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Abstract

Schubert calculus is the study of cells in the Grassmanian. These cells follow
neat patterns because they are indexed by Young diagrams in a natural way. Young
diagrams also index a generating set for the ring of symmetric polynomials, called the
Schur polynomials. Amazingly, the cohomology classes of the Grassmanian cells and
the Schur polynomials obey similar multiplication formulas. I explore this connection
in a finite- and an infinite-dimensional setting.

1 Introduction

In the late nineteenth century, German mathematician Hermann Schubert introduced a new
method of counting linear solutions to geometric problems. His results were compelling but
lacked a rigorous foundation, so later mathematicians worked to precisely build a theoretical
basis for his enumerative geometry. In fact, making Schubert calculus rigorous was the
fifteenth of Hilbert’s famous twenty-three problems.

Schubert found a cell structure for the Grassmanian, which is the space of r-dimensional
subspaces of a fixed complex vector space for a fixed r. The classes of these cells generate the
cohomology of the Grassmanian, so they carry a multiplicative structure. Amazingly, this
cohomology ring behaves similarly to the ring of symmetric polynomials. The object that
ties these seemingly disparate systems together is the Young diagram. A Young diagram is
a collection of boxes arranged in rows such that the row width is nonincreasing as you go
down. The following is an example of a diagram λ = (4, 4, 2, 1), which we write as a tuple
of row widths.

These diagrams index the cells of the Grassmanian. They also index the Schur polynomi-
als, which are an important basis for the symmetric polynomials. For each Young diagram
λ, let σλ be the cohomology class of the corresponding Schubert cell and let sλ be the cor-
responding Schur polynomial. Both of these objects obey the Pieri rule, or the formula for
multiplying with a one-row diagram. It says that

σλ · σ(k) =
∑
λ′

σλ′ sλ · s(k) =
∑
λ′

sλ′
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where the sum over λ′ is taken over the diagrams obtained from λ by adding k boxes, no
two in a column. There is a dual version

σµ · σ(1,1,...,1)︸ ︷︷ ︸
k

=
∑
µ′

σµ′ sµ · · ·(1,1,...,1)︸ ︷︷ ︸
k

=
∑
µ′

sµ′ ,

where the sum over µ′ is taken over the diagrams obtained from µ by adding k boxes, no two
in a row. These facts are enough to show that the objects follow the same multiplication rule
for all pairs of diagrams. Furthermore, this correspondence works if we take Grassmanians
in infinite dimensions.

I’ll begin by giving the preliminary facts about cohomology and symmetric polynomials
needed in this report. After that, I will discuss the finite-dimensional Grassmanian by
defining the Schubert cells, proving the Pieri formulas geometrically, and showing how they
connect to the ring of symmetric polynomials. Finally, I will discuss the versions of these
results when we consider infinite-dimensional Grassmanians.

2 Preliminaries

2.1 Cohomology and the intersection product

The theory of cohomology on manifolds can get quite heavy with machinery, we are only
concerned with a simple case and will gloss over most of the technical details. Basically,
the only properties of the cohomology ring we need are that the generators are classes of
submanifolds, and multiplying is like intersecting those submanifolds. Thankfully, it is easy
to work with the Grassmanian because the space has a cell decomposition. I’ll explain how
to use this cell decomposition to understand the cohomology. For a more rigorous but still
elementary introduction to these ideas, look in [2].

Definition 1. Let X be a compact complex manifold with complex dimension n. A cell
decomposition of X is a sequence

X0 ⊂ X1 ⊂ · · · ⊂ Xn = X

such that each Xi −Xi−1 is a disjoint union of copies of Ci, called i-cells. Equivalently, X
has a cell decomposition if it can be written as a disjoint union of copies of Ck for varying
k.

Let X be a compact complex manifold with a cellular decomposition. For each 0 ≤ k ≤ n,
let bk be the number of k-cells, and let Z1

k , . . . , Z
bk
k be the closures of these cells. Then, the

2k-th homology group H2k(X) is the free abelian group generated by [Z1
k ], . . . , [Zbk

k ]. We
took 2k here instead of k because we are in complex numbers; the odd homology groups are
0.

If Z is a submanifold of X of complex dimension d, then it has a homology class [Z] in
H2d(X). If two submanifolds are homotopic, roughly meaning that they can be continuously
deformed to each other, then they have the same homology class. There is an intersection
product

Hi(X)×Hj(X)→ Hi+j−n(X)
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denoted by “·” where if submanifolds Z and W intersect transversally, then

[Z] · [W ] = [Z ∩W ].

For our purposes, since we are working with linear spaces, we can always find representatives
of homology classes such that intersect transversally or not at all.

Since X is compact, and complex manifolds come with a natural orientation, we can
apply Poincaré duality to turn the homology into cohomology. The duality gives us pairings
H i(X) ∼= Hn−i(X), so we can think of the cohomology group H2k(X) as the free abelian
group on [Z1

n−k], . . . , [Z
bk
n−k], or the cell closures in complex codimension k. Now, a subman-

ifold Z of complex codimension ` has a cohomology class [Z] in H2`(X). The intersection
product behaves more nicely in cohomology because it sends H i(X) × Hj(X) to H i+j(X).
This product turns the cohomology ring H∗(X) =

⊕n
k=0H

2k(X) into a graded ring.
If X is connected, then H2n(X) ∼= Z, generated by the class of a point. If the product of

two cohomology classes σ1 and σ2 lands in H2n(X), then we’ll just write σ1 ·σ2 as the integer
coefficient of [{pt}]. If submanifolds Z and W intersect transversally in m distinct points,
then [Z] · [W ] = m. (This property relies on the fact that we are working in a complex
manifold).

2.2 Young diagrams and symmetric polynomials

Everything in this following section can be found in the beginning of [1].
First, we’ll need some notation. If λ is a Young diagram, we can write λ = (λ1, . . . , λr) as

a tuple of row lengths from top to bottom. Let |λ| be the number of boxes in the diagram. A
Young tableau is a Young diagram with the boxes filled in with integers so that the numbers
are strictly increasing as you go down and weakly increasing (nondecreasing) as you go right.
The picture on the left is a valid Young tableau, while the picture on the right is not.

1 2 2 2
2 3 5
4

1 2 2 2
1 2 3
2

Given a tableau T with entries in {1, . . . , r}, we can produce a monomial xT in x1, . . . , xr
where the power of xi is the number of times i appears in the tableau. Then, we can define
Schur polynomials for each diagram λ by

sλ =
∑

tableau T with shape λ, entries in {1, . . . , r}

xT .

For example, s(k) = hk(x1, . . . , xr), the complete symmetric polynomial of degree k, and
s(1k) = ek(x1, . . . , xr), the elemenary symmetric polynomial of degree k. The Schur polyno-
mials are symmetric. They also obey the Pieri formulas given in the introduction.

The Schur polynomials generate the symmetric polynomials. More specifically, the poly-
nomials sλ for |λ| = n and λ with at most r rows are a basis over Z for the homogeneous
symmetric polynomials of degree n in r variables. If we allow the degree to vary, then we
can see that sλ for λ with at most r rows generate Λr, the ring of symmetric polynomials in
r variables.
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Another generating set for Λr is the elementary symmetric functions ek. Since s(1k) = ek,
the Pieri formulas determine the multiplicative structure for all sλ · sµ. That rule has a
combinatorial formulation which we will not discuss.

In some settings, we want to be agnostic about the number of variables we use because

sλ(x1, . . . , xr, 0, . . . , 0) = sλ(x1, . . . , xr).

So, we can define a symmetric function to be a sequence of symmetric polynomials p(x1, . . . , xm)
for every m such that p(x1, . . . , xm) = p(x1, . . . , xm, 0, . . . , 0). If Λ is the ring of symmetric
functions, then it is the inverse limit of the sequence

· · · → Λr+1 → Λr → Λr−1 → · · · ,

where the maps are p(x1, . . . , xr+1) 7→ p(x1, . . . , xr, 0).

3 Finite-dimensional Grassmanians

The Grassmanian G(r,m) is the space of r-dimensional subspaces of Cm. Let n = m− r be
the codimension of the subspaces.

We’ll need some extra notation for convenience. Fix a basis e1, . . . , em of Cm. This basis
determines a flag of subspaces

{0} = F0 ⊂ F1 ⊂ · · ·Fm−1 ⊂ Fm = Cm,

where Fi = 〈e1, . . . , ei〉. We’ll also need the backwards flag F̃•, where F̃i = 〈em−i+1, . . . , em〉.
Conversely, given a flag E•, we say a basis bj corresponds to that flag if each Ei = 〈b1, . . . , bi〉.

The Grassmanian has a natural complex manifold structure via the following. Express
each V ∈ G(r,m) as the row space of an r × m matrix in our basis. Choose r linearly
independent columns in this matrix, and use row operations to turn those columns into
pivots. Then, fixing those pivots, each choice of entries in the other columns will give us a
unique r-dimensional subspace. The following is an example of the matrix representations
of elements of G(4, 8) with pivots in columns 2, 3, 6, and 8.

∗ 0 0 ∗ 0 ∗ ∗ 1
∗ 0 0 ∗ 1 ∗ ∗ 0
∗ 0 1 ∗ 0 ∗ ∗ 0
∗ 1 0 ∗ 0 ∗ ∗ 0


We have r(m− r) stars in such a matrix, so we can identify the set of matrices of this form
with Cr(m−r). Thus G(r,m) is an r(m− r)-dimensional complex manifold with charts

{V : V has rank r when projected onto 〈ei1 , ei2 , . . . , eir〉} ≈ Cr(m−r).

3.1 A cell decomposition

The Grassmanian also has a nice decomposition into cells. For each V ∈ G(r,m), write V
as a matrix and let i1 be the leftmost nonzero column, i2 be the leftmost column linearly
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independent from i1, and so on, so ir is the leftmost column linearly independent from
columns i1, . . . , ir−1. Then, we can use row operations to uniquely write the matrix such
that there are pivots in columns ij, each column before i1 is 0, and each column between ij
and ij+1 starts with r − j zeroes. Here is an example in G(3, 8) where the leftmost columns
are 2, 3, 6, and 8. I have written the pivots in the reverse order from normal in order to
make the Young diagram easier to see.

0 0 0 0 0 0 0 1

0 0 0 0 1 ∗ ∗ 0

0 0 1 ∗ 0 ∗ ∗ 0

0 1 0 ∗ 0 ∗ ∗ 0

 
The positions of the leftmost columns determine the number of zeros we add per row. If we
look at these extra zeroes as boxes, then we get a Young diagram. In general, the Young
diagram we get through this process is

λ = (ir − r, ir−1 − r + 1, . . . , i2 − 2, i1 − 1).

Note that such a Young diagram must have at most r rows and n columns.
Let Ω◦λ (F•) be the set of subspaces with leftmost columns i1, . . . , ir. This set is home-

omorphic to Cr(m−r)−|λ|, where the coordinates are the values of the stars in the matrix
representation. Since each element of G(r,m) yields one choice of leftmost columns, the
Grassmanian decomposes into a disjoint union of cells

G(r,m) =
∐

λ with at most r rows, n columns

Ω◦λ (F•) .

These cells are called Schubert cells. We can explicitly describe the cell corresponding to a
diagram λ as

Ω◦λ (F•) = {V : dim(V ∩ F̃k) = i for n+ i− λi ≤ k ≤ n+ i− λi+1, for 1 ≤ i ≤ r}.

Observe that the cell has codimension |λ| in the Grassmanian. The closure of the cell, which
we call a Schubert variety, is

Ωλ (F•) = {V : dim(V ∩ F̃n+i−λi) ≥ i, 1 ≤ i ≤ r}.

We can also describe the Schubert variety using the columns of the Young diagram instead
of the rows. If λTj is the size of column j in a diagram λ, then

Ωλ (F•) =
{
V : dim(V ∩ F̃n−j+λTj ) ≥ λTj , 1 ≤ j ≤ n

}
.

Thus the cohomology of G(r,m) is freely generated as an abelian group by [Ωλ (F•)]
for each diagram λ with at most r rows and n columns. Given two flags F• and E•, we
can always continuously deform one into the other. So, Ωλ (F•) and Ωλ (E•) have the same
cohomology class, which we can just denote by σλ = [Ωλ].

Now that we know the additive structure of H∗(G(r,m)), we turn to the multiplicative
structure.
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3.2 Multiplication in H∗(G(r,m)): the Pieri formulas

The Pieri formulas tell us how to multiply special elements of H∗(G(r,m)). Fortunately,
these simple formulas determine the multiplicative structure of the rest of the cohomology
ring. I’ll restate the Pieri formulas here.

Proposition 1 (column version of Pieri). In H∗(G(r,m)), if k ≤ n, then

σλ · σ(k) =
∑
λ′

σλ′ ,

where the sum is taken over all diagrams obtained from λ by adding k boxes, no two in a
column.

Proposition 2 (row version of Pieri). In H∗(G(r,m)), if k ≤ r, then

σλ · σ(1k) =
∑
λ′

σλ′ ,

where the sum is taken over all diagrams obtained from λ by adding k boxes, no two in a
row.

A proof of the column version can be found in Section 9.4 of [1], so I’ll give a proof of
the row version. Before that, we’ll need a dual basis for the cohomology.

Lemma 1 (Duals of Schubert classes). Let λ and µ be Young diagrams such that |λ|+|µ| = rn

σλ · σµ =

{
1 if λi + µr+1−i = n for all 1 ≤ i ≤ r

0 if λi + µr+1−i > n for any i.

Proof sketch. Choose any flag F•. If the first condition is true, then if we rotate µ by 180
degrees and place it up against λ, then we will get a full r × n rectangle like so.

λ µ rotated

Express V ∈ G(r,m) in matrix form in a basis corresponding to F•. If V ∈ Ωλ(F•), then
we can write the matrix with extra zeros in the shape of λ starting from the top left. If
V ∈ Ωλ(F̃•), then we can write the matrix with extra zeroes in the shape of µ rotated,
starting from the bottom right. Because λ and the rotated µ fit together the way they do,
the extra zeroes force Ωλ(F•)∩Ωµ(F̃•) to be a single point. If λ and the rotated µ overlap at
all (this would happen in the second case), then Ωλ(F•) ∩ Ωµ(F̃•) is empty. A formal proof
of this fact can be found in [1].

The dual basis gives us a systematic way of computing products in the cohomology ring,
which you’ll see at the beginning of the proof of Pieri.
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Proof of row version of Pieri. We know the product takes the form

σλ · σ(1k) =
∑

|λ′|=|λ|+k

nλ′σλ′ .

For each λ′, if σµ is the dual of σλ′ , then nλ′ = σλ · σ(1k) · σµ. We’ll get this coefficient by
intersecting Schubert varieties corresponding to the three diagrams in the subscripts.

First, let’s intersect Schubert varieties corresponding to λ and µ. Fix a flag F•. Place
λ at the top left corner of an r × n rectangle, and rotate µ 180 degrees and place it at the
bottom right corner. If the diagrams overlap, then by an argument similar to that of Lemma
1, Ωλ(F•) ∩ Ωµ(F̃•) is empty, so nλ′ = 0. Let’s assume otherwise, i.e. each λi + µr+1−i ≤ n,
which is equivalent to λ′i ≥ λi. Now the picture of the diagrams looks something like

λ µ rotated

where the number of blank squares in each row is λ′i − λi.
Express V ∈ Ωλ(F•) ∩ Ωµ(F̃•) as a matrix in a basis corresponding to F•. Then, we can

row reduce the matrix so that it has extra zeroes in the shape of λ starting from the top left
and extra zeroes in the shape of µ starting from the bottom right. Such a matrix for the
above example would look like

0 0 0 0 0 0 0 ∗ ∗ 0

0 0 0 0 ∗ ∗ ∗ 0 0 0

0 0 0 ∗ ∗ 0 0 0 0 0

0 ∗ 0 0 0 0 0 0 0 0

 ,

where the stars can be anything as long as the matrix is full rank. In general, row i of
such a matrix has λ′i − λi + 1 contiguous stars starting at column r − i + λi + 1. This
property guarantees that the set of starred columns in one row is never contained in the set
starred columns in another row. So, up to scaling of rows, we can uniquely express each
V ∈ Ωλ(F•) ∩ Ωµ(F̃•) as a matrix with the only nonzero entries in the starred places. Call
the rows with only one star basis rows. For convenience, let’s write all our matrices with the
basis rows at the top, and let’s replace the stars in the basis rows with 1.

Now that we understand Ωλ(F•) ∩ Ωµ(F̃•), we need to intersect with another Schubert
variety Ω(1k)(E•). Using the column description of the Schubert variety, we can say

Ω(1k)(E•) = {V : dim(V ∩ En+k−1 ≥ k}.

From now on, let’s write this variety as Ω(1k)(W ) for a generic n+k−1 dimensional subspace
W . If V ∈ Ω(1k)(W ), then V contains k linearly independent vectors inside W . To specify
these k vectors, we can choose a k × r matrix C of rank k so that the vectors are the rows
of C · V .

Suppose for some i that λ′i is at least two bigger than λi. Then, there have to be at least
r − k + 1 rows j where λ′i = λi, so if V ∈ Ωλ(F•) ∩ Ωµ(F̃•), then its matrix must have at
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least r − k + 1 basis rows. Using row operations, we can write every matrix C so that the
top row is

(c1, . . . , cr−k+1, 0, . . . , 0︸ ︷︷ ︸
k−1

).

Then, if the i-th row of V is eji , the top row of C · V is

w1 = c1ej1 + · · ·+ cr−k+1ejr−k+1
.

We need w1 to satisfy the r − k + 1 equations that cut out W . This condition imposes
r − k + 1 equations on the r − k + 1 variables ci, so the only solution is zero, which means
that C is not full rank. Thus if any λ′i − λi > 1, then nλ′ = 0.

Now suppose all λ′i−λi ≤ 1. Then, V must have r−k basis rows ej1 , . . . , ejr−k
at the top

and k rows vr−k+1, . . . , vr at the bottom with two stars each. The following is the unique
choice of C and V so that the rows of C · V sit in W . Let C have a k× k identity matrix on
the right hand side. Then, the i-th row of C · V is

wi = vr−k+i +
r−k∑
`=1

ci`ej` .

We need wi to satisfy the r−k+ 1 equations for W . We have two variables from each vr−k+i
and r − k variables from the ci`’s. So, we have r − k + 2 variables and r − k + 1 equations,
then we end up with exactly one solution once we mod out by scalar multiplication of vr−k+i.

If there were another solution, then it would be impossible to write C with an identity
matrix on the right side. In this case, we could write the top row of C with k zeroes at the
end. So, the top row of C · V would have r − k variables, which would not have a solution
in r − k + 1 equations. Therefore, if each λ′i − λi ≤ 1, then nλ′ = 1.

The Pieri formulas indicate that H∗(G(r,m)) behaves similarly to Λr, the ring of sym-
metric polynomials in r variables. Indeed, we have an abelian group homomorphism Λr →
H∗(G(r,m)) with the following values on the Schur polynomials:

sλ 7→

{
σλ if λ has at most n columns

0 otherwise.

Since Λr is generated as a ring by the elementary symmetric polynomials s(1k) = ek and both
rings follow the row version of the Pieri formula, this map is actually a homomorphism of
rings. So, we know that H∗(G(r,m)) follows the same multiplication law as the symmetric
polynomials in general, which is that

σλ · σµ =
∑

cνλµσν ,

where cνλµ are the Littlewood–Richardson coefficients.
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3.3 Dualization

The row and column versions of the Pieri formula behave in a symmetric fashion: one can
be obtained from the other just by interchanging the words “row” and “column.” This fact
suggests that the Grassmanian and its cohomology have some sort of duality property. A
natural dual map on the Grassmanian is the isomorphism (·)⊥ : G(r,m)→ G(m−r,m) that
takes a subspace V to its complement V ⊥ in Cm. A natural dual map on Young diagrams
sends λ to λ reflected across the diagonal, which we call λT . These two maps play nicely
with each other by the following.

Proposition 3. If F• is a flag and F̃• the corresponding backwards flag, then (Ωλ(F•))
⊥ =

ΩλT (F̃•). This means that the map induces a ring isomorphism H∗(G(r,m)) → H∗(G(m −
r,m)) sending σλ to σλT .

Proof. Use the column description of Ωλ(F•). Then,

V ∈ Ωλ(F•)⇐⇒ dim(V ∩ F̃n−j+λTj ) ≥ λTj

⇐⇒ dim(V ⊥ ∩ F̃n−j+λTj ) ≤ dim F̃n−j+λTj − λ
T
j = n− j

⇐⇒ dim(V ⊥ ∩ Fr+j−λTj ) ≥ dimV ⊥ − (n− j) = j

⇐⇒ V ⊥ ∈ ΩλT (F̃•).

The version of this dual property in symmetric polynomials is ω-involution, which sends
each complete symmetric polynomial hk to the elementary symmetric polynomial ek. This
involution behaves the same way as taking the complement in the Grassmanian, but in the
polynomial context it seems much less intuitive.

3.4 The Plücker embedding

The Grassmanian can be embedded into projective space by the Plücker embedding

G(r,m)→ P(ΛrCm)

〈v1, . . . , vr〉 7→ v1 ∧ · · · ∧ vr.

The image of G(r,m) in P(ΛrCm) is cut out by quadratic equations

(v1 ∧ · · · ∧ vr) · (w1 ∧ · · · ∧wr) =
∑

i1<···<ik

(v1 ∧ · · · ∧w1 ∧ · · · ∧wk ∧ · · · ∧ vr) · (vi1 ∧ · · · ∧ vir ∧wr+1 ∧ · · · ∧wr)

for all k ≤ r, v1, . . . , vr, w1, . . . , wr ∈ Cm. The summand is simply (v1∧· · ·∧vr)·(w1∧· · ·∧wr)
with vij and wj+r−k interchanged for each j. See [1] section 9.1 for a proof of this fact.

Given V ∈ G(r,m), the Plücker embedding gives us a fun way to produce the Young
diagram corresponding to the Schubert cell containing V . Fix a basis ei and write V as a
matrix. The coefficient of ei1 ∧ · · · ∧ eik in the Plücker embedding of V is the determinant
of the matrix minor with columns i1, . . . , ik. So, if we take the nonzero coordinate with the
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smallest possible subscripts, then we will have the indices of the leftmost linearly independent
columns of the matrix, which is the information we need to find the cell.

Here is a method to produce the diagram that will extend nicely to infinite dimensions.
Label our basis of Cm as e−r+ 1

2
, · · · , e−3/2, e−1/2, e1/2, · · · , en− 1

2
. Start with an example: let

V ∈ G(3, 8) and write V with leftmost linearly independent columns 2, 4, and 7. So, we get
a matrix like this:  0 0 0 0 0 0 1 ∗

0 0 0 1 ∗ ∗ 0 ∗
0 1 ∗ 0 ∗ ∗ 0 ∗


The term with the smallest subscripts in the Plücker embedding is e−3/2 ∧ e1/2 ∧ e7/2. Draw
a graph of y = |x| in the plane. Start at (−3, 3) and execute the following sequence, moving
one unit to the right per step. Since e−5/2 is missing from our wedge product, let’s draw our
next point one unit up. Since e−3/2 is in the product, let’s draw our next point one down.
Since e−1/2 is missing, let’s go up. Keep going like this, going up if a basis vector is missing
and down if it is there. In the picture, I’ve labelled the points in order. If we connect the
dots, then we can see a rotated Young diagram.

1

2

3

4

5

6

7

8

9

Here is the recipe in general. Choose a basis for Cm and label it from −r + 1
2

to n − 1
2
.

Given V ∈ G(r,m), take the Plücker embedding of V into P(ΛrCm) and find the nonzero
term with the smallest subscripts. Using this term, draw the picture. Start at (−r, r). If
e−r+ 1

2
appears in the wedge product, draw the next point one unit down. Otherwise, go up.

Continue like this until you reach (n, n). Connect the dots to produce the Young diagram.
This method produces the correct diagram because a missing coordinate means your next
column has as many extra zeroes as the previous column, and a present coordinate means
that your next column is a pivot.

4 Infinite-dimensional Grassmanians

We’ve seen that H∗(G(r,m)) is a truncated version of Λr, where sλ ∈ Λr maps to 0 if λ has
too many columns. The fixed codimension in the Grassmanian is the cause of this truncation,
so we can try growing this codimension infinitely in order to find a space with cohomology
equal to Λr. We can also take the dual of this idea, so we can fix the codimension and let
the dimension grow and see what happens. Finally, if we limit in both of these directions,
we should get some topological space with cohomology equal to Λ, the ring of symmetric
functions.
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4.1 Fixing dimension and growing codimension

Let e1, e2, . . . be a basis of C⊕∞, henceforth written as C∞. Observe that our C∞ is a direct
sum, so every vector is a finite linear combination of basis elements. Let G(r,m) be the space
of r-dimensional subspaces of 〈e1, . . . , em〉. Then, the inclusion of Cm into Cm+1 induces an
inclusion of G(r,m) into G(r,m+ 1). The direct limit of the sequence of inclusions

G(r, r) ↪→ · · · ↪→ G(r,m) ↪→ G(r,m+ 1) ↪→ · · ·

is the space of r-dimensional subspaces of C∞, which we will write as G(r,∞). Consider the
cohomology rings of the Grassmanians in the sequence. There are pullback mapsH∗(G(r,m+
1)) → H∗(G(r,m)) that send σλ to σλ if λ has at most n columns and 0 otherwise. These
maps give us the sequence in the following proposition.

Proposition 4. The ring Λr is the inverse limit of the sequence

· · · → H∗(G(r,m+ 1))→ H∗(G(r,m)) · · · → H∗(G(r, r)).

Proof. If λ has n columns, then σλ appears in H∗(G(r,m)) for all m ≥ r+n. If we write the
inverse limit R as a subgroup of the direct product of all H∗(G(r,m)), then the following
gives an isomorphism Λr

∼= R:

sλ 7→ (. . . , σλ, σλ, σλ, 0, . . . , 0︸ ︷︷ ︸
n−1

)

Assuming that the cohomology of the limit is the limit of the cohomology, this means
that Λr

∼= H∗(G(r,∞)). Indeed, all of our previous logic follows through. Since our basis is
numbered starting from 1, we still have a notion of leftmost linearly independent columns,
so we can still see the Young diagrams in the matrix representations of subspaces. Since we
are allowed to have arbitrarly many columns, the cells are indexed by Young diagrams with
at most r rows and any number of columns. Pieri’s formula holds because given arbitrary
classes σλ and σµ, we can always find a finite Grassmanian for both of them to live in, as
long as we set the codimension to be big enough.

4.2 Fixing codimension and growing dimension

Fix a codimension n, and let . . . , e−3, e−2, e−1, e1, e2, . . . , en be a basis for C⊕∞. For a ≤ b,
let Ea,b = 〈ea, ea+1, . . . , eb〉. Let G(r, r+n) be the space of codimension n subspaces of E−r,n,
which we identify with Cr+n. Then, we have an inclusion of Grassmanians G(r, r + n) ↪→
G(r + 1, r + 1 + n) sending 〈v1, . . . , vr〉 to 〈e−r−1, v1, . . . , vr〉. We wish to analyze the direct
limit of the sequence

G(0, n) ↪→ · · · ↪→ G(r, r + n) ↪→ G(r + 1, r + 1 + n) ↪→ · · · ,

which we will call G(∞,∞ + n). This task is best done using the Plücker embedding
G(r,m) → P(ΛrCm). Consider the inclusion ΛrCm ↪→ Λr+1Cm+1 sending v1 ∧ · · · ∧ vr to
e−r−1 ∧ v1 ∧ · · · ∧ vr.
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Lemma 2. The direct limit of the sequence ΛrCr+n ↪→ Λr+1Cr+1+n ↪→ · · · is an infinite-
dimensional vector space with basis

{· · · ∧ e−r−2 ∧ e−r−1 ∧ ei1 ∧ · · · ∧ ei` : r ≥ 0,−r ≤ i1 < · · · < i` ≤ n,

and #(ij > 0) = k − 1−#(ij < 0)}.

Denote this direct limit by Λ∞C∞+n.

In English, this basis consists of infinite wedge products where the number of positive
indexed ei’s equals the number of missing negative indexed ej’s. For instance, · · · e−5∧ e−1∧
e2 ∧ e3 satisfies this property.

Proof. Choosing r distinct indices from of {−r,−1, 1, n} automatically ensures that the
number of positive indices equals the number of missing negatives, just by virtue of how we
indexed the set. So, every basis element ei1 ∧· · ·∧ei` of ΛrCr+n has this property. The maps
from ΛrCr+n to the direct limit are simply

v1 ∧ · · · ∧ vr 7−→ · · · ∧ e−r−2 ∧ e−r−1 ∧ v1 ∧ · · · ∧ vr.

Notice that attaching · · · ∧ e−r−2∧ e−r−1 to the wedge product contibutes no positive indices
or missing negative indices, so the property is preserved. Thus the basis for Λ∞C∞+n is taken
from the bases of each ΛrCr+n and attaching an infinite wedge product of basis elements
with indices up to −r − 1.

Using the embeddings G(r,m) → P(ΛrCm), the universal property of the direct limit
gives us an embedding G(∞,∞+n)→ P(Λ∞C∞+n). The image of G(∞,∞+n) will be the
direct limit of the Plücker images of G(r, r + n). So, in coordinates, the equations that cut
out this image will be

(· · · ∧ e−r−1 ∧ ei1 ∧ · · · ∧ ei`) · (· · · ∧ e−p−1 ∧ ej1 ∧ · · · ∧ ej`)

=
∑

(· · · ∧ e−r′−1 ∧ ei′1 ∧ · · · ∧ ei′`) · (· · · ∧ e−p′−1 ∧ ej′1 ∧ · · · ∧ ej′`),

where the sum is over exchanging a fixed set of k indices from j1, . . . , j` with some k indices
from i1, . . . , i`, preserving order. Note that this exchange will preserve the property that the
number of positives is the number of missing negatives.

Now that we can describe G(∞,∞+n) as a topological space, let’s find its cell structure.
Let V ∈ G(∞,∞ + n). Then, we can find some r where V ∈ G(r, r + n). Take the finite
Plücker coordinates of V , find the nonzero coordinate with the smallest indices, and draw a
picture as shown in Section 3.4. This picture will give us the Young diagram corresponding
to the cell containing V . Since r can be arbitrary large, the diagrams that index the cells
have at most n columns but any number of rows.
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4.3 Limiting in both directions

We have examined sequences of inclusions in two directions:

G(r,m) G(r + 1,m+ 1) · · ·

G(r,m+ 1) G(r + 1,m+ 2) · · ·

...
...

Let’s call the direct limit of this system G(∞,∞ + ∞). Combining the ideas from the
previous two sections, the Plücker embedding of G(∞,∞+∞) lives in P(Λ∞C∞+∞), where
we index the basis of C∞+∞ by . . . , e−2, e−1, e1, e2, . . . . A basis for Λ∞C∞+∞ is the set of
infinite wedge products of basis vectors where the number of positive indices is the number of
missing negative indices. Now, when we draw the diagram associated with a wedge product
of ei’s, we can get Young diagrams of any size, so the cells in G(∞,∞+∞) are indexed by
all Young diagrams.

Consider the cohomology of the Grasmanians:

H∗(G(r,m)) H∗(G(r + 1,m+ 1)) · · ·

H∗(G(r,m+ 1)) H∗(G(r + 1,m+ 2)) · · ·

...
...

Taking the limits of the columns gives us

Λr ← Λr+1 ← · · · ,

where the map takes p(x1, . . . , xr+1) to p(x1, . . . , xr, 0). The inverse limit of the above se-
quence is Λ, the ring of symmetric functions. So, we have an isomorphism Λ ∼= G(∞,∞+∞)
given by sλ 7→ σλ.
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