SYMMETRIC HOMOMORPHISMS OF ABELIAN VARIETIES

QUINN GREICIUS

1. OVERVIEW

This note will give a brief review of the highlights of the theory of abelian varieties, and
having set up the prerequisite language, will prove the following result:

Theorem 1.1. Let X be an abelian variety over a field k, and f : A — Aa symmetric
homomorphism. Then there is a finite Galois extension L/k such that ¢ has the form ¢
for some line bundle £ on Aj,.

The two references are David Mumford’s book Abelian Varieties and Brian Conrad’s 2015
course notes, freely available at his webpage.

2. BACKGROUND ON ABELIAN VARIETIES

Definition 2.1. A k-group scheme is a group object in the category of k-schemes, i.e. a
k-scheme G with morphisms m : G x G — G (multiplication), i : G — G (inversion), and an
identity point e : Spec k — G, such that the usual diagrams for the group axioms commute.

Definition 2.2. A smooth, connected, proper k-group scheme f : A — Speck is called an
abelian variety.

A fundamental fact, which follows from rigidity for integral proper k-schemes, is that every
abelian variety is a commutative k-group scheme. The study of an abelian variety A relies
crucially on the notion of the dual abelian variety A, defined in terms of the Picard scheme
of A, which we now recall. For a k-scheme S, denote by Ag := A X, S and eg : S — Ag
the base change of the identity section, and fg : Ag — S the base change of the structure
morphism.

Definition 2.3. We define the Picard functor EA/k : Schy, — Ab by
S—{(ZL,) on Ag}/ ~

sending a k-scheme S to the abelian group (under ®) of isomorphism classes of rigidified
line bundles (£, ¢) on Ag, by which we mean line bundles .Z on Ag together with a chosen
“rigidification” ¢ : €5.Z = Og, and where isomorphisms (£, 1) ~ (', /') are those .¥ ~ &’
respecting the rigidifications ¢ and ¢'.

This appears to veer from the definition of the usual Picard group due to the rigidification,
but the following proposition shows that it only serves to cut out the extra line bundles
coming from the base scheme:

Proposition 2.4. The map Picy . (S) — Pic(As)/fsPic(S) given by (£,1) — £ is an
1somorphism.
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Proof. See Conrad, Proposition 2.2.12. 0
We now have the following result, due in this case to Grothendieck:

Theorem 2.5. The functor Pic, , is representable by a locally finite type k-scheme Picay.

Choosing a natural isomorphism Homge, , (—, Pica/x) = Picy . (—) and taking the image
of Idpic, ,, in Pic,,(Picask) then gives a distinguished rigidified line bundle (£7,6) on A x
Pic i, with the property that for a rigidified line bundle 2 on Ag, there is a unique map
[ 8 = Picag such that (14x f)* & ~ £ respecting the rigidifications. By Yoneda’s lemma,

Picayy is a k-group scheme. Then the connected component of the identity A= Pic’ i 18 a
sub-k-group scheme, which is called the dual abelian variety of A. We check that it deserves
the name:

Proposition 2.6. The k-group scheme A is an abelian variety.

Proof. It comes out of the construction of the Picard scheme that Picy, is locally finite

type, and then a general result about locally finite type k-group schemes implies that Ais
irreducible and finite type, so it remains to check that A is smooth and proper. From our con-
crete description of the functor of points of Pic,, it might seem like valuative/infinitesimal
criteria are the way to go. For properness, this turns out to be the case, as we verify
here, but for smoothness there isn’t a good way to make this work, so a more involved
proof is necessary, and we refer the interested reader to §5.1 in Conrad’s notes. Since we're

over a field, separatedness is easy to check by expressing the diagonal morphism as the
r—>:1:y_1 -~

base change of the composition A - Speck = A by the map Ax A L A (this
works for any k-group scheme), so we need to check that for any 1-dimensional regular local
k-algebra R with fraction field K(R), any k-morphism Spec K (R) — Pic4/; has a factoriza-
tion Spec K (R) — Spec R — Pica/i, (necessarily unique, by separatedness of Pica/x). This
is equivalent to the statement that any line bundle 2 on Ag gy is pulled back from some
Z' on Ag (since Pic(Spec R) = Pic(Spec K (R)) = 0 we needn’t worry about rigidifications).
By smoothness of A, is enough to show this in the case where .2 = (D) for some effective
Cartier divisor D < Xk (g), but in this case, we can consider the effective Cartier divisor ob-
tained by taking the scheme-theoretic closure D’ of D in Xg, and set £’ = & (D'), which by
definition satisfies .2’ o(D") , = 0(D'N Xkgr) =0(D) =2, as desired. [T

|XK(R) = ‘XK(R

For a line bundle .Z on A, there is associated a particular homomorphism ¢o : A — g,
defined functorially for k-schemes S and s € A(S) by

gbg(s) = t:gg ®$S_1
where t, : Ag — Ag is translation by s. Details of this construction are addressed in §4.
Such homomorphisms are the primary objects of study for this note, and we will see that
they are uniquely characterized by a certain symmetry property, which we now describe.
For any homomorphism f A — B of abelian varieties, we define the dual homomorphism
f: B— A functorially for k-schemes S and £ on Bg by £ — fiZs. Additionally, when

we consider the line bundle &4 := Z|,, 7 on A x A, it has a trivialization along A x {0} by

the definition of the group structure on E, so corresponds to a homomorphism to the dual A
of A, denoted ¢4, and in fact ¢4 is an isomorphism (see Conrad, Theorem 7.3.3 and Example
7.3.4). Now in the particular case of a homomorphism f : A — A, we can compose these



constructions to form a new map fo tg:A— 121\, and we say f is symmetric if f = J?o L.
The easy direction of our classification is then the following:

Proposition 2.7. For any line bundle £ on A, ¢ : A — A is symmetric.
Proof. See Conrad, Proposition 7.4.3. U

The truly remarkable fact is the (near) converse: for any symmetric f: A — g, there is a
finite Galois extension L/k over which f; has the form ¢ for some line bundle .Z on Aj.
To prove this, we will want to recast the symmetry condition in more tractable terms, which
requires some additional machinery.

3. THE DuALITY PAIRING

A map f: A — B of abelian varieties is called an isogeny if it is a finite flat surjection.
If we define the scheme-theoretic kernel of f to be ker f := f~'(eg) = A Xp., Speck, the
finiteness condition then is equivalent to ker f — Speck being finite. For any finite k-group
scheme G, its Cartier dual G is defined to be the k-group scheme Hom (G, G,,). A critical

result, by an argument in descent theory, is that kerf is Cartier dual to ker f, i.e. we
have a natural duality pairing ker f x kerf — Gy, The/gimary case of interest is where
f=1[n]a: A— Ais multiplication by n, where we have [n]4 = [n]3, so that ker f = A[n] is
the n-torsion subgroup of A, and the duality pairing is a map A[n] x A [n] = w, C Gy, In this
case, we can compile these pairings to obtain something even better: for a prime ¢ # char k,
we define the (-adic Tate module of A to be the inverse limit 7;(A) := @A[@”] of the of

the system of ¢-power torsion subgroups with the maps A[¢"] x4 A[¢"=1], and the duality
pairings at finite level respect the maps in the limit, so that we obtain a non-degenerate
Z-bilinear pairing (-, -) a0 : To(A) x Tp(A) — Z,(1).

This pairing has two symmetry properties which will be key for this argument. First,

for a map f: A — A, the maps Ty(f) and Tg(f) are adjoint for the pairings on A and A,

ie. for all (a,b) € Ty(A) x Ty(A) we have (T;(f)(a),b) 7 e = (a;Te(f)(b)) 4. Second,

-~

for (a,a’) € Ty(A) x Ty(A) we have (a,a’)z}ew = (d',14(a)) 3 o Both follow from careful
unpacking of the definition of the finite-level pairings. Together, they will let us demonstrate
the desired behavior of f, at least as far as its effect on Ty(A), and because the collection of
A[l"] over all n is dense in A, it turns out that, in general, a map f : A — B is completely
determined by its effect on the ¢f-adic Tate modules for a prime ¢ # char k. (This may come
as a surprise, as Ty(A) is built up from a collection of relatively ‘small’ closed subsets, but

the intuition should come from the case over C, where in the dimension 1 case we have
Ty(A) = Zy(1) x Zy(1) C S* x S, which is visibly dense.) We record this fact here:

Theorem 3.1. For A, B abelian varieties over k, Homy (A, B) is Z-finite and for ¢ # char k,
Z; @z Homy (A, B) — Homg, ¢, (Ty(A), T,(B)) C Homg, (T;(A), T¢(B))

18 1njective.

Proof. See Conrad, §7.6. U

We now have everything we need to translate symmetry properties of the pairing to proper-

ties of a homomorphism f : A — A. Define the Zy-bilinear form eg goe (-, ) : Ty(A) x Ty(A) —

Z4(1) to be the composition Ty(A) x Ty(A) 2T T,(4) x Ty(A) — Zy(1).



Theorem 3.2. For a homomorphism ¢ : A — ﬁ, and a prime ¢ # char(k), the bilinear
form eg oo on Ty(A) is skew-symmetric if and only if the homomorphism f is symmetric.

Proof. Suppose f is symmetric. Then for a,b € T;(A) we have e (a,b) = (a, To(f)(b)).a e
by definition, and symmetry of f gives
(a, To(£)(0)) a e = {a, To( F) (14(6)) 4 g
then by adjointness of T;(f) and T,(f A)
(a, Te(h)(1a(b)) e = (To(h)(a), 14 (b)) 14

-~

from which the fact that for any (a,a’) € Ty(A) x Ty(A) we have (a, a’ﬁ}m = (d',1a(a)) 5 4o
implies

we have

(Te(f)(@),ia(b)) 7000 = (0. Te(f)(@) 2 = €= (b,a) 7"
and we see that efs~ is skew-symmetric. In the other direction, suppose ey is skew-

symmetric, and let a,b € Ty(A). It suffices to show that f = f oy induce the same
maps on Ty(A), as then they must agree everywhere by the preceding Theorem. By skew-
symmetry we have ey s (a,b) = e (b, a)! = (b, Ty(f)(a)) ', while on the other hand we
again use the identities for the f-adic pairing to obtain: 7

epe=(a,0) = (a, Te(f) (b)) ae = (To(f)(b), (@) 3 = (b, h(1(a))) e

so that (b, h(a))ase = <b,/ﬁ(L(a))>A7goo for all b € T;(A), and since the f-adic pairing is
non-degenerate, this implies h(c(a)) = h(a). O
We have now reduced the problem to that of understanding when the Z,-bilinear form

associated to a homomorphism is skew-symmetric, and the connection to the maps ¢ is
then made possible by the following theorem:

Theorem 3.3 (c.f. Mumford §20, Theorem 2). Let A be an abelian variety, and f : A — A
a homomorphism. Then f is symmetric (equivalently, the bilinear form eyspe on Ty(A) is
skew-symmetric) if and only if there is a line bundle £ on A such that 2f = ¢.

Proof. If2f = ¢, then 2ey o = €4, o by construction, and we know that ¢ & is a symmetric
homomorphism by Proposition 2.7, and so Theorem 3.2 implies that its associated bilinear
form is skew-symmetric, hence so is ef . In the other direction, suppose efg~ is skew-
symmetric. Then by 3.2 f is symmetric. Consider the line bundle A4} := (1, f)* %4 on A.

We claim (even without symmetry of f) that ¢4, = f + fo ta (even without symmetry of
f), so when f = fo LA is symmetric we get ¢y, = 2f.

We have that ¢ s, (z) ~ (1, f)"(¢2,(z, f(x))). Using the isomorphism (A x AN~ Ax A
via Z = (L] axqoy, | {9y x 1), we compute the map on each factor:

Pra(@z, (@, f(2)) = (La x {0} (ts 4@y P2 @ P5")

~ (Ho.4(x)) © L0y © (1a X {0}))" P4 ® (14 x {0})* 22,
~ (1o x {f(2)})" Pa1@ Oy
~t,(f(z))



where we view f(z) as a line bundle on A, and use the fact that ¢} f(z) ~ f(z) since
f(z) € Pic’, and ¢ is trivial for £ € Pic” (see the discussion following Proposition 4.4).
In the other component, we have:

pr3 (02, (@, f(2)) = ({0} ¥ 13)"(t; ) (P2 @ P41)

~ (to.s@) © twoy © ({0} x 17))" Za @ ({0} x 13)"2;7)
~ ({2} % 15) P4 @ 05
~ iy tal®)
~ 14(T)
where we again view ¢4 (x) as a line bundle on 121\, and use the fact that t4(z) € Pic” implies

thytalz) = va(z). Thus we have ¢, (z, f(x)) = (f(2), a(2)), or specifically as line bundles
Oz, (x, f(x)) ~ f(x) ®ea(z). Now when we compute the pullback along (1, f):

Ga;(x) = (1, f) ¢za(x, f(2))
~ (1, )" (f(z) B ea(z))
~ 15 (f (@) © f*(ea(x))
~ f(x) @ f(eal@))

we obtain the desired result. O

So we've shown that 2f has the desired form 2f = ¢_4;, even for a reasonably concrete
line bundle on A, but we want to push this further and get a result for f itself. It will suffice
to show that, over an algebraically closed field, if 2f = ¢ o for some .Z, then & ~ .#%? for
some ., as then we would have 2¢ , = ¢ y22 = ¢ = 2f, so f = ¢_,. This follows from
another result in Mumford’s book:

Theorem 3.4 (Mumford §23, Theorem 3). If £ is a line bundle on an abelian variety A
over an algebraically closed field and n € Z, L ~ .#®"™ for some line bundle .# if and only
if ker oo O An].

Taking n = 2 and £ = .4}, the fact that ¢4, = 2f implies ker¢ 4, = ker f o [2]4 2
ker[2]4 = A[2]. Thus f; = ¢4 for some line bundle .#Z on A;. However, we still wish to
show that we can find such .Z after a finite Galois extension of k. If we set things up in the
right generality from the outset, we will get this for free.

4. CUBICAL STRUCTURE AND FUNCTORIAL PROPERTIES OF ¢¢

We first state, for completeness, the necessary properties of ¢ ¢ for a line bundle .Z on A.
In particular, ¢ & is a homomorphism, but we can get much more out of this fact if we check
it in a relative setting. That is, let .Z be a line ‘bundle on Ag, and define for S-schemes T
and x € Ag(T) the analogous map ¢ : Ag — Ag by do(z) = t:.¥ ® £~'. In particular,
we have:

Theorem 4.1 (The Theorem of the Square). The map ¢ is a homomorphism; i.e., for
any S-scheme T and x,y € As(T), we have canonical isomorphisms of line bundles on Ar

G Lr @ 2 L ULy @ [(x,y) (ML @pr; L @pry L7 @ (€5.L) ag)ar-

In particular, ¢ defines a k-group homomorphism Picy, — Homgp(A, 121\)



For line bundles on Ag pulled back from A, this is proven in, Corollary 3.2.3 of Conrad’s
notes, a calculation that essentially boils down to the “Cubical Structure Theorem” for such
line bundles. To upgrade Conrad’s proof of Theorem 4.1 to work for any line bundles on Ag,
we need a suitable version of this result:

Theorem 4.2. Let £ be a line bundle on Ag. Then for any S-scheme T and ay,as, a3 €
Ag(T), the line bundle

02 = (ay +az +a3)" L @ (a1 + a2)" L7 @ (an + a3) " L7 @ (g + a3)* L7
®a;.? ®ayL ®ayL @ (" L)y
1s canonically trivial.

Proof. For S = k a field, Conrad proves the result using the Theorem of the Cube (3.1.6).
Granting this case, we deduce the relative version as follows: Set P := Picy, for brevity.
Let S be a k-scheme, £ a line bundle on Ag with s¢ the corresponding S-point of P. Given
T-points ay, as, a3 € Ag(T), consider the following diagram:

a1,a2,a: s2)?
T%ASXSASXSASM)APXPAPXPAP

{as} l{pri} l{Pri}
AS > AP

with the property that pulling back the Poincare bundle &4 on Ap recovers the universal case
T = A3} over Ag for the line bundle .. Pulled back by any triple of T-points (a;, as, az), this
in turn recovers the general case. Because we’re not just looking at P-points of Ap, however,
this universal setup is not a special case of the result we're trying to prove (having to do with
arbitrary line bundles on Ag), but really a version of the cubical structure theorem for the
line bundle &4 on the abelian scheme Ap and T'-points by, by, b3 € Ap(T") for a P-scheme
T’, for which we're treating the universal case 7" = A3,. We have the relevant hbox-overfilling
line bundle fo;fﬁf’pr?’) on A% ~ (A3)p (we henceforth drop the indices and write 6), and
we’ll analyze its fibres 6|, over p € P using the case over k to show that § ~ (prp)*(prp).d
by the Seesaw Theorem, and then show that (prp).0 is trivial by inspection.

Let p € P. To make rigorous the connection to the case over A, we have the following
diagram:
A Xy A Xy AxySpeck(p) —— Axp Axp Axpy P ——= Ap Xp Ap Xp Ap
{prwmzj,m}l {pr; x1p,mijx1p,mx lp}l

A Xy Speck(p) < @ > A Xy P

{pr;,;mij,m}

which is commutative upon taking the respective maps in each bracketed set, essentially by
the definition of the group scheme structure on Ap. As in the familiar case, we have for
i # j # k the identities (pr; +pr; +pr;,) = m and (pr; +pr;) = m;;. Now considering the



fiber over p we use the above diagram to compute:

Oy =0 ="1" (m*«% @mpPy @My Py @M Py @ pr; Pa @ pry Pa @ pry Pa (e}«%}l)@)
~ Mg P g @My Py @ Mg Py @mig Py @ pri g P a @ pry 15 Pa @ pri 5P a

where we can drop the e}, %74 term in the second line because &, it is canonically trivial

along that section. Here we know exactly how to interpret 1g%24: it’s just the line bundle
%, on A x;, Spec k(p) corresponding to the point p € Pica/x. The expression then becomes

O, = m" %, @ miyL, @ mp Lt @ miy L @ pry L, @ pry &, @ pry &,

and this is trivial by the (universal case of the) cubical structure theorem for the abelian
variety A Xy Spec k(p) (Conrad, 3.1.6). O

So for each S-point of Pic,/,, we have an S-group homomorphism Ag — 21\5. To make
most efficient use of the functorial properties of ¢, we want to describe it as a map of
k-group schemes Pic,/, — Ho_mgp(A, A\), but this requires making sense of this hom-functor
as a group scheme. We set this up now: let X and Y be schemes over a scheme T (we
will take T = Speck. The Hom-functor Hom(X,Y') assigns to any 7-scheme S the set
Homg(Xs,Ys). It is a theorem of Grothendieck (using the theory of Hilbert schemes) that
if T' is locally noetherian, X is proper and T-flat, and X and Y are quasi-projective Zariski-
locally over T" then this functor is represented by a locally finite type and separated T-scheme
H. (That is, there is an H-map Xy — Yy that is universal in an evident sense.) We prove
an intermediate technical result to get a version of this representing scheme for maps in the
category of T-group schemes.

Lemma 1. Let f,g: X =Y be a pair of T-morphisms (corresponding to elements of H(T)).
Then the condition fs = gs is represented by a closed subscheme of T

Proof. For any T-scheme S, denote by Fg and GGg the maps S — H corresponding to f and
g, so that if ¢g : S — T is the structure map, we have Fs = Fr o ¢g and Gg = Gr o ¢g.
Consider the locus Z < T where Fr and G agree, defined by the Cartesian diagram

4 — T

| |prxcr

H -2 Hx; H

where the fact that H is separated implies Z — T is a closed embedding. Clearly fs = gg
iff Fs = G, and from the preceding factorizations of Fis and Gg, we have Fg = Gy iff ¢g
factors through Z < T, hence the condition that Fg = Gg is represented by the closed
subscheme Z of S. U

Proposition 4.3. Let A and B be abelian varieties over a field k. Then the functor
Hom (A, B) : S+ Homg_g,(As, Bs)
15 represented by a locally finite type and separated k-group scheme.

Proof. Let ¢ : Ay — By be the universal morphism of H-schemes for the functor Hom(A, B).
Consider the pair of H-maps f := mp, o (¢g X ¢u),q := ¢y oma, : Ay X Ay = By. For
an k-scheme S, let v : A — Bg be any S-map, and ¥ : S — H the corresponding k-map.
Then ¢ is an S-group homomorphism iff f¢ = g5, where fg and gg are the pullbacks of



fyg: Ay x Ay — By by ®. By the lemma, we have fg = gg iff ® factors through a closed
subscheme Z — H, so that the subfunctor Hom (A, B) C Hom(A, B) is represented by
Z — H, with the pullback of the universal H-morphism Ay — Bpy. Finally, Z is locally
finite type and separated because H is so, and is a k-group scheme since it represents a
group-valued functor. O

We next want to show that this group scheme is étale, for which we need the following
lemma:

Lemma 2. Let T be a local noetherian k-scheme, and let A and B be abelian varieties over
k. Then if a T-group map ¢ : A — B vanishes on the special fiber it vanishes everywhere.

Proof. Let # denote the ideal sheaf corresponding to the closed subscheme K := ker ¢. We
wish to show that #p = 0, i.e. check that the map €4, — Ok is an isomorphism. It suffices
to check this on the stalks at all closed points p € X7, and since ¢ vanishes on the special
fiber we have p € K. By Artin-Rees and the exactness of completions, it suffices to show
that the completed map 0%, — (Ok); is an isomorphism. This is the limit of the maps
O app/my — Ok, /my, each of which is identified with the stalk at p of the base-changed
map O 0/ — Ok 64 /my SO it suffices to show that this base-changed map of structure
sheaves is an isomorphisin, which is exactly the statement that ¢4, ,/mn vanishes, so we have
reduced to the Artin local case. We can then conclude as follows: for finite étale k-schemes
X and Y, with T the spectrum of an local Artin k-algebra, a map Xy — Y7 is formally
étale, so behavior over the special fiber extends uniquely in an infinitesimal neighborhood,
i.e. extends uniquely to T-points. Now since the map ¢ : Ay — Br vanishes on the special
fiber, the maps ¢ : Ar[("] — Br[¢"] vanish on the special fiber for all n > 1, so must vanish.
Thus ker ¢ D Ar[¢"] for all n > 1, and since ker ¢ is closed, the fact that the collection of
closed subschemes Ar[¢"]’s are dense in Ap. implies ker ¢ = Ar, so ¢ vanishes. O

Proposition 4.4. The k-group scheme Z representing Homgp(A, B) in Proposition 4.3 is
étale.

Proof. Let Z be the Hom-scheme in 4.3. Then its tangent space at the identity is identi-
fied with those maps v : Speck[e]/(e*) — Z in Z(Speckl[e]/(¢*) such that the morphism
Speck — Z on the closed point is exactly the inclusion of the origin. But if we consider
the morphism ¢ : Agpecife/(2) — Bspeckld/(2) corresponding to 1, the fact that the closed
point of Spec kle]/(€?) is sent to the origin in Z implies that ¢ vanishes over the special fiber,
which by the preceding lemma implies that it vanishes everywhere, so that there is a single
map Spec kle]/(¢?) — Z matching this description, and Z has trivial tangent space at the
origin. Base-changing to k and translating then shows that it is an étale k-scheme. 0

We henceforth refer to Z by Hom, (A, B) (consistent with its use earlier in this paper).
It is clear from the definition of ¢ that the map Pic/, — Ho_mgp(A, B) given on S-points
sg 1S — Picay, by s¢ — ¢ defines a map of k-group schemes. In particular, it sends
the connected component of the identity in Pics/, to the zero map, which implies that for
any line bundle £ on Ag coming from A, ¢ is trivial, i.c. t* Lr ~ ZLr for all x € Ag(T).
More specifically, we define the Néron-Severi scheme NS(A) to be the étale component group
of Picak, so by definition this map Picay, — Hom, (A, E) factors through some k-group
map ¢ : NS(A) — Ho_rngp(A,ﬁ). By the result of §2, if f € Ho_mgp(A,ﬁ)(k) is symmetric,
then f, € Hom (A, A)(k,) is in the image of this map, so is of the form ®(ay,) for some



ag, € NS(A)(ks), but since NS(A) is étale, this point comes from some a; € NS(A)(L) for
L/k finite Galois, and hence f; = ®(ar), and f;, = ¢ for some .Z on Ay. This completes
what we set out to prove.
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