
SYMMETRIC HOMOMORPHISMS OF ABELIAN VARIETIES

QUINN GREICIUS

1. Overview

This note will give a brief review of the highlights of the theory of abelian varieties, and
having set up the prerequisite language, will prove the following result:

Theorem 1.1. Let X be an abelian variety over a field k, and f : A → Â a symmetric
homomorphism. Then there is a finite Galois extension L/k such that φL has the form φL

for some line bundle L on AL.

The two references are David Mumford’s book Abelian Varieties and Brian Conrad’s 2015
course notes, freely available at his webpage.

2. Background on Abelian Varieties

Definition 2.1. A k-group scheme is a group object in the category of k-schemes, i.e. a
k-scheme G with morphisms m : G×G→ G (multiplication), i : G→ G (inversion), and an
identity point e : Spec k → G, such that the usual diagrams for the group axioms commute.

Definition 2.2. A smooth, connected, proper k-group scheme f : A → Spec k is called an
abelian variety.

A fundamental fact, which follows from rigidity for integral proper k-schemes, is that every
abelian variety is a commutative k-group scheme. The study of an abelian variety A relies

crucially on the notion of the dual abelian variety Â, defined in terms of the Picard scheme
of A, which we now recall. For a k-scheme S, denote by AS := A ×k S and eS : S → AS
the base change of the identity section, and fS : AS → S the base change of the structure
morphism.

Definition 2.3. We define the Picard functor PicA/k : Sch/k → Ab by

S 7→ {(L , ι) on AS}/ '
sending a k-scheme S to the abelian group (under ⊗) of isomorphism classes of rigidified
line bundles (L , ι) on AS, by which we mean line bundles L on AS together with a chosen

“rigidification” ι : e∗SL
∼−→ OS, and where isomorphisms (L , ι) ' (L ′, ι′) are those L ' L ′

respecting the rigidifications ι and ι′.

This appears to veer from the definition of the usual Picard group due to the rigidification,
but the following proposition shows that it only serves to cut out the extra line bundles
coming from the base scheme:

Proposition 2.4. The map PicA/k(S) → Pic(AS)/f ∗S Pic(S) given by (L , ι) 7→ L is an
isomorphism.
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Proof. See Conrad, Proposition 2.2.12. �

We now have the following result, due in this case to Grothendieck:

Theorem 2.5. The functor PicA/k is representable by a locally finite type k-scheme PicA/k.

Choosing a natural isomorphism HomSch/k
(−,PicA/k)

∼−→ PicA/k(−) and taking the image

of IdPicA/k
in PicA/k(PicA/k) then gives a distinguished rigidified line bundle (P, θ) on A×k

PicA/k, with the property that for a rigidified line bundle L on AS, there is a unique map
f : S → PicA/k such that (1A×f)∗P ' L respecting the rigidifications. By Yoneda’s lemma,

PicA/k is a k-group scheme. Then the connected component of the identity Â := Pic0
A/k is a

sub-k-group scheme, which is called the dual abelian variety of A. We check that it deserves
the name:

Proposition 2.6. The k-group scheme Â is an abelian variety.

Proof. It comes out of the construction of the Picard scheme that PicA/k is locally finite

type, and then a general result about locally finite type k-group schemes implies that Â is

irreducible and finite type, so it remains to check that Â is smooth and proper. From our con-
crete description of the functor of points of PicA/k, it might seem like valuative/infinitesimal
criteria are the way to go. For properness, this turns out to be the case, as we verify
here, but for smoothness there isn’t a good way to make this work, so a more involved
proof is necessary, and we refer the interested reader to §5.1 in Conrad’s notes. Since we’re
over a field, separatedness is easy to check by expressing the diagonal morphism as the

base change of the composition Â → Spec k
e−→ Â by the map Â × Â

(x,y)7→xy−1

−−−−−−−→ Â (this
works for any k-group scheme), so we need to check that for any 1-dimensional regular local
k-algebra R with fraction field K(R), any k-morphism SpecK(R)→ PicA/k has a factoriza-
tion SpecK(R) ↪→ SpecR → PicA/k (necessarily unique, by separatedness of PicA/k). This
is equivalent to the statement that any line bundle L on AK(R) is pulled back from some
L ′ on AR (since Pic(SpecR) = Pic(SpecK(R)) = 0 we needn’t worry about rigidifications).
By smoothness of A, is enough to show this in the case where L = O(D) for some effective
Cartier divisor D ↪→ XK(R), but in this case, we can consider the effective Cartier divisor ob-
tained by taking the scheme-theoretic closure D′ of D in XR, and set L ′ = O(D′), which by
definition satisfies L ′|XK(R)

= O(D′)|XK(R)
= O(D′ ∩XK(R)) = O(D) = L , as desired. �

For a line bundle L on A, there is associated a particular homomorphism φL : A → Â,
defined functorially for k-schemes S and s ∈ A(S) by

φL (s) = t∗sLS ⊗L −1
S

where ts : AS → AS is translation by s. Details of this construction are addressed in §4.
Such homomorphisms are the primary objects of study for this note, and we will see that
they are uniquely characterized by a certain symmetry property, which we now describe.
For any homomorphism f : A → B of abelian varieties, we define the dual homomorphism

f̂ : B̂ → Â functorially for k-schemes S and LS on BS by LS 7→ f ∗SLS. Additionally, when

we consider the line bundle PA := P|A×Â on A× Â, it has a trivialization along A×{0} by

the definition of the group structure on Â, so corresponds to a homomorphism to the dual
̂̂
A

of Â, denoted ιA, and in fact ιA is an isomorphism (see Conrad, Theorem 7.3.3 and Example

7.3.4). Now in the particular case of a homomorphism f : A → Â, we can compose these



constructions to form a new map f̂ ◦ ιA : A → Â, and we say f is symmetric if f = f̂ ◦ ιA.
The easy direction of our classification is then the following:

Proposition 2.7. For any line bundle L on A, φL : A→ Â is symmetric.

Proof. See Conrad, Proposition 7.4.3. �

The truly remarkable fact is the (near) converse: for any symmetric f : A→ Â, there is a
finite Galois extension L/k over which fL has the form φL for some line bundle L on AL.
To prove this, we will want to recast the symmetry condition in more tractable terms, which
requires some additional machinery.

3. The Duality Pairing

A map f : A → B of abelian varieties is called an isogeny if it is a finite flat surjection.
If we define the scheme-theoretic kernel of f to be ker f := f−1(eB) = A ×B,eB Spec k, the
finiteness condition then is equivalent to ker f → Spec k being finite. For any finite k-group

scheme G, its Cartier dual Ĝ is defined to be the k-group scheme Homgp(G,Gm). A critical

result, by an argument in descent theory, is that ker f̂ is Cartier dual to ker f , i.e. we

have a natural duality pairing ker f × ker f̂ → Gm. The primary case of interest is where

f = [n]A : A→ A is multiplication by n, where we have [̂n]A = [n]Â, so that ker f = A[n] is

the n-torsion subgroup of A, and the duality pairing is a map A[n]×Â[n]→ µn ⊂ Gm. In this
case, we can compile these pairings to obtain something even better: for a prime ` 6= char k,
we define the `-adic Tate module of A to be the inverse limit T`(A) := lim←−A[`n] of the of

the system of `-power torsion subgroups with the maps A[`n]
×`−→ A[`n−1], and the duality

pairings at finite level respect the maps in the limit, so that we obtain a non-degenerate

Z`-bilinear pairing 〈·, ·〉A,`∞ : T`(A)× T`(Â)→ Z`(1).
This pairing has two symmetry properties which will be key for this argument. First,

for a map f : A → Â, the maps T`(f) and T`(f̂) are adjoint for the pairings on A and Â,

i.e. for all (a, b̂) ∈ T`(A) × T`(
̂̂
A ) we have 〈T`(f)(a), b̂〉Â,`∞ = 〈a, T`(f̂)(̂b)〉A,`∞ . Second,

for (a, a′) ∈ T`(A) × T`(Â) we have 〈a, a′〉−1
A,`∞ = 〈a′, ιA(a)〉Â,`∞ . Both follow from careful

unpacking of the definition of the finite-level pairings. Together, they will let us demonstrate
the desired behavior of f , at least as far as its effect on T`(A), and because the collection of
A[`n] over all n is dense in A, it turns out that, in general, a map f : A→ B is completely
determined by its effect on the `-adic Tate modules for a prime ` 6= char k. (This may come
as a surprise, as T`(A) is built up from a collection of relatively ‘small’ closed subsets, but
the intuition should come from the case over C, where in the dimension 1 case we have
T`(A) = Z`(1)× Z`(1) ⊂ S1 × S1, which is visibly dense.) We record this fact here:

Theorem 3.1. For A,B abelian varieties over k, Homk(A,B) is Z-finite and for ` 6= char k,

Z` ⊗Z Homk(A,B)→ HomZ`[Gk](T`(A), T`(B)) ⊂ HomZ`
(T`(A), T`(B))

is injective.

Proof. See Conrad, §7.6. �

We now have everything we need to translate symmetry properties of the pairing to proper-

ties of a homomorphism f : A→ Â. Define the Z`-bilinear form ef,`∞(·, ·) : T`(A)×T`(A)→
Z`(1) to be the composition T`(A)× T`(A)

1×T`(f)−−−−→ T`(A)× T`(Â)→ Z`(1).



Theorem 3.2. For a homomorphism φ : A → Â, and a prime ` 6= char(k), the bilinear
form ef,`∞ on T`(A) is skew-symmetric if and only if the homomorphism f is symmetric.

Proof. Suppose f is symmetric. Then for a, b ∈ T`(A) we have ef,`∞(a, b) = 〈a, T`(f)(b)〉A,`∞
by definition, and symmetry of f gives

〈a, T`(f)(b)〉A,`∞ = 〈a, T`(f̂)(ιA(b))〉A,`∞

then by adjointness of T`(f) and T`(f̂) we have

〈a, T`(ĥ)(ιA(b))〉A,`∞ = 〈T`(h)(a), ιA(b)〉Â,`∞

from which the fact that for any (a, a′) ∈ T`(A)× T`(Â) we have 〈a, a′〉−1
A,`∞ = 〈a′, ιA(a)〉Â,`∞

implies
〈T`(f)(a), iA(b)〉Â,`∞ = 〈b, T`(f)(a)〉−1

A,`∞ = ef,`∞(b, a)−1

and we see that ef,`∞ is skew-symmetric. In the other direction, suppose ef is skew-

symmetric, and let a, b ∈ T`(A). It suffices to show that f = f̂ ◦ ιA induce the same
maps on T`(A), as then they must agree everywhere by the preceding Theorem. By skew-
symmetry we have ef,`∞(a, b) = ef,`∞(b, a)−1 = 〈b, T`(f)(a)〉−1

A,`∞ , while on the other hand we
again use the identities for the `-adic pairing to obtain:

ef,`∞(a, b) = 〈a, T`(f)(b)〉A,`∞ = 〈T`(f)(b), ι(a)〉−1

Â,`∞
= 〈b, ĥ(ι(a))〉−1

A,`∞

so that 〈b, h(a)〉A,`∞ = 〈b, ĥ(ι(a))〉A,`∞ for all b ∈ T`(A), and since the `-adic pairing is

non-degenerate, this implies ĥ(ι(a)) = h(a). �

We have now reduced the problem to that of understanding when the Z`-bilinear form
associated to a homomorphism is skew-symmetric, and the connection to the maps φL is
then made possible by the following theorem:

Theorem 3.3 (c.f. Mumford §20, Theorem 2). Let A be an abelian variety, and f : A→ Â
a homomorphism. Then f is symmetric (equivalently, the bilinear form ef,`∞ on T`(A) is
skew-symmetric) if and only if there is a line bundle L on A such that 2f = φL .

Proof. If 2f = φL , then 2ef,`∞ = eφL ,∞ by construction, and we know that φL is a symmetric
homomorphism by Proposition 2.7, and so Theorem 3.2 implies that its associated bilinear
form is skew-symmetric, hence so is ef,`∞ . In the other direction, suppose ef,`∞ is skew-
symmetric. Then by 3.2 f is symmetric. Consider the line bundle Nf := (1, f)∗PA on A.

We claim (even without symmetry of f) that φNf
= f + f̂ ◦ ιA (even without symmetry of

f), so when f = f̂ ◦ ιA is symmetric we get φNf
= 2f .

We have that φNf
(x) ' (1, f)∧(φPA

(x, f(x))). Using the isomorphism (A× Â)∧ ' Â× ̂̂A
via L 7→ (L |A×{0},L |{0}×Â), we compute the map on each factor:

prÂ(φPA
(x, f(x))) = (1A × {0})∗(t∗(x,f(x))PA ⊗P−1

A )

' (t(0,f(x)) ◦ t(x,0) ◦ (1A × {0}))∗PA ⊗ (1A × {0})∗P−1
A

' t∗x(1A × {f(x)})∗PA ⊗ OA

' t∗x(f(x))

' f(x)



where we view f(x) as a line bundle on A, and use the fact that t∗xf(x) ' f(x) since
f(x) ∈ Pic0, and φL is trivial for L ∈ Pic0 (see the discussion following Proposition 4.4).
In the other component, we have:

pr ̂̂
A

(φPA
(x, f(x)) = ({0} × 1Â)∗(t∗(x,f(x))(PA ⊗P−1

A )

' (t(0,f(x)) ◦ t(x,0) ◦ ({0} × 1Â))∗PA ⊗ ({0} × 1Â)∗P−1
A )

' t∗f(x)({x} × 1Â)∗PA ⊗ OÂ

' t∗f(x)ιA(x)

' ιA(x)

where we again view ιA(x) as a line bundle on Â, and use the fact that ιA(x) ∈ Pic0 implies
t∗f(x)ιA(x) ' ιA(x). Thus we have φPA

(x, f(x)) = (f(x), ιA(x)), or specifically as line bundles

φPA
(x, f(x)) ' f(x) � ιA(x). Now when we compute the pullback along (1, f):

φNf
(x) = (1, f)∗φPA

(x, f(x))

' (1, f)∗(f(x) � ιA(x))

' 1∗A(f(x))⊗ f ∗(ιA(x))

' f(x)⊗ f̂(ιA(x))

we obtain the desired result. �

So we’ve shown that 2f has the desired form 2f = φNf
, even for a reasonably concrete

line bundle on A, but we want to push this further and get a result for f itself. It will suffice
to show that, over an algebraically closed field, if 2f = φL for some L , then L 'M⊗2 for
some M , as then we would have 2φM = φM⊗2 = φL = 2f , so f = φM . This follows from
another result in Mumford’s book:

Theorem 3.4 (Mumford §23, Theorem 3). If L is a line bundle on an abelian variety A
over an algebraically closed field and n ∈ Z, L 'M⊗n for some line bundle M if and only
if kerφL ⊃ A[n].

Taking n = 2 and L = Nf , the fact that φNf
= 2f implies kerφNf

= ker f ◦ [2]A ⊇
ker[2]A = A[2]. Thus fk = φM for some line bundle M on Ak. However, we still wish to
show that we can find such M after a finite Galois extension of k. If we set things up in the
right generality from the outset, we will get this for free.

4. Cubical Structure and Functorial Properties of φL

We first state, for completeness, the necessary properties of φL for a line bundle L on A.
In particular, φL is a homomorphism, but we can get much more out of this fact if we check
it in a relative setting. That is, let L be a line bundle on AS, and define for S-schemes T

and x ∈ AS(T ) the analogous map φL : AS → ÂS by φL (x) = t∗xL ⊗L −1. In particular,
we have:

Theorem 4.1 (The Theorem of the Square). The map φL is a homomorphism; i.e., for
any S-scheme T and x, y ∈ AS(T ), we have canonical isomorphisms of line bundles on AT

t∗x+yLT ⊗L −1
T ' t∗xLT ⊗ t∗yLT ⊗ [(x, y)∗(m∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1 ⊗ (e∗SL )AS

]AT
.

In particular, φL defines a k-group homomorphism PicA/k → Homgp(A, Â).



For line bundles on AS pulled back from A, this is proven in, Corollary 3.2.3 of Conrad’s
notes, a calculation that essentially boils down to the “Cubical Structure Theorem” for such
line bundles. To upgrade Conrad’s proof of Theorem 4.1 to work for any line bundles on AS,
we need a suitable version of this result:

Theorem 4.2. Let L be a line bundle on AS. Then for any S-scheme T and a1, a2, a3 ∈
AS(T ), the line bundle

θ
(a1,a2,as)
AS ,L

:= (a1 + a2 + a3)∗L ⊗ (a1 + a2)∗L −1 ⊗ (a2 + a3)∗L −1 ⊗ (a1 + a3)∗L −1

⊗ a∗1L ⊗ a∗2L ⊗ a∗3L ⊗ (e∗L −1)T

is canonically trivial.

Proof. For S = k a field, Conrad proves the result using the Theorem of the Cube (3.1.6).
Granting this case, we deduce the relative version as follows: Set P := PicA/k for brevity.
Let S be a k-scheme, L a line bundle on AS with sL the corresponding S-point of P . Given
T -points a1, a2, a3 ∈ AS(T ), consider the following diagram:

T AS ×S AS ×S AS AP ×P AP ×P AP

AS AP

A

(a1,a2,a3)

{ai}

(1A×sL )3

{pri} {pri}

1A×sL

prA prA

with the property that pulling back the Poincare bundle PA on AP recovers the universal case
T = A3

S over AS for the line bundle L . Pulled back by any triple of T -points (a1, a2, a3), this
in turn recovers the general case. Because we’re not just looking at P -points of AP , however,
this universal setup is not a special case of the result we’re trying to prove (having to do with
arbitrary line bundles on AS), but really a version of the cubical structure theorem for the
line bundle PA on the abelian scheme AP and T ′-points b1, b2, b3 ∈ AP (T ′) for a P -scheme
T ′, for which we’re treating the universal case T ′ = A3

P . We have the relevant hbox-overfilling

line bundle θ
(pr1,pr2,pr3)
AP ,PA

on A3
P ' (A3)P (we henceforth drop the indices and write θ), and

we’ll analyze its fibres θ|p over p ∈ P using the case over k to show that θ ' (prP )∗(prP )∗θ
by the Seesaw Theorem, and then show that (prP )∗θ is trivial by inspection.

Let p ∈ P . To make rigorous the connection to the case over A, we have the following
diagram:

A×k A×k A×k Specκ(p) A×k A×k A×k P AP ×P AP ×P AP

A×k Specκ(p) A×k P

{pri,mij ,m}

ι

{pri×1P ,mij×1P ,m×1P }

∼

{pri,mij ,m}
ι0

which is commutative upon taking the respective maps in each bracketed set, essentially by
the definition of the group scheme structure on AP . As in the familiar case, we have for
i 6= j 6= k the identities (pri + prj + prk) = m and (pri + prj) = mij. Now considering the



fiber over p we use the above diagram to compute:

θ|p = ι∗θ = ι∗
(
m∗PA ⊗m∗12P

−1
A ⊗m

∗
23P

−1
A ⊗m

∗
13P

−1
A ⊗ pr∗1 PA ⊗ pr∗2 PA ⊗ pr∗3 PA ⊗ (e∗PP−1

A )A3
P

)
' m∗ι∗0PA ⊗m∗12ι

∗
0P

−1
A ⊗m

∗
23ι
∗
0P

−1
A ⊗m

∗
13ι
∗
0P

−1
A ⊗ pr∗1 ι

∗
0PA ⊗ pr∗2 ι

∗
0PA ⊗ pr∗3 ι

∗
0PA

where we can drop the e∗PPA term in the second line because PA it is canonically trivial
along that section. Here we know exactly how to interpret ι0PA: it’s just the line bundle
Lp on A×k Specκ(p) corresponding to the point p ∈ PicA/k. The expression then becomes

θ|p = m∗Lp ⊗m∗12Lp ⊗m∗23L
−1
p ⊗m∗13L

−1
p ⊗ pr∗1 Lp ⊗ pr∗2 Lp ⊗ pr3 Lp

and this is trivial by the (universal case of the) cubical structure theorem for the abelian
variety A×k Specκ(p) (Conrad, 3.1.6). �

So for each S-point of PicA/k, we have an S-group homomorphism AS → ÂS. To make
most efficient use of the functorial properties of φL , we want to describe it as a map of

k-group schemes PicA/k → Homgp(A, Â), but this requires making sense of this hom-functor
as a group scheme. We set this up now: let X and Y be schemes over a scheme T (we
will take T = Spec k. The Hom-functor Hom(X, Y ) assigns to any T -scheme S the set
HomS(XS, YS). It is a theorem of Grothendieck (using the theory of Hilbert schemes) that
if T is locally noetherian, X is proper and T -flat, and X and Y are quasi-projective Zariski-
locally over T then this functor is represented by a locally finite type and separated T -scheme
H. (That is, there is an H-map XH → YH that is universal in an evident sense.) We prove
an intermediate technical result to get a version of this representing scheme for maps in the
category of T -group schemes.

Lemma 1. Let f, g : X ⇒ Y be a pair of T -morphisms (corresponding to elements of H(T )).
Then the condition fS = gS is represented by a closed subscheme of T .

Proof. For any T -scheme S, denote by FS and GS the maps S → H corresponding to f and
g, so that if φS : S → T is the structure map, we have FS = FT ◦ φS and GS = GT ◦ φS.
Consider the locus Z ↪→ T where FT and GT agree, defined by the Cartesian diagram

Z T

H H ×T H

FT×GT

∆

where the fact that H is separated implies Z → T is a closed embedding. Clearly fS = gS
iff FS = GS, and from the preceding factorizations of FS and GS, we have FS = GS iff φS
factors through Z ↪→ T , hence the condition that FS = GS is represented by the closed
subscheme Z of S. �

Proposition 4.3. Let A and B be abelian varieties over a field k. Then the functor

Homgp(A,B) : S 7→ HomS−gp(AS, BS)

is represented by a locally finite type and separated k-group scheme.

Proof. Let φH : AH → BH be the universal morphism ofH-schemes for the functor Hom(A,B).
Consider the pair of H-maps f := mBH

◦ (φH × φH), g := φH ◦mAH
: AH × AH ⇒ BH . For

an k-scheme S, let ψ : AS → BS be any S-map, and Ψ : S → H the corresponding k-map.
Then ψ is an S-group homomorphism iff fS = gS, where fS and gS are the pullbacks of



f, g : AH × AH → BH by Φ. By the lemma, we have fS = gS iff Φ factors through a closed
subscheme Z ↪→ H, so that the subfunctor Homgp(A,B) ⊂ Hom(A,B) is represented by
Z ↪→ H, with the pullback of the universal H-morphism AH → BH . Finally, Z is locally
finite type and separated because H is so, and is a k-group scheme since it represents a
group-valued functor. �

We next want to show that this group scheme is étale, for which we need the following
lemma:

Lemma 2. Let T be a local noetherian k-scheme, and let A and B be abelian varieties over
k. Then if a T -group map φ : AT → BT vanishes on the special fiber it vanishes everywhere.

Proof. Let IT denote the ideal sheaf corresponding to the closed subscheme K := kerφ. We
wish to show that IT = 0, i.e. check that the map OAT

→ OK is an isomorphism. It suffices
to check this on the stalks at all closed points p ∈ XT , and since φ vanishes on the special
fiber we have p ∈ K. By Artin-Rees and the exactness of completions, it suffices to show
that the completed map O∧AT ,p

→ (OK)∧p is an isomorphism. This is the limit of the maps
OAT ,p/m

n
p → OK,p/m

n
p , each of which is identified with the stalk at p of the base-changed

map OAOA,p/m
n
p
→ OKOA,p/m

n
p
, so it suffices to show that this base-changed map of structure

sheaves is an isomorphism, which is exactly the statement that φOA,p/mn
p

vanishes, so we have
reduced to the Artin local case. We can then conclude as follows: for finite étale k-schemes
X and Y , with T the spectrum of an local Artin k-algebra, a map XT → YT is formally
étale, so behavior over the special fiber extends uniquely in an infinitesimal neighborhood,
i.e. extends uniquely to T -points. Now since the map φ : AT → BT vanishes on the special
fiber, the maps φ : AT [`n]→ BT [`n] vanish on the special fiber for all n ≥ 1, so must vanish.
Thus kerφ ⊇ AT [`n] for all n ≥ 1, and since kerφ is closed, the fact that the collection of
closed subschemes AT [`n]’s are dense in AT . implies kerφ = AT , so φ vanishes. �

Proposition 4.4. The k-group scheme Z representing Homgp(A,B) in Proposition 4.3 is
étale.

Proof. Let Z be the Hom-scheme in 4.3. Then its tangent space at the identity is identi-
fied with those maps ψ : Spec k[ε]/(ε2) → Z in Z(Spec k[ε]/(ε2) such that the morphism
Spec k → Z on the closed point is exactly the inclusion of the origin. But if we consider
the morphism φ : ASpec k[ε]/(ε2) → BSpec k[ε]/(ε2) corresponding to ψ, the fact that the closed
point of Spec k[ε]/(ε2) is sent to the origin in Z implies that φ vanishes over the special fiber,
which by the preceding lemma implies that it vanishes everywhere, so that there is a single
map Spec k[ε]/(ε2) → Z matching this description, and Z has trivial tangent space at the
origin. Base-changing to k and translating then shows that it is an étale k-scheme. �

We henceforth refer to Z by Homgp(A,B) (consistent with its use earlier in this paper).
It is clear from the definition of φL that the map PicA/k → Homgp(A,B) given on S-points
sL : S → PicA/k by sL 7→ φL defines a map of k-group schemes. In particular, it sends
the connected component of the identity in PicA/k to the zero map, which implies that for

any line bundle L on AS coming from Â, φL is trivial, i.e. t∗xLT ' LT for all x ∈ AS(T ).
More specifically, we define the Néron-Severi scheme NS(A) to be the étale component group

of PicA/k, so by definition this map PicA/k → Homgp(A, Â) factors through some k-group

map Φ : NS(A) → Homgp(A, Â). By the result of §2, if f ∈ Homgp(A, Â)(k) is symmetric,

then fks ∈ Homgp(A, Â)(ks) is in the image of this map, so is of the form Φ(aks) for some



aks ∈ NS(A)(ks), but since NS(A) is étale, this point comes from some aL ∈ NS(A)(L) for
L/k finite Galois, and hence fL = Φ(aL), and fL = φL for some L on AL. This completes
what we set out to prove.
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