⊆ S ′ and |Λ ∩ S| = i | Λ 6⊆ S and A)

=
2∑
i=0

P(Λ ⊆ S ′ | Λ 6⊆ S and |Λ ∩ S| = i and A)P(|Λ ∩ S| = i | Λ 6⊆ S and A)

= P(Λ ⊆ S ′ | |Λ ∩ S| = 2, and A)P(|Λ ∩ S| = 2 | Λ 6⊆ S and A).

We have P(Λ ⊆ S ′ | |Λ ∩ S| = 2, and A) = k−2

(n2)
since the only way for Λ to be contained

in S ′ if |Λ ∩ S| = 2 is if the one element of Λ that is not in S is chosen, along with one other
element of S\Λ.

Substituting this in, we get
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P(Λ ⊆ S ′ | Λ 6⊆ S,A) =

(
k − 2(
n
2

) )P(|Λ ∩ S| = 2 | Λ 6⊆ S and A).

P(|Λ ∩ S| = 2 | Λ 6⊆ S and A) = 3P(Λ1 ∈ S,Λ2 ∈ S,Λ3 /∈ S | Λ 6⊆ S and A)

= 3P(Λ3 /∈ S | Λ1 ∈ S,Λ2 ∈ S,Λ 6⊆ S,A)

· P(Λ2 ∈ S | Λ 6⊆ S,Λ1 ∈ S,A)P(Λ1 ∈ S | Λ 6⊆ S,A)

= 3P(Λ2 ∈ S | Λ 6⊆ S,Λ1 ∈ S,A)P(Λ1 ∈ S | Λ 6⊆ S,A).

Here we have two non-trivial quantities to examine. First we see by Bayes’s rule that

P(Λ1 ∈ S | Λ 6⊆ S,A) =
P(Λ 6⊆ S | Λ1 /∈ S,A)P(Λ1 6⊆ S,A)

P(Λ 6⊆ S,A)

=
P(Λ 6⊆ S | Λ1 /∈ S,A)P(Λ1 /∈ S | A)

P(Λ 6⊆ S | A)

=
P(Λ 6⊆ S | Λ1 /∈ S,A)

(
k
n

)
1− A

(n2)

.

Further, we also have by Bayes’s rule,

P(Λ2 ∈ S | Λ 6⊆ S,Λ1 ∈ S,A) =
P(Λ 6⊆ S | Λ2 ∈ S,Λ1 ∈ S,A)P(Λ2 ∈ S,Λ1 ∈ S,A)

P(Λ 6⊆ S,Λ1 ∈ S,A)

=
P(Λ 6⊆ S | Λ2 ∈ S,Λ1 ∈ S,A)P(Λ2 ∈ S | Λ1 ∈ S,A)

P(Λ 6⊆ S | Λ1 ∈ S,A)

=
P(Λ3 /∈ S | Λ2 ∈ S,Λ1 ∈ S,A)P(Λ2 ∈ S | Λ1 ∈ S,A)

P(Λ 6⊆ S | Λ1 ∈ S,A)

=

(
1− k−2

n−2

) (
k−1
n−1

)
P(Λ 6⊆ S | Λ1 ∈ S,A)

.

So,

P(|Λ ∩ S| = 2 | Λ 6⊆ S and A) = 3

P(Λ 6⊆ S | Λ1 /∈ S,A)
(
k
n

)
1− A

(n2)

( (
1− k−2

n−2

) (
k−1
n−1

)
P(Λ 6⊆ S | Λ1 ∈ S,A)

)

= 3

(
1− k−2

n−2

) (
k−1
n−1

) (
k
n

)
1− A

(n2)

.

Thus, we have

P(Λ ⊆ S ′ | Λ 6⊆ S,A) = 3


(
1− k−2

n−2

) (
k−1
n−1

) (
k
n

)(
1− A

(n2)

)

(
k − 2(
n
2

) ) = 3

(
M(

n
2

)
− A

)
,
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where M = (n− k)
(k3)
(n3)

. Hence,

P(Λ ⊆ S ′ | A) =

(
1− 3(n− k)(

n
2

) )(
A(
n
2

))+ 3

(
M(
n
2

)) ,
and so

E[A′ − A | A] = −A+
∑

Λ⊆Z/nZ

P(Λ ⊆ S ′ | A) = −A+

(
1− 3(n− k)(

n
2

) )
(A) + 3 (M)

= −

(
3(n− k)(

n
2

) )
(A) + 3(n− k)

(
k
3

)(
n
3

)
= −3(n− k)(

n
2

) (
A−

(
n

2

)(k
3

)(
n
3

))

= −3(n− k)(
n
2

) (A− µ).

Thus, E[A′−A | A] = −λ(A−µ), where λ = 3(n−k)

(n2)
. Hence, E[W ′−W | W ] = E[A

′−µ
σ
− A−µ

σ
|

A−µ
σ

] = 1
σ
E[A′ − A | A] = −λ

(
A−µ
σ

)
= −λW .

Thus, we can bound the Wasserstein distance Wass(W,Z), where Z is a standard Gaus-
sian random variable using the method of exchangeable pairs. We have

E
[

1

2λ
(W ′ −W )2 | W

]
= E

[ (
n
2

)
6(n− k)

(W ′ −W )2 | W

]

=

(
n
2

)
6(n− k)

(E[(W ′)2 | W ]− 2E[WW ′ | W ] +W 2).

6 Attempt to prove nonexistence of LLT for An

6.1 General framework for nonexistence of an LLT for other R.V.’s

We develop more general theorems for what properties a random variable Xn can have to
ensure it does not follow an LLT. Let Xn (with mean µn and standard deviation σn) be
conditioned on some event with value k, denoted by Xn,k. Let µn,k = E[Xn,k] and σn,k be
the standard deviation of Xn,k.

The following theorem says that Xn does not satisfy a LLT when the distances between
the conditioned distributions Xn,k are of a sufficiently larger order than their standard devi-
ations σn,k. We show that at a point, the distribution of Xn does not converge to the normal
distribution.
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Theorem 6.1. Suppose |x− µn,k| = ω(σn,k
√
σn). Then

|P(Xn = x)−Nn(x)| = Ω

(
1

σn

)
and there is no local limit theorem for {Xn}.

Proof. Since we make no assumptions about the concentration of Xn,k, the best we can do
is use Chebyshev’s inequality.

P(Xn = x) =

j∑
k=1

P(Xn = x | Yk)P(Yk)

≤
j∑

k=1

P(|Xn,k − µn,k| ≥ |x− µn,k|)P(Yk)

≤
j∑

k=1

(
σn,k

|x− µn,k|

)2

P(Yk)

=

j∑
k=1

o

(
1

σn

)
P(Yk)

= o

(
1

σn

)
.

In the previous theorem, the required distance between consecutive Xn,k is rather large,
and this is likely due to the inefficiency of using Chebyshev’s inequality. If we assume a
CLT on the Xn,k, we can use a better concentration inequality and require less of a distance
between the Xn,k.

Theorem 6.2. Suppose Xn,k follows a CLT and |x− µn,k| = ω(σn,kσ
ε
n). Then

|P(Xn = x)−Nn(x)| = Ω

(
1

σn

)
and there is no local limit theorem for {Xn}.
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Proof. We have

P(Xn = x) =

j∑
k=1

P(Yk)P(Xn = x | Yk)

≤
j∑

k=1

P(|Xn,k − µn,k| ≥ |x− µn,k|)P(Yk)

≤
j∑

k=1

(
σn,k

|x− µn,k|
√

2π
e
−
(
x−µn,k
σn,k

)2

/2

)
P(Yk)

=

j∑
k=1

o(σ−εn )e−o(σ
2ε
n )P(Yk)

= o(σ−εn )o(σ−1+ε
n ) = o(σ−1

n ).

Thus, P(Xn = x) = o
(

1
σn

)
. Now Nn(x) = 1√

2πσn
e−(x−µnσn

)
2
/2 = Θ

(
1
σn

)
. Hence,

|P(Xn = x)−Nn(x)| = Ω

(
1

σn

)
and thus Xn does not follow a LLT.

6.2 Variance of An,k

Lemma 6.3. The variance of An,k is σ2
n,k = k3(n−k)3

2n4 +O(n).

Proof. We have that σ2
n,k = E[A2

n,k]− (E[An,k])
2 = E[A2

n,k]−
(
n
2

) (k3)
(n3)

= E[A2
n,k]− 3

n−2

(
k
3

)
. We

proceed to calculate E[A2
n,k]. Now A2

n,k = (
∑

Λ 1Λ⊂S)2. =
∑

Λ1

∑
Λ2

1Λ1⊂S1Λ2⊂S. So

E[A2
n,k] =

∑
Λ1

∑
Λ2

E[1Λ1⊂S1Λ2⊂S]

=
3∑
i=0

(
k

6−i

)(
n

6−i

)∑
Λ1

∑
Λ2 s.t.
|Λ1∩Λ2|=i

1.

We now consider the quantity #{Λ2 | |Λ1 ∩ Λ2| = i}. Since we know there are i elements
pre-determined from Λ1, we take each subset of i elements from Λ1 and perform the following
procedure. Check how many arithmetic progressions contain those many numbers (which
themselves come from an arithmetic progression), given the function f : N×{0, 1, 2, 3} → N
defined by f(0) =

(
n
2

)
, f(1) = 3

2
(n − 1), f(2) = 3, and f(3) = 1. In particular, we check

f(i). However, this overcounts the quantity we desire because it also counts arithmetic
progressions whose intersection with Λ1 is greater than 1. Thus, we check all the ways of
adding another element from Λ1 to our current subset of i elements and subtract out f(i+1)
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arithmetic progressions. We apply continue applying inclusion-exclusion until we arrive at
the quantity we desire. Thus, we have

#{Λ2 | |Λ1 ∩ Λ2| = i} =

(
3

i

) 3−i∑
j=0

(−1)j
(
i

j

)
f(j − i).

Now, counting the number of pairs of 3-term arithmetic progressions {Λ1,Λ2} that inter-
sect 0, 1, 2, and 3 times, we have:

#{{Λ1,Λ2} | |Λ1 ∩ Λ2| = 3} =

(
n

2

)
#{{Λ1,Λ2} | |Λ1 ∩ Λ2| = 2} = 6

(
n

2

)
#{{Λ1,Λ2} | |Λ1 ∩ Λ2| = 1} =

1

2

(
n

2

)
(9n− 39)

#{{Λ1,Λ2} | |Λ1 ∩ Λ2| = 0} =
1

2

(
n

2

)
(n2 − 10n+ 25).

After using these to calculate the second moment of An,k by plugging the resulting ex-
pression into Mathematica, we find

σ2
n,k =

(k − 2)(k − 1)k(k3 − 3k2(n− 1)− n(n2 − 3n+ 2) + k(3n2 − 6n+ 2))

2(n− 4)(n− 3)(n− 2)
.

Simplifying, we have σ2
n,k = k3(n−k)3

2n4 +O(n).

6.3 Nonexistence of LLT for An

The reason that we cannot use the general theorem in section 6 to prove that no LLT exists
for An is that the distances between the conditioned distributions An,k are the same order
as their standard deviations σn,k, since µn,k+1 − µn,k = Θ(σn,k) for reasonably likely values
of k (when k = 1, this breaks down but values of k this extreme are very unlikely).

To show that there is no LLT for An, our strategy is to choose a point x in the mid-
dle between two An,k distributions and showing that |P(An = x)−Nn(x)| = Ω( 1

σn
), where

Nn(x) = 1√
2πσn

e((x−µn)/σn)2/2.
Set p = 1

2
, and let x ≥ µn,k for all k ≤ j and x ≤ µn,k for all k > j. Then we have

P(An = x) =
n∑
k=0

P(An = x | |S| = k)P(|S| = k)

=
n∑
k=0

P(An,k = x) ·
(
n
k

)
2n

≤
j∑

k=0

P(An,k ≥ x) ·
(
n
k

)
2n

+
n∑

k=j+1

P(An,k ≤ x) ·
(
n
k

)
2n
.
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Now we must sufficiently bound the tails of An,k. We know that µn = 1
8

(
n
2

)
, σ2

n =

Θ(n3), µn,k = 3
n−2

(
k
3

)
, and σ2

n,k = k3(n−k)3

2n4 , but we do not know anything about the shape of
the distribution of An,k.

Remark 6.4. We conjecture that An,k follows a local limit theorem. The main issue that
we run into when trying to apply the same technique used to show LLTs for Tn and Dn

to An,k is that we cannot find an event to condition on such that An,k will be the sum of
independent random variables, since the constraint on size k makes the presence of each
element of Z/nZ dependent on the presence of every other element. If we could prove an
LLT for An,k, that would allow us to conclude that no LLT exists for An, as we show below.
It might be possible to prove that there is no LLT for An without proving the LLT for An,k
by a specialized argument, but using the following proposition would be the most satisfying
way since an LLT for An,k would give the most complete picture of the histogram of An.

Proposition 6.5. Suppose An,k follows an LLT for each k. Then there exists no LLT for
An.

Proof. We show that the height at the center of an An,k distribution is greater than the
Gaussian distribution at that point as n gets large. Let k = n+1

2
and x = µn,k. Then since

An,k follows an LLT,

P(An = x) = P(|S| = k) · P(An,k = x) =

(
n
k

)
2n
· 1√

2πσn,k
e
−
(
x−µn,k
σn,k

)2

/2

=

(
1√
2πn

e−
(k−n2 )2

2n

)
·

 1√
2πσ2

n,k


≈ 1

2π

√
2n4

nk3(n− k)3

=

√
2

π

(
n

k(n− k)

)3/2

≈ 8
√

2

π
n−3/2.

Now we turn our attention to the height of the Gaussian distribution at x = µn,k. Recall
that σ2

n ≈ 9
4
n3 and let Nn be the probability density function for the normal distribution

with mean µn and variance σ2
n. Then we have

Nn(x) =
1√

2πσn
e−(x−µnσn

)
2
/2 ≤ 1√

2πσ2
n

≈

(
1

3

√
2

π

)
n−3/2.

Therefore,

|P(Xn = x)−Nn(x)| ≈

(
8
√

2

π
− 1

3

√
2

π

)
n−3/2 = Ω

(
1

σn

)
,

so there exists no LLT for An.
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8 Appendix

8.1 3-APs in a subset of Z/nZ and its complement

In this section, we prove a fun fact regarding 3-term APs. Let n > 3 be odd. Consider a
subset S ⊆ Z/nZ. Define A(S) to be the number of 3-term arithmetic progressions in S.
That is,

A(S) =
1

2
|{a, b ∈ Z/nZ | b 6= 0; a, a+ b, a+ 2b ∈ S}| .

Let k = |S|, and denote the complement of S in Z/nZ as Sc, so |Sc| = n− k. We prove the
following proposition.

Proposition 8.1. The sum of the number of 3-APs in S and Sc is constant conditioning
on n and k. That is, A(S) + A(Sc) depends only on n and k.

Note: this method of counting considers (x, y, z) and (z, y, x) to be the same arithmetic
progression (due to the factor of 1/2), and does not consider (x, x, x) to be an arithmetic
progression. However, the result still holds under every permutation of these settings.

Proof. The total number of 3-term arithmetic progressions A(Z/nZ) is n(n − 1). These
arithmetic progressions can be split into four groups based on the locations of their elements:
all in S, all in Sc, exactly one in S, and exactly one in Sc.

There are A(S) progressions all in S and A(Sc) all in Sc. The number of progressions with
exactly one element in S is 3

2
k(k − 1)− 3

2
A(S) since each pair of elements of S is contained

in 3 total progressions, but we need to subtract the contribution of the progressions entirely
contained in S, each of which contains 3 pairs. Similarly, the number of progressions with
exactly one element in Sc is 3

2
(n− k)(n− k − 1)− 3

2
A(Sc). Adding everything together, we

get

n(n− 1) = A(S) +

(
3

2
k(k − 1)− 3

2
A(S)

)
+

(
3

2
(n− k)(n− k − 1)− 3

2
A(Sc)

)
+ A(Sc).

Simplifying,

A(S) + A(Sc) =
1

4
(3k(k − 1) + 3(n− k)(n− k − 1)− n(n− 1)) .

Surprisingly, this sum depends only on n and k.
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Intuition tells us that A(S) is a measure of structure in S and the amount of structure in
S is the same as the amount of structure in Sc. But this intuition must be wrong since this
calculation implies that either the amount of structure in Sc is the inverse of the amount of
structure in S, or A(S) does not really measure structure.
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