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Abstract
Modular forms are powerful tools used to study problems in number theory, but the spaces of modular

forms for Γ0(N) are still not completely understood. In this report we study two problems related to
these spaces: Determining the zeros of Eisenstein series, and the formulation of explicit bases for these
spaces using Brandt matrices. More specifically, we derive bounds on the imaginary parts of the zeros
of level p Eisenstein series, and we examine the subspace of M2(Γ0(p)) generated by the theta series
associated to the diagonal of the corresponding Brandt matrices. For the first part, we will derive a
formula to find the number of zeros with multiplicity of a modular form of Γ0(p) and use the formula
to bound where the zeros of the Eisenstein series of level p prime can be. Then, we study the subspace
generated by the elements of Brandt matrices by investigating the properties of the matrix that maps
the basis for M2(p) to the diagonal elements of the Brandt matrices.

1 Introduction
Modular forms are important analytic tools used to study number theory. Modular forms played a key
role in the proof of Fermat’s Last Theorem and have been used to derive unexpected relationships between
arithmetic sequences, elliptic curves and other series. Hence, learning about the spaces of different modular
forms and their properties allows us to better understand these powerful functions.

We investigate certain Eisenstein series for Γ0(N). An relevant result about the Eisenstein series of level 1
is they generate all modular forms of level 1. While this result does not generalize to higher level, Eisenstein
series are still important modular forms to analyze because they are crucial to the structure of the space of
modular forms of level N .

F.K.Rankin and Swinnerton-Dyer prove in [1] that for a weight k level 1 Eisenstein series, all of the zeros
lie on the arc |z| = 1. Shigezumi applies Rankin and Swinnerton-Dyer’s method to Γ0(p) and Γ∗0(p) for small
p in [2] and finds a similar result. We try to generalize to higher p and find the zeros of these Eisenstein
series.

1.1 Background and Definitions
The congruence subgroup that we will focus on is Γ0(N) which is defined as

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 mod N

}
Note that Γ0(1) = SL2(Z).

Definition 1. A modular form of weight k and level N for congruence subgroup Γ0(N) is a function
f : H → C that is holomorphic on H and f(γ) is holomorphic at ∞ for all γ ∈ Γ0(N). In addition, f
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satisfies the following relation for z ∈ H, γ ∈ Γ0(N):

f (γz) = j (γ, z)k f (z) (1)

where j(γ, z) = (cz + d) for γ =
(
a b
c d

)
The holomorphicity of f allows us to write the q-expansion of f , which is more useful when computing

properties of f . We will denote the q-expansion of f as the following sum, where q = e2πiz.

f =
∞∑
n=0

anq
n

First we will define the level 1 Eisenstein series of weight k as the following function.

Definition 2. The level 1 Eisenstein series of weight k is Gk(z) where

Gk (z) =
∑

(c,d)∈Z2−{(0,0)}

(cz + d)−k

Note that Gk(z) = 0 for odd k. For the remainder of the report, we will always assume k is an even
positive integer. More often, we will consider the normalized Eisenstein series:

Definition 3. The normalized level 1 Eisenstein series of weight k is Ek(z) where

Ek(z) = 1
2
∑

(c,d)=1

(cz + d)−k

Then the q-expansion of Gk and Ek are as follows:

Gk(z) = 2ζ(k) + 2 (2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

Ek(z) = 1 + (2πi)k

(k − 1)!ζ(k)

∞∑
n=1

σk−1(n)qn

where σ is defined to be:
σk−1(n) =

∑
d|n

dk−1

It is know that the space of level 1 modular forms is generated by E4 and E6.
Now we want to consider the Eisenstein series for Γ0(N):

Definition 4. A cusp is a Γ0(N)-equivalence class set of points in Q ∪ {∞}.

Definition 5. Let c be a cusp of Γ0(N), then the Eisenstein series centered at the cusp c is defined to be:

Eck,N (z) =
∑

Γc\Γ0(N)

j(γ, z)−k

Here Γc are the matrices of Γ0(N) where that take c to c. A property of these Eisenstein series is that
they are zero at all of the cusps they are not centered at.

If we consider Γ0(p) for p prime, then the only cusps are at 0 and∞. So, we have the following Eisenstein
series:

E∞k,p = 1
2
∑

(c,d)=1
p|c

(cz + d)−k = 1
1− pk

(
Ek (z)− pkEk (pz)

)
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E0
k,p = 1

2
∑

(c,d)=1
p-c

(cz + d)−k = 1
1− p−k (Ek (z)− Ek (pz))

If we consider these series under the Atkin-Lehner involution Wp =
(

0 − 1√
p√

p 0

)
We have the following

relation between the two Eisenstein series:

(√pz)−kE∞k,p (Wpz) =
(
p−k/2

)
E0
k,p (z)

(√pz)−kE0
k,p (Wpz) =

(
pk/2

)
E∞k,p (z)

This means that there is a bijection between the zeros of the two Eisenstein series. In addition, if
we define vp(f) to be the order of f at the point p, then we have that v0(E∞k,p) = v∞(E0

k,p) = 1 and
v∞(E∞k,p) = v0(E0

k,p) = 0.
We want to find and/or bound where the zeros of E∞k,p will be. Given Rankin and Swinnerton-Dyer and

Shigezumi’s results both locate the zeros on arcs on the boundary of certain domains, we aim to generalize
the domain that Shigezumi uses to find the zeros. We also want to count the number of zeros we expect in
a certain area and apply different strategies to locate them.

2 Fundamental Domain
To study where the zeros of E∞k,p lie, first recall that E∞k,p(γz) = j(γ, z)kE∞k,p(z). So, if z is a zero, then so is
γz for all γ ∈ Γ0(p). So, we only need to consider H/Γ0(p):

Definition 6. A fundamental domain for a congruence subgroup Γ is a region F ⊂ H such that for every
z ∈ H, there is a unique γ ∈ Γ such that γz ∈ F . Note that there are many fundamental domains for a given
Γ.

We want to consider a fundamental domain for Γ0(N). We aim to find the most ideal one for locating
zeros. We introduce two fundamental domains, named the fin domain and the bump domain and discuss the
information they contain.

2.1 The Fin Domain
One way to achieve a fundamental domain for Γ0(N) is to look at the coset representatives for Γ0(N) for
SL2(Z). We will define F1 to denote the fundamental domain of SL2(Z), pictured here:

Figure 1: The Fundamental Domain for SL2(Z)
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So, to determine what a valid fundamental domain looks like for Γ0(N) for other N , we need to determine
a set of representatives S such that

SL2(Z) =
⋃
α∈S

Γ0(N)α

To determine these matrices, we first note two formulas from [3]:

[SL2(Z) : Γ0(N)] = dN = N
∏
d|N

(
1 + 1

d

)

Number of cusps = ε∞ =
∑
d|N

φ (gcd (d,N/d))

(Note φ is the Euler totient function) So, we are looking for dN matrices, that are all distinct via
action of SL2(Z), and which give ε∞ different cusps. Since we will consider N = p prime, one such set of
representatives is given by

S = I ∪ {αk}(p−1)/2
k=−(p−1)/2

Where
αk =

( 0 1
−1 k

)
This leads to Fin domains that look like these, taken for p = 11, 13:

Figure 2: Fin domains for p = 11, 13, divided by coset representatives

For composite N , there is a deterministic algorithm to select the desired number of coset representatives,
with dN matrices and ε∞ different cusps. However, we will hold off on discussing that until the appendix,
as the method is unnecessary for our discussions.

However, while these graphs are nice, symmetric, and easy to compute, for the functions we will consider,
it is better to define a slightly different fundamental domain:

2.2 The Bump Domain
We consider the fundamental domain that Shigezumi considers in [2]. This fundamental domain we will refer
to as the bump domain. We will consider the construction of the bump domain for Γ0(p) for p prime. First,
we will parameterize the boundary as the following:

Ap,f =
{
eiθ

p
− 1
p
| θ ∈ [0, 2π

3 ]
}
∪
{
eiθ

p
+ 1
p
| θ ∈ [π3 , π]

}
∪
{
eiθ

p
+ q

p
| θ ∈ [π3 ,

2π
3 ], 1 < |q| ≤ p− 1

2 , q ∈ Z
}
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Bp = Ap,f ∪
{

1/2 + it | t ≥
√

3
2p

}
∪
{
−1/2 + it | t ≥

√
3

2p

}

Figure 3: Bump domain for Γ0(11)

Lemma 1. Let Cj =
{
eiθ

p + j
p | θ ∈ [π3 ,

2π
3 ]
}

be the arc centered at j
p . Then Cj and Ck are equivalent via

action of Γ0(p) if and only if
j ≡ −k−1 mod p (2)

Proof. If: Let j ≡ −k−1 mod p, such that |j| ≤ p−1
2 . We need to find an element γ ∈ Γ0(p) such that

Ck = γCj . Take γ =
(
a b
c d

)
, where b = −jk−1

p . Since j ≡ −k−1 mod p, this is an integer. To show this sends
one arc to another, take any z = 1

p (j + eiθ) ∈ Cj . Then

γz =
k
p (j + eiθ) + −jk−1

p

j + eiθ − j

= 1
p

keiθ − 1
eiθ

= 1
p

(k − e−iθ) ∈ Ck

Specifically, this γ flips the boundaries of the two arcs along the vertical line halfway between them, which
will come into play when we talk about equivalences of wedges.

Only If: Assume that there is some γ ∈ Γ0(p) such that γCj = Ck. Now, extend Cj and Ck from just the
narrow arc at the top to the whole circles C ′j and C ′k in C. Since mobius inversion sends lines and circles to
lines and circles, if Ck = γCj , then C ′k = γC ′j . Since γ has all real entries, it must send the rational values
on this circle to one another. So, we must have

γ

(
j + 1
p

)
= k ± 1

p
, γ

(
j − 1
p

)
= k ∓ 1

p

However, via some simple algebra, we arrive at the conclusion that γ =
(
k b
p −j

)
, where b = −jk−1

p . For b
to be an integer, we must have j ≡ −k−1 mod p.

Proposition 1. Let Fp be the region enclosed in Bp including B. Fp is a fundamental domain for Γ0(p).

Proof. We note that for Fp to be a fundamental domain, it suffices to show that the boundary of Fp maps

to itself under Γ0(p). Clearly from Lemma 1, the Ap maps to itself under Γ0(p). Then under γ =
(

1 1
0 1

)
,
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{
−1/2 + it | t ≥

√
3

2p

}
maps to

{
1/2 + it | t ≥

√
3

2p

}
. Thus, Bp maps to itself under Γ0(p) and hence Fp will

be a fundamental domain.

Figure 4: Bump domains for p = 11, 13, including elliptic points

Definition 7. The bump fundamental domain Fp for Γ0(p) is the area within boundary B including the Bp.

Notice that the bump fundamental domain is the fin fundamental domain transformed under the Atkin-
Lehner involution. Thus, just like the previous section, there is a formula for the bump domain for arbitrary
levels N . However, as before, it is complicated to describe due to the addition of cusps other than at 0 and
∞. This will be discussed briefly in the appendix as well.

2.3 Special Points on Fp

Also important to our understanding of the fundamental domain are the elliptic points of Γ0(p). A point
z is an elliptic point for a congruence subgroup Γ (such as Γ0(p)) if there is a matrix I 6= γ ∈ Γ such that
γz = z

So, if z is an elliptic point of Γ0(p), then there is some matrix γ =
(
a b
c d

)
, p|c, such that γz = z.

Rearranging and applying the relation ad− bc = 1, this means that

z =
a− d+

√
(a+ d)2 − 4
2c

For this to be imaginary, we much have (a+ d)2 − 4 < 0, so a+ d ∈ {−1, 0, 1}. This leads us to two cases:

Definition 8. A point z is a ρ-elliptic point for Γ0(p) if it is a shift of ρ = 1+
√
−3

2 , i.e. z = γρ for some
γ ∈ SL2(Z). These elliptic points are all of the form z = q+

√
−3

2p for some q ∈ Z.

Definition 9. A point z is an i-elliptic point for Γ0(p) if it is a shift of i, i.e. z = γi for some γ ∈ SL2(Z).
These elliptic points are all of the form z = q+i

p for some q ∈ Z

Lemma 2. The number of ρ-elliptic points of Γ0(p) is ερ = 1 +
(−3
p

)
, and the number of i-elliptic points of

Γ0(p) is εi = 1 +
(−1
p

)
.

Proof. From the formula above, z is a ρ-elliptic point iff a+d = ±1. Since we can replace γ with −γ without
changing how it acts on z, WLOG we have a+ d = −1, and of course ad ≡ 1 mod p. This means that there
must be some value a such that a2 + a + 1 ≡ 0 mod p. Via quadratic reciprocity, one can verify that this
is true iff

(−3
p

)
= 1. In this case there are two values of z, otherwise there are none. So, in total there are

ερ = 1 +
(−3
p

)
total ρ-elliptic points.

Otherwise, if z is a i-elliptic point then we must have a + d = 0, and ad ≡ 1 mod p. This means that
there must be some value a such that a2 ≡ −1 mod p. Since this is true iff

(−1
p

)
= 1, then in total there are

εi = 1 +
(−1
p

)
total i-elliptic points.
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3 Counting Zeros of Modular Forms of Level N
When we consider the zeros of a modular form of Γ0(p), it is better to consider the zeros contained in the
fundamental domain because the modular invariance condition for modular forms implies that every zero
of a modular form corresponds to a zero inside the fundamental domain. Shigezumi in [2] creates valence
formulas for Γ0(2),Γ0(3),Γ0(5) and Γ0(7). We generalize this valence formula to general pandp2 for p prime.

Theorem 1. Let vx(f) denote the order of the zero of f at a point x. Let f be a modular form of weight k
for Γ0(p) where k is even. Let ρp,1, ρp,2 be the two ρ-elliptic points, and ip,1, ip,2 be the two i-elliptic points,
if any of them exist. Then the following relation holds:

v∞(f) + v0(f) +
∑
x∈Fp

cxvx(f) = p+ 1
12 k (3)

where

cx =


1
3 if x = q

2p +
√

3
2p i for some odd q

1
2 else if x ∈ Bp
1 otherwise

When we consider Γ0(N) and Γ0(p) for composite N and primes, we should discuss the elliptic points
and cusps of these congruence subgroups.

We can count the number of elliptic points for Γ0(N) for N composite from [3]. We have denoted the
elliptic points of period 2 as i-elliptic points and elliptic points of period 3 as ρ-elliptic points.

Lemma 3. The number of elliptic points for Γ0(N) of period 2 is

ε2(Γ0(N)) =
{∏

p|N

(
1 +

(−1
p

))
if 4 6 |N

0 if 4|N

The number of elliptic points for Γ0(N) of period 3 is

ε3(Γ0(N)) =
{∏

p|N

(
1 +

(−3
p

))
if 9 6 |N

0 if 9|N

Diamond and Shurman in [3] specify the form of these elliptic points. An elliptic point of period 3 will
have the form

Γ0(N) n+ ρ

n2 − n+ 1 , n
2 − n+ 1 ≡ 0 mod N

We will use Sρ to denote the set of elliptic points of period 3 of Γ0(N).
The elliptic points of period 2 for Γ0(N) will have the form

Γ0(N) n+ i

n2 + 1 , n
2 + 1 ≡ 0 mod N

We will use Si to denote the set of elliptic points of period 2 of Γ0(N). We will consider S∞ to be the set
of cusps for Γ0(N). Diamond and Shurman also count the number of cusps for Γ0(N) to be the following:

Lemma 4. Let ε∞ be the number of cusps. Then

ε∞ (Γ0 (N)) =
∑
d|N

φ (gcd (d,N/d))
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Theorem 2. Let vx(f) denote the order of the zero of f at a point x. Let f be a modular form of weight k
for Γ0(p2). Then the following relation holds:∑

p∞∈S∞

vp∞(f) +
∑
x∈Fp

cxvx(f) = k

12(p2 + ε∞(Γ0(p2))− 1) = k

12(p2 + p) (4)

where

cx =


1
3 if x = q

2p2 +
√

3
2p2 i for some odd q

1
2 else if x ∈ Bp
1 otherwise

3.1 Proof of Theorem 1
Let f be as defined. We know that f will have a finite number of zeros up to equivalence in Fp, so we can
create a contour C that encloses all such zeros except the elliptic points and cusps.

Consider if Γ0(p) has ρ elliptic points. From Lemma 2, we see that Γ0(p) has at most 2 such points, we
will denote ρp,1 and ρp,2. Similarly, there are at most 2 i elliptic points, which we will denote as ip,1, ip,2.
Let us denote Cρp,1 , Cρp,2 , Cip,1 , Cip,2 as the boundary of the disk of radius ερp,1 , ερp,2 , εip,1 , εip,2 .

Now we construct our contour C. We first begin with Ap,f and want to exclude the elliptic points and
cusp at 0. To remove these elliptic points, we travel along the arcs Cρp,1 , Cρp,2 , Cip,2 , Cip,2 inside of Fp and
take the limit where ερp,1 , ερp,2 , εip,1 , εip,2 goes to 0. Similarly, we will travel along C0, the boundary of the
circle centered at 0 with radius ε0. Now, we also add the following lines to C:

` 1
2

=
{

1
2 + it |

√
3
p
≤ t ≤ R

}

`− 1
2

=
{
−1

2 + it |
√

3
p
≤ t ≤ R

}
`R =

{
t+ iR | −1

2 ≤ t ≤
1
2

}
Now C is a closed contour and we will apply the residue theorem.

1
2πi

∫
C

df

f
=

∑
p∈Fp−{ρp,1,ρp,2,ψp,1,ψp,2}

vp(f) (5)

Now we will evaluate the right hand side of (5) by splitting into the different arcs of C to achieve the
expression (3).

(i) Integrating along `R, we achieve

1
2πi

∫
`R

df

f
= 1

2πi

∫ 1
2

− 1
2

f ′(u+ iR)
f(u+ iR) du = 1

2πi

∫
ω={|q|=e−2πR}

f ′(q)
f(q) dq = −v∞(f)

(ii) Integrating along ` 1
2
and `− 1

2
, we use that f(Tz) = f(z) where T =

(
1 1
0 1

)
. So, we have that:

∫
` 1

2

df

f
+
∫
`− 1

2

df

f
=
∫
` 1

2

df

f
−
∫
` 1

2

df

f
= 0
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(iii) Integrating along R0 as ε0 → 0, we can define R0 to be the image of lR under Wp where ε0 → 0 as
R→∞. Then if we define f0(z) = (√pz)−kf(Wpz), we have that

df0(W−1
p z)

f0(W−1
p z)

= df(z)
f(z) + k

dz

z

So, we have that
1

2πi

∫
R0

df

f
= 1

2πi

∫
lR

df0

f0 −
1

2πi

∫
R0

k
dz

z

Then as ε0 → 0, we have that ∫
R0

k
dz

z
→ 0

Hence we have the following relation:

1
2πi

∫
R0

df

f
→ 1

2πi

∫
lR

df0

f0 = −v∞(f0) = −v0(f)

(iv) Integrating along Cρp,1 , Cρp,2 as ερp,1 and ερp,2 go to 0, we have that the angle approaches 2π
3 . Thus we

have that
1

2πi

∫
Cρp,1

df

f
→ −1

3vρp,1(f)

1
2πi

∫
Cρp,2

df

f
→ −1

3vρp,2(f)

(v) Integrating along Cip,1 , Cip,2 as εip,1 and εip,2 go to 0, we have that the angle approaches π. Thus we
have that

1
2πi

∫
Cip,1

df

f
→ −1

2vip,1(f)

1
2πi

∫
Cip,2

df

f
→ −1

2vip,2(f)

(vi) Integrating along the rest of Ap,f we first consider the arcs C1, C−1 =
{
eiθ

p ±
1
p

}
. As

ερp,1 , ερp,2 , εψp,1 , εψp,2 , ε0 → 0, we have these angles tend to 2π
3 . Using the transformation with the

matrix
(

1 0
p 0

)
, we have that the sum of integrals for C1, C−1 reduces to

1
2πi

∫
C={eiθ|θ∈[0, 2π

3 ]}
k
dz

z
= 1

3k

Then we can similarly consider the arcs Cj , C−j =
{
eiθ

p ±
j
p

}
who’s angles will tend to π

3 . We can
similarly find a matrix to transform relate the values of the integrals to each other and find the the
integral will tend to 1

6k.

Now we consider there are p−3
2 pairs of arcs Cj , C−j . So in total we have p−3

2
1
6k+ 1

3k = p+1
12 k. Now note

that if there are zeros along the contour, we can create circles around these zeros and take their radii r → 0.
Then if the point is of the form q

2p +
√

3
2p i then the angle with tend towards π/3. Otherwise the angle tends

toward π/2. Then plugging these values into (5), we achieve (3) and prove Theorem 1.
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3.2 Proof of Theorem 2
Let f be as defined. We know that f will have a finite number of zeros up to equivalence in Fp2 , so we can
create a contour C that encloses all such zeros except the elliptic points and cusps.

Now we construct our contour C. We first begin with Ap2,f and want to exclude the elliptic points and
cusps. To remove these elliptic points, we travel along the arcs Cprho, Cpi inside of Fp2 for pρ ∈ Sρ, pi ∈ Si
and take the limit where the radius εpρ , εpi goes to 0. Similarly, we will travel along Cp∞ for p∞ ∈ S∞ and
take the limit where the radius εp∞ → 0. Now, we also add the following lines to C:

` 1
2

=
{

1
2 + it |

√
3
p2 ≤ t ≤ R

}

`− 1
2

=
{
−1

2 + it |
√

3
p2 ≤ t ≤ R

}
`R =

{
t+ iR | −1

2 ≤ t ≤
1
2

}
Now C is a closed contour and we will apply the residue theorem.

1
2πi

∫
C

df

f
=

∑
p∈Fp2−Sρ−Si−S∞

vp(f) (6)

Now we will evaluate the right hand side of (6) by splitting into the different arcs of C to achieve the
expression (4).

(i) Integrating along `R, we achieve

1
2πi

∫
`R

df

f
= 1

2πi

∫ 1
2

− 1
2

f ′(u+ iR)
f(u+ iR) du = 1

2πi

∫
ω={|q|=e−2πR}

f ′(q)
f(q) dq = −v∞(f)

(ii) Integrating along ` 1
2
and `− 1

2
, we use that f(Tz) = f(z) where T =

(
1 1
0 1

)
. So, we have that:

∫
` 1

2

df

f
+
∫
`− 1

2

df

f
=
∫
` 1

2

df

f
−
∫
` 1

2

df

f
= 0

(iii) Integrating along Cp∞ as εp∞ → 0, we can define Cp∞ to be the image of lR under an involution Wp∞

between cusp at p∞ and ∞ where εp∞ → 0 as R → ∞. Then if we define fp∞(z) = (√pz)−kf(Wpz),
we have that

dfp∞(W−1
p∞z)

fp∞(W−1
p∞z)

= df(z)
f(z) + k

dz

z

So, we have that
1

2πi

∫
Cp∞

df

f
= 1

2πi

∫
lR

dfp∞

fp∞
− 1

2πi

∫
Cp∞

k
dz

z

Then as εp∞ → 0, we have that ∫
Cp∞

k
dz

z
→ 0

Hence we have the following relation:

1
2πi

∫
Cp∞

df

f
→ 1

2πi

∫
lR

dfp∞

fp∞
= −v∞(fp∞) = −vp∞(f)
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(iv) Integrating along Cpρ as εpρ → 0, we have that the angle approaches 2π
3 . Thus we have that

1
2πi

∫
Cpρ

df

f
→ −1

3vpρ(f)

(v) Integrating along Cpi as εpi → 0, we have that the angle approaches π. Thus we have that

1
2πi

∫
Cpi

df

f
→ −1

2vpi(f)

(vi) Integrating along the rest of Ap2,f we first want to consider the arcs surrounding a cusp p∞. Then as
the radii εpρ , εpi , εp∞ → 0 for all elliptic points, we see that these arcs tend to 2π

3 . Then for all of the
other arcs, we have the angles tend to pi

3 . Similar to the Γ0(p) case, there is an equivalence relation
between the arcs. Then for each cusp of Γ0(p2) not at ∞, we will have a factor of 1

3k. Counting the
arcs of Ap2,f , we see that sum of these integrals will be

k

12
(
p2 + ε∞

(
Γ0
(
p2))− 1

)
Now note that if there are zeros along the contour, we can create circles around these zeros and take their
radii r → 0. Then if the point is of the form q

2p +
√

3
2p i then the angle with tend towards π/3. Otherwise

the angle tends toward π/2. Plugging all of these values into the residue theorem, we have achieved (4) and
proved Theorem 2.
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4 Finding Zeros of Eisenstein Series
Given observation 2, we aim to locate the zeros of E∞k,p. First we introduce results from [1] and [2] for
SL2(Z),Γ0(2),Γ0(3),Γ0(5). Then we inspect the areas of Fp where we would expect the zeros to lie on.

4.1 The Rankin and Swinnerton-Dyer Method
For SL2(Z), Rankin and Swinnerton-Dyer proved a surprising and important result about the zeros of an
Eisenstein series. They defined the function Fk(θ) and inspected its zeros, which correspond to the zeros of
Ek(z) on |z| = 1.

Fk(θ) = e
ikθ

2 Ek(eiθ) =
∑

(c,d)=1

(
ce

iθ
2 + de−

iθ
2

)−k
This function is real on the arc |z| = 1 and by considering θ ∈ (π/2, 2π/3), they approximated this function
as

Fk(θ) = 2 cos(kθ/2) +R

where |R| < 2. Hence, Fk(θ) is positive or negative when θ = 2mπ
k for m ∈ Z depending on the sign of m.

Using the intermediate value theorem for Fk(θ), we have that there must be a zero in between these values.
Hence, we have found

⌊
k
3

⌋
−
⌈
k
4

⌉
zeros on the arc |z| = 1 for θ ∈ (π/2, 2π/3).

Then there is an elliptic point at i and ρ that we must consider. We note the multiplicity at i is

ci =
{

0 if k ≡ 0 mod 4
1 if k ≡ 2 mod 4

. The multiplicity at ρ is cρ =


0 if k ≡ 0 mod 6
2 if k ≡ 2 mod 6
1 if k ≡ 4 mod 6

.

The valence formula for SL2(Z) is as follows:

v∞(Ek) + 1
2cρ + 1

3ci +
∑
p 6=i,ρ

vp(Ek) = k

12

Thus we consider the following cases:

• k ≡ 0 mod 12: We have k
12 zeros on the arc, multiplicity 0 for i and multiplicity 0 for ρ. We see that

we have all of the expected zeros.

• k ≡ 2 mod 12: We have k−14
12 zeros on the arc, multiplicity 1 for i and multiplicity 2 for ρ. Summing

this is k
12 zeros, and all of the expected zeros.

• k ≡ 4 mod 12: We have k−4
12 zeros on the arc, multiplicity 0 for i and multiplicity 1 for ρ. Summing

this is k
12 zeros, and all of the expected zeros.

• k ≡ 6 mod 12: We have k−6
12 zeros on the arc, multiplicity 1 for i and multiplicity 0 for ρ. Summing

this is k
12 zeros, and all of the expected zeros.

• k ≡ 8 mod 12: We have k−8
12 zeros on the arc, multiplicity 0 for i and multiplicity 2 for ρ. Summing

this is k
12 zeros, and all of the expected zeros.

• k ≡ 10 mod 12: We have k−10
12 zeros on the arc, multiplicity 1 for i and multiplicity 1 for ρ. Summing

this is k
12 zeros, and all of the expected zeros.

The following result follows.

Theorem 3. Let Ek be a Eisenstein series of level 1. All of the zeros of Ek that lie in the fundamental
domain are on the arc |z| = 1.

12



H

Figure 5: Zeros of the Eisenstein series of level 1 are on the arc |z| = 1

This result can be seen visually from Figure 5.
Shigezumi extended this result to Γ0(2), Γ0(3), Γ0(5) by considering the following functions:

Fk,2(θ) = eikθ/2E∞k,2

(
eiθ

2 −
1
2

)

Fk,3(θ) = eikθ/2E∞k,3

(
eiθ

3 −
1
3

)

Fk,5(θ) = eikθ/2E∞k,5

(
eiθ

5 −
1
5

)
By applying the same method that Rankin Swinnerton-Dyer applied, Shigezumi achieved the following

result:

Theorem 4. For 40 ≥ k ≥ 4, E∞k,2 has at least
⌊
k
4

⌋
− 1 zeros on the arc

{ 1
2 (eiθ − 1) | θ ∈ (0, π/2)

}
.

For 40 ≥ k ≥ 4, E∞k,3 has at least
⌊
k
3

⌋
− 1 zeros on the arc

{ 1
3 (eiθ − 1) | θ ∈ (0, 2π/3)

}
.

For 40 ≥ k ≥ 4, E∞k,5 has at least
⌊
k
3

⌋
− 1 zeros on the arc

{ 1
5 (eiθ − 1) | θ ∈ (0, 2π/3)

}
.

We find that this result generalizes for larger k and higher p.

Theorem 5. For 88 ≥ k ≥ 4 and p ≥ 3, E∞k,p has at least
⌊
k
3

⌋
− 1 zeros on the arc

{
1
p (eiθ − 1)

}
for

θ ∈
(
π
44 ,

2π
3
)
.

Proof. We want to apply the RSD method to the arc
{
eiθ

p −
1
p | θ ∈ (0, 2π

3 )
}
. Let us define the following

function:
Fk,p(θ) = eikθ/2Ek,p

(
eiθ

p
− 1
p

)
=

∑
(c,d)=1
p-d

(
ceiθ/2 + (−c+ d) e−iθ/2

)−k

13



Then we have vk(c, d, θ) = |ceiθ/2 + (−c + d)e−iθ/2|−k = |c2 + (−c + d)2 + 2c(−c + d) cos(θ)|−k/2. We note
that we can’t have θ = 0 because then we will have vk(c, d, 0) = |c2 + (−c+d) + 2c(−c+d) cos(θ)|−k/2 which
can be 1. Because we want to apply RSD method the way it was applied to the full arcs, this will cause a
bound issue. So, instead we will take θ ∈ (αk, 2π

3 ) where we want α ≤ 2π
k so that we achieve the desired

result. We will computationally find that we can only choose such αk when k ≤ 88.
We first apply the RSD method and split the sum:

Fk(θ) = 2 cos(kθ/2) +R

Then if we can find |R| < 2, we have that there are
⌊
k
3
⌋
−
⌈
αk
2π k

⌉
zeros on the arc.

We can split R by summing over N = c2 + (−c + d)2. Because this sum will only increase by including
all terms and ignoring the p 6 |d term, we know that if |R| < 2 for some k for all terms, it will for all p. So,
for example, we consider the first few terms:

N Terms
2 2(2)−k/2
5 4(5)−k/2 + 4(5− 4 cos(αk))−k/2
10 4(10)−k/2 + 4(10− 6 cos(αk))−k/2
17 4(17)−k/2 + 4(17− 8 cos(αk))−k/2
25 4(25)−k/2 + 4(25− 24 cos(αk))−k/2
31 4(31)−k/2 + 4(31− 10 cos(αk))−k/2
... ...

Then since αk 6= 0, there exists m ∈ Z where m ≥ (1− cos(αk))−k. Then for some N > M > m for M large
enough, we can bound all but a finite number of the terms by the sum:

S =
∑
N≥M

2
√
N

(
N

m

)−k/2
We can choose this M so S is much less than 2. We know that such a M exists because by a comparison
test, with k > 3, which is true for all k that we consider, the series

∑∞
N=1 2

√
N(Nm )−k/2 will converges to S.

Hence, there exists M such that for all N ≥M ,
∑
N=M 2

√
N(Nm )−k/2 < ε for some chosen ε.

Then we note that since cos(αk) < 1, there is some k such that |R| (which is the sum of all of the discrete
terms and S) will be less than 2. Formally, if R(k) is the value of the sum for some k,

lim
k→∞

R(k) = 0

Hence, there exists some kmin such that for all k ≥ kmin, |R(k)| < 2.
To acheive the desired result, we want

⌈
αk
2π k

⌉
= 1. Thus, given different αk, we want to find when 1

k = αk
2π .

Here are some computed αk’s and k’s.

αk k αk k αk k αk k
π/6 12 π/24 28 π/31 46 π/38 66
π/8 14 π/25 30 π/32 48 π/39 70
π/12 16 π/26 32 π/33 50 π/40 74
π/15 18 π/27 36 π/34 54 π/41 78
π/19 22 π/28 38 π/35 56 π/42 80
π/20 24 π/29 40 π/36 60 π/43 84
π/22 26 π/30 42 π/37 64 π/44 88

Unfortunately, for k > 88 we have that αk > 2π
k , so we will not have that

⌈
αk
2π k

⌉
= 1. Thus for k ≤ 88,

we have that
⌊
k
3

⌋
−
⌈
k
88

⌉
=
⌊
k
3

⌋
− 1 zeros on this arc.
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Now we want to show that this is true for k > 88. First we will set up some lemmas.

Lemma 5.
lim
k→∞

k1/k = 1

Lemma 6.
d

dx
x2/3x = 2

3

(
1− ln(x)

x2

)
x2/3x

These lemmas can both be shown by direct computation.

Lemma 7. k2

π2m2

((
Cmk1/3)2/k − 1

)
grows with rate O

(
k ln(k)
m

)
.

Proof. We will show this by taking the limit of the ratio and applying L’Hospital’s Rule, Lemma 5 and
Lemma 6.

lim
k→∞

k2

π2m2

((
Cmk1/3)2/k − 1

)
k ln(x)
m2

= 1
π2 lim

k→∞

(
Cmk1/3)2/k − 1

ln(k)
k

= 1
π2 lim

k→∞

(
ln (Cm) (Cm)2/k (−2

k2

)
+ (Cm)2/k 2

3
1−ln(k)
k2

)
k2/3k

1−ln(k)
k2

= 1
π2 lim

k→∞
(Cm)2/k

k2/3k
(

2
3 + 2 ln(Cm)

ln(k) + 1

)
= 2

3π2

Since this is a constant, we know that it grows with the rate O
(
k ln(k)
m

)
with the constant in the limit

2
3π2 .

Theorem 6. For k > 88, there are
⌊
k
3

⌋
− 1 zeros on the arc centered at −1

p .

Proof. We again define and analyze the following function:

F−1
k,p (θ) = eikθ/2Ek,p

(
eiθ

p
− 1
p

)
=

∑
(c,d)=1
p-d

(
ceiθ/2 + (−c+ d) e−iθ/2

)−k

We choose αk < 2π
k and consider θ ∈ (αk, π44 ). We recall that using the RSD method before we have that

F−1
k,p (θ) = 2 cos(kθ/2) +R. However, for k > 88, αk < 2π

k , |R| was not necessarily less than 2 because of the
terms of the form c = ±n, −c+ d = ±(n+ 1) or c = ±(n+ 1), −c+ d = ±n. However, if we choose M such
that M is trivially small (for instance let M = 3/2, then M−k/2 < 10−8), there exists N such that for all
n ≥ N , n2 + (n + 1)2 − 2n(n + 1) cos(αk) > M . Note that when M = 3/2, we have that N < k

8 . Now we
will split the sum as follows:

F−1
k,p (θ) = 2 cos(kθ/2) +D + S

where

D = 1
2

N∑
n=1

(
neiθ/2 + (n+ 1) e−iθ/2

)−k
+
(
neiθ/2 − (n+ 1) e−iθ/2

)−k
+
(

(n+ 1) eiθ/2 + neiθ/2
)−k

+
(

(n+ 1) eiθ/2 − neiθ/2
)−k

15



and S is the sum of all of the remaining terms. Using the methods from Theorem 5, we can show that
|S| < 2. Now we want to show that at θ = 2mπ

k for m ∈ Z,

sgn (cos (mπ)) = sgn(D)

Note that∣∣∣∣(neiθ/2 + (n+ 1) e−iθ/2
)−k

+
(

(n+ 1) eiθ/2 + ne−iθ/2
)−k∣∣∣∣ ≤ 2

∣∣(2n+ 1)2 cos2(θ/2) + sin2(θ/2)
∣∣−k/2

Recall θ ∈ (αk, π/44), so that this is less than 2|2n|−k/2.
However, (neiθ/2− (n+ 1)e−iθ/2)−k + ((n+ 1)eiθ/2−ne[− iθ/2])−k can not be bounded in the same way.

Instead let us express it in different terms:

r =
(
cos2(θ/2) + (2n+ 1)2 sin2 (θ/2)

)1/2
ϕ = sin−1

(
2n+ 1
r

sin(θ/2)
)

Then(
(n+ 1) eiθ/2 − neiθ/2

)−k
+
(
neiθ/2 − (n+ 1)e−iθ/2

)−k
= r−2k(rkeikϕ + rke−ikϕ) = 2r−k cos(kϕ)

We will apply the small angle approximation here where if θ = 2πm
k wherem ∈ Z and θ < π

4 , and approximate
sin(θ/2) ≈ πm

k with an error less than 1
6 ( π44 )3 < 0.00007. Then we consider 2n+1

r
mπ
k < m(2n+1)π

k .
In order for sgn(cos(kϕ)) = sgn(cos(mπ)), we want that∣∣∣∣sin(m(2n+ 1)π

k

)
− m(2n+ 1)π

k

∣∣∣∣ < 1
k
<
π

k

We will take 1
k to make the inequality easier, although π

k suffices to show negativity. This will allow for
cos(kϕ) to have a larger magnitude.

Then, we evaluate and find that∣∣∣∣sin(m(2n+ 1)π
k

)
− m(2n+ 1)π

k

∣∣∣∣ < 1
6(m(2n+ 1)π

k
)3 <

1
k

This gives us that for n < k2/3

2(6)1/3m
− 1

2 , sgn (cos (kϕ)) = sgn (cos (mπ)). To simplify the expression for further

manipulation, we take cn = 1
2(6)1/3 and say n ≤

⌊
ck2/3

m

⌋
.

Then for⌊
ck2/3
m

⌋
∑
n=1

(
neiθ/2 − (n+ 1) e−iθ/2

)−k
+
(

(n+ 1) eiθ/2 − ne−iθ/2
)−k

= sgn (cos (mπ)) c′Dcn
k2/3

m

where c′D is a constant that comes from the fact that | cos(kϕ)| < 1. Since we choose 1
k instead of π

k , we
expect that c′D > 1

4 . Now, let cD = c′Dcn.
Now we want that the magnitude of the sum of the other terms in D to be less than cD k2/3

m . The number
of other terms would be k

8 − cn
k2/3

m . So let

N ′ =

∣∣∣∣∣ k8 − cn k
2/3

m

cD
k2/3

m

∣∣∣∣∣ > C ′mk1/3
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where C ′ = 1
8cD . Then we want to find for which n,

2
(

cos2 (θ/2) + (2n+ 1)2 sin2 (θ/2)
)−k/2

<
1
N ′

Rearranging we have (
1 + (4n+ 4n2) sin2 (θ/2)

)k/2
> N

where N = 2N ′ = Cmk1/3 where C = 2C ′. Thus we have that

n >
−1
4 +

√
1 + k2

π2m2 (N2/k − 1)
4

Now from Lemma 7 to show that the minimum n such that this is true, denoted nmin, grows at the rate of√
k log(k)
m and nmin <

√
k ln(k)
2m since the constant in the front from the limit is

√
2

3π2

4 < 1.
Then for k > 88 we know that

k ln(k)
2m <

k2/3

2(6)1/3m

. Thus the magnitude of the sum of the terms that do not satisfy the property sgn(cos(kϕ)) = sgn(cos(mπ))
is less than the magnitude of the sum created by the terms that satisfy the property. Thus, we have that
sgn(D) = sgn (cos (mπ)).

Finally, we have that
F−1
k,p (θ) = 2 cos(kθ/2) +D + S

will be positive or negative depending on the parity of m, indicating a zero in between each of these values.
Thus looking at the arc θ ∈ (αk, π/44), we have found the rest of the zeros not on θ ∈ (π/44, 2π/3). So,
there are

⌊
k
3

⌋
− 1 zeros on the arc centered at −1

p for all k ≥ 4.

Now that we know there are
⌊
k
3

⌋
− 1 zeros on the arc centered at −1

p , then we have found approximately
4
p+1 of the expected zeros from the valence formula.

4.2 Zeros at Elliptic Points
We can show that there are zeros at elliptic points for particular k.

Lemma 8. For k 6≡ 0 mod 4, there are zeros of Ek,p at the i-elliptic points.

Proof. Let pi = q
p + i

p be an elliptic point of Γ0(p). Then γpi = pi when γ =
(
q p−1(−1−q2)
p −q

)
∈ Γ0(p)

So, we know that Ek,p(pi) = Ek,p(γpi) = (i)kEk,p(pi). Thus, if k 6≡ 0 mod 4, this forces Ek,p(pi) = 0.

Lemma 9. For k 6≡ 0 mod 6, there are zeros of Ek,p at the ρ-elliptic points.

Proof. Let pρ = q
2p+

√
3i

2p be an elliptic point of Γ0(p). Then γpρ = pρ when γ =
(
q+1

2 p−1(−1− q
2−1

4 )
p − q−1

2

)
∈ Γ0(p).

Then we know that Ek,p(pρ) = Ek,p(γpρ) =
(

1
2 +

√
3

2 i
)k
Ek,p(pρ). Thus, if k 6≡ 0 mod 6, this forces a zero

at pρ.
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4.3 Inspecting the Boundary of Fp

Given our observations of the zeros, we graph the value of Ek,p(z) along the arcs
{
eiθ

p + q
p | θ ∈ [π/3, 2π/3]

}
where red corresponds to the point θ = π/3 and θ = 2π/3. Here we have plotted F qk,p(θ) = eikθ/2Ek,p( e

iθ

p + q
p ).

Note that there is bijection between the zeros of Fk,p and Ek,p.

Figure 6: F 1
22,13(θ)

Note that in Figure 6 we have that all of the points are real as expected. This allows us to run RSD on
the arc and achieve the Theorem 5.

Figure 7: F 2
22,13(θ), at various zooms
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Figure 8: F 5
22,13(θ)

We want to inspect Figure 7 more carefully to see if there are zeros on the second arc. However looking
at the zoomed in version, we see that there are no zeros on this arc. Similarly, when looking closer at the
other arcs (ex: 8), we see that the only zeros that occur on the arcs are at the elliptic points or on the first
arc. More images are in the appendix. After trying this for many different values of k, p, this leads us to the
observation:

Observation 1. The only zeros on the arcs of Fp are the elliptic points and the arcs centered at ± 1
p .

4.4 Bounds on Zeros
We have shown that there are zeros of E∞k,p(z) on the arcs centered at ± 1

p , as well as at the various elliptic
points, if they exist. But aside from this, we can still bound the imaginary component of any zero. To do
this, consider E(z) = (pk − 1)E∞k,p(z).

Then, we have

E(z) = pk − 1− λk
∞∑
n=1

anq
n

where

an =
{
σk−1(n) p - n
σk−1(n)− pkσk−1(n/p) p | n

and λk = (2πi)k
(k−1)!ζ(k) . So, note that we can bound

|an| < pσk−1(n) < pnk−1ζ(k − 1)
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Now, assume that z = x+ iy is a zero of E∞k,p. Then we have

0 = |E∞k,p(z)| = |E(z)|

= |pk − 1− λk
∞∑
n=1

anq
n|

≥ pk − 1− |λk
∞∑
n=1

anq
n|

≥ pk − 1− |λk|
∞∑
n=1
|anqn|

≥ pk − 1− (2π)k

(k − 1)!ζ(k)

∞∑
n=1

pζ(k − 1)nk−1e−2πyn

pk − 1 ≤ (2π)kp
(k − 1)!

ζ(k − 1)
ζ(k)

∞∑
n=1

nk−1e−2πyn

Here, the first few lines are just applying the lower and upper bounds of the triangle inequality. Now, recall
that

∞∑
n=1

nk−1e−2πyn ≈
∫ ∞

0
tk−1e−2πytdt = (2πy)−kΓ(k) = (k − 1)!

So, for some ε > 0, we have
∞∑
n=1

nk−1e−2πyn < (1 + ε)(2πy)−k(k − 1)!

Then

pk − 1 ≤ (2π)kp
(k − 1)!

ζ(k − 1)
ζ(k) (1 + ε)(2πy)−k(k − 1)!

= (1 + ε)p
yk

ζ(k − 1)
ζ(k)

So, this implies that
yk ≤ (1 + ε)p

pk − 1
ζ(k − 1)
ζ(k)

Now, since 1 < ζ(k), ζ(k − 1) < 2, the ratio ζ(k − 1)/ζ(k) < 2. So, for some small 1 < c < 2, we have

y ≤ 1
p

(cp)1/k

So, for x + iy to be a zero of E, and therefore of E∞k,p, we must have y less than the above bound. This
means that all of the zeros are concentrated close to, if not below, the line y = 1

p . Combined with the bump
fundamental domain we use for this function, the zeros must all lie either on the arcs of the domain, or
between any adjacent pair.

4.5 Converging to Ellipses
We want to find zeros of Ek,p near the arcs of the bump fundamental domain since the bound in section 4.4
shows that the zeros must be near the arcs. We consider the following function where r ≥ 1:

F qk,p,r(θ) = rk/2eikθ/2Ek,p

(
reiθ

p
+ q

p

)
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We note that if Ek,p has a zero on the arc
{
reiθ

p + q
p

}
then so will F qk,p,r. Now we expand the function to

see that
F qk,p,r(θ) = 1

2
∑

(c,d)=1
p-d

(
cr1/2eiθ/2 + (qc+ d)r−1/2e−iθ/2

)

Now consider (c, d) = (0,±1), (1,−q), (−1, q). Then we have the terms

2rk/2eikθ/2 + 2r−k/2e−ikθ/2 = 2
(
rk/2 + r−k/2

)
cos (kθ/2) + 2i

(
rk/2 − r−k/2

)
sin (kθ/2)

So, we will write our expression in the form:

Fk,p,r(θ) = (rk/2 + r−k/2) cos(kθ/2) +Rreal + i(rk/2 − rk/2) sin(kθ/2) +Rimag

Note that (rk/2 +r−k/2) cos(kθ/2)+ i(rk/2−r−k/2) sin(kθ/2) describes an ellipse that never attains the value
0 if we take r > 1. This will be the ellipse that Fk,p,r(θ) converges to.

Then we note that for both Rreal and Rimag we have

|R| < (2 + 2 cos(θ))−k/2 + (2− 2 cos(θ))−k/2 +
∞∑
N=5

2
√
N

(
N

2

)−k/2
= V

As a result, we want to compare the magnitude of V to rk/2 − r−k/2 to determine when F qk,p,r(θ) values
converge to this ellipse.

Thus we have want

(2 + 2 cos (θ))−k/2+(2− 2 cos (θ))−k/2+2k/2+1
(
ζ

(
k − 1

2

)
− 41/2−k/2 − 31/2−k/2 − 21/2−k/2 − 1

)
> ε

(
rk/2 − r−k/2

)
If we let x = 1

ε

(
(2 + 2 cos (θ))k/2 + (2− 2 cos (θ))−k/2 + 2k/2+1 (ζ (k−1

2
)
− 41/2−k/2 − 31/2−k/2 − 21/2−k/2 − 1

))
,

then we have that
rk/2 >

x+
√
x2 − 4
2

and if x2 − 4 < 0, this inequality holds true for all r ≥ 1.
So now we want to find when x2 − 4 < 0 for which α and ε pairs where we take θ ∈ (π/2− α, π/2 + α)

because then F qk,p,r(θ) will have no zeros for θ ∈ (π/2−α, π/2 +α) if we take ε small enough (ex: ε = 0.05).
For x2−4 < 0, we can bound x to be 2−k/2+(2− 2 sin (α))−k/2+2k/2+1 (ζ (k−1

2
)
− 41/2−k/2 − 31/2−k/2 − 21/2−k/2 − 1

)
.

Then we can solve and get

α < sin−1

(
1−

(
2ε− 2−k/2 − 2k/2+1 (ζ (k−1

2
)
− 41/2−k/2 − 31/2−k/2 − 21/2−k/2 − 1

))−2/k

2

)

This proves the following result:

Theorem 7. For θ ∈ (π/2− α, π/2 + α), r > 1, F qk,p,r(θ) will be ε away from an elliptic shape and have no
zeros, where

α = sin−1

(
1−

(
2ε− 2−k/2 − 2k/2+1 (ζ (k−1

2
)
− 41/2−k/2 − 31/2−k/2 − 21/2−k/2 − 1

))−2/k

2

)

Note that the limit as k → ∞, we have α → sin−1(1 − 1
2 ) = π/6. Thus this bound pushes the places

where the zeros of Ek,p can be to a small area near the wedges.
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(a) r = 1.2 (b) r = 1 + 10−10

Figure 9: Graphs of weight 22 level 7 F qk,p,r(θ) on arc 3 for different radii for θ ∈ (π/3, 2π/3)

(a) k = 58, p = 11, q = 2, r = 1 + 10−20 (b) k = 50, p = 17, q = 3, r = 1 + 10−15

(c) k = 44, p = 23, q = 4, r = 1 + 10−22 (d) k = 36, p = 13, q = 4, r = 1 + 10−15

Figure 10: Graphs of F qk,p,r(θ) for θ ∈ (π/3, 2π/3)
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4.6 Further Research
Given this bound on the imaginary component of possible zeros of E∞k,p(z), the next step would be to further
narrow this bound towards the arcs of Fp and create a way of counting zeros associated to an arc. In
addition, we observe that other than elliptic points, there seem to be no zeros on the arcs of Fp except those
centered at ± 1

p .

23



5 Brandt Series Matrix and Modular Forms
In the following sections, we will discuss a basis for M2(Γ(p)), which is a finite dimensional vector space (for
more detailed information on the dimension of the space of modular forms and construction of its basis, refer
to the appendix 8.3). We first introduce some general theories on quaternion algebras over a field to define
a Brandt series matrix for a quaternion algebra Bp ramified precisely at p and ∞. Then, we will examine
the properties of the subspace generated by the theta series on the diagonal of the Brandt series matrix,
which are weight 2 modular forms, and determine whether the diagonal entries form a new basis for the
space Mk(Γ0(p)).

5.1 Introduction
It was well known that there is a close relation between the study of modular forms of weight 2 on Γ0(N) and
the arithmetical theory of quaternion algebras. After Hecke conjectured in 1940 that all weight 2 cusp forms
of weight 2 on Γ0(p) are linear combinations of theta series attached to the norm of some quaternion algebra,
Eichler, Pizer and many others studied the connection between modular forms and quaternion algebras [4].
In this section, we explain the connection between quaternion algebras and modular forms in more detail
by introducing Brandt matrices, and demonstrate some computational results on for which prime numbers
p Hecke’s conjecture holds.

5.2 Quaternion Algebras and Brandt Matrix
We first define the n-th Brandt Matrix using the language of quaternion algebras. We will follow the notations
used in [5] throughout this section. Also, throughout the section, let p be a prime number.

Definition 10. Let F be either Q, Qp, the field of p-adic numbers, or R. A quaternion algebra A over F is
a central simple algebra of dimension 4 over F.

For any quaternion algebra A over F, there is a basis 1, i, j, k over F such that i2 = a, j2 = b, ij = k = −ji,
for some a, b ∈ F×. If F = Q, we will denote A = (a, b). Similarly, when F = Qp, denote (a, b)p, and when
F = R, (a, b)∞. For α = w + xi+ yj + zk ∈ A, we define the norm of α to be

Nor(α) = w2 − ax2 − by2 + abz2

For example, if F = R, and a = b = −1, we get the Hamiltonian quaternions, H = (−1,−1)∞.

H = {w + x · i+ y · j + z · k : x, y, z, w ∈ R}, Nor(α) = w2 + x2 + y2 + z2

Now if A is a quaternion algebra over Q, we can consider Ap = A⊗Q Qp, which is a quaternion algebra
over Qp. Similarly, we let A∞ = A ⊗Q R. It is a well-known fact that over Qp or R, there are only two
quaternion algebras up to isomorphism: the 2× 2 matrix algebra and a unique quaternion division algebra.
For example, the only quaternion algebras over R are M(2,R) or the Hamiltonian quaternions. A prime p
of Q can either ramify or split in a quaternion algebra A over Q.

Definition 11. A prime p is said to ramify in A if Ap = A⊗Q Qp is a division algebra, denoted Hp, and to
split in A if Ap is the 2 by 2 matrix algebra over, denoted M(2,Qp).

If we count the infinity as a prime, the set of primes ramifying in A is finite and even in number. Also,
any set S consisting of an even number of primes uniquely determines the quaternion algebra A over Q,
ramified precisely at the primes in S.

Similar to a ring of integers in a number field, we can define an order O of a quaternion algebra A and a
left-ideal class of an order O.

Definition 12. An order O ⊂ A is a subring of A that is a free Z-submodule of rank 4 (a lattice on A)
satisfying the relation O ⊗Z Q = A. An order O of A is called maximal, if it is not properly contained in
any other order of A. A left-ideal I is a lattice on A satisfying I = Oa for some a ∈ A×. Two left-ideals
I, J are in the same class if I = Jã for some ã ∈ A×.
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For a quaternion algebra A over Q, a maximal order in A is not unique. Instead, there are finitely many
maximal orders in A up to conjugation. For a left O-ideal I, we can also define the right order of I to be
the set {a ∈ A : Ia ⊆ I}. For a left O-ideal I, we define the following operations:

Definition 13. The norm of I, Nor(I) is the positive rational number which generates the fractional ideal
of Q, {N(α) : α ∈ I}. The inverse of I, denoted I−1, is given by I−1 = {α ∈ A : IαI ⊆ I}.

With these definitions, we can now state an important proposition that leads to the definition of the
Brandt matrices.

Proposition 2. Let O be a maximal order of a quaternion algebra A over Q. Then, the number of distinct
left-ideal classes of O (called a class number and denoted h) is finite, and for a quaternion algebra A ramified
precisely at p and ∞, the class number h = g+ 1 where g is the genus of the modular curve X0(p). Further,
if I1, . . . , Ih are the distinct left-O ideal classes and Oj are the right order of Ij for j = 1, . . . , h, then
I−1
j I1, . . . , I

−1
j Ih is a complete set of representatives of the left Oj-ideal classes. Further, the Oj’s represent

all the conjugacy classes of maximal orders in A, with possible duplication.

Definition 14. Let Bp be the quaternion algebra over Q ramified exactly at p and∞, and let O be a maximal
order of Bp. Also, let I1, I2, . . . , Ih be representatives of the left ideal classes of O and ej be the number of
units of the right order of Ij. Then the n-th Brandt matrix B(n) has i,j-th entry

b
(n)
ij = e−1

j · |{α : α ∈ I−1
j Ii and Nor(α)Nor(Ij)/Nor(Ii) = n}|.

When n = 0, bij = 1/ej.

Brandt matrices give a representation of the Hecke algebra (algebra of Hecke operators). Now for each
entry b(n)

ij of B(n), we can define a Brandt series to be
∑∞
n=0 b

(n)
ij exp(nτ), which can be rewritten as

θij(τ) =
∞∑
n=0

b
(n)
i,j exp(nτ) = e−1

j

∑
α∈I−1

j
Ii

exp(τNor(α)Nor(Ij)/Nor(Ii))

Since Nor(α)Nor(Ij)/Nor(Ii) is a quadratic form on α ∈ I−1
j Ii, θij(τ) is a generalized theta series. Therefore,

we established a connection between the Brandt matrices and modular forms, which is stated in the following
theorem in [4].

Theorem 8. The entries of the Brandt series matrix (a h× h matrix where h is the class number)

θij(τ) =
∞∑
n=0

b
(n)
ij exp(nτ)

are modular forms of weight 2 on Γ0(p).

Remark 1. Note that dim(M2(Γ0(p))) = g + 1 where g is the genus of X0(p), and by proposition 2, the
class number for a maximal ideal O of a quaternion algebra Bp ramified at p and ∞, h = g + 1 as well.

Hence, through the Brandt series matrix, we can obtain numerous new modular forms, each one a
generalized theta series associated with some quadratic form. Let dim(M2(Γ0(p))) = h. Then, the Brandt
series matrix is a h by h matrix with some modular forms as its h2 entries. Using the above theorem along
with some theory on the arithmetic of quaternion algebras, it can be shown that the entries in the Brandt
series matrix are non-cusp forms, but the difference of any two series in the same column is a cusp form on
Γ0(p).
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5.3 Subspace of M2(Γ0(p)) Spanned by Elements of Brandt Series Matrix
Again, let h be the dimension of the space of weight 2 modular forms on Γ0(p). It is an interesting question
to check whether h elements in the Brandt series matrix form a basis for M2(Γ0(p)) or not. In this project,
with h diagonal elements in the Brandt series matrix, we checked whether those elements form a new basis
for M2(Γ0(p)) or not, for various prime numbers.

Using a modular forms package in SAGE, it is possible to obtain a canonical basis for M2(Γ0(p)) in its
q-expansion form (which will be denoted q-basis in this section). For each of h selected entry from Brandt
series matrix, we calculated the coefficients in the linear combination of the modular forms in the q-basis that
produces the theta series in the Brandt matrix. Then, we obtained a h×h matrix from those coefficients, and
computed the determinant of that matrix to determine whether the entries from the Brandt series matrix
form a new basis forM2(Γ0(p)) or not. We introduce some computation results along with an interpretation.

5.4 Results
p Determinant Rank-Corank* Class Number
3 1 1 1
7 1 1 1
11 2 1* 1
19 −2 1* 1
23 12 3 3
31 −4 3 3
43 0 1* 1
47 −208 5 5
59 192 3* 3
67 0 1* 1
71 704 7 7
79 0 5 5
83 0 3* 3
103 0 5 5
107 0 3* 3
127 0 5 5
131 0 5* 5
139 0 3* 3
151 0 7 7
163 0 1* 1
167 0 11 11
179 0 5* 5
191 0 13 13
199 0 9 9
211 0 3* 3
223 0 7 7
227 0 5* 5
239 0 15 15
251 0 7* 7
263 0 13 13
271 0 11 11
283 0 3* 3

Table: Results for p ≡ −1( mod 4) up to 300.
Rank − Corank was divided with 2 when it was an even number (numbers with *).
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On the above table, the class number is the class number of the number field Q(
√
−p). As can be noticed

in this table, the entries in the Brandt series matrix stopped forming a basis for the space M2(Γ0(p) for
primes greater than 71. There was no pattern observed in the rank, co-rank, or the ratio of the rank and the
dimension of the transformation matrix. However, an interesting correspondence between Rank - Corank
and the class number of Q(

√
−p) could be observed. The implication of this correspondence is still being

discussed.
Pizer provides an explanation for the observation that the theta series on the diagonal of the Brandt

series matrix stop forming a basis for M@2(Γ0(p)) in [4]. Class number of a maximal ideal O is strictly
greater than the number of conjugacy classes of right orders (which is referred to as the type number in [4])
for primes greater than 71, and this results in a linear dependence among the theta series on the diagonal of
the Brandt matrix. This explains why the diagonal entries fail to form a basis for the space M2(Γ0(p)).

6 Conclusion
There is a lot more to investigate about the location of the zeros of the Eisenstein series. We want to learn
more about their placement near the arcs of Ap,f and bound their location. Using the (3) we can find the
number of zeros expected and using the bounds on their location can hopefully determine where all of the
zeros lie.

Diagonal entries of the Brandt series matrix formed a new basis for the space Mk(Γ0(p)) for primes up
to 31, but there were some primes with transformation matrices of determinant 0, and primes greater than
71 all failed to form a complete basis for Mk(Γ0(p)). A correspondence between Rank -Corank and the
class number of Q(

√
−p) was found, but its implication is not well understood. We hope to understand and

discover interesting properties of the elements of the Brandt series matrix through further research.
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8 Appendix
8.1 Cusps and fundamental domains for prime power/composite levels
One thing that was important in our construction of Fp was the fact that for prime N , ε∞ = 2, so we only
needed to consider the two cusps at 0 and ∞. However, for prime powers and composites, this is not true.

Before we delve into the algorithm, it’s worth noting that while this method gives a list of cusps and cosets,
as far as we are aware it doesn’t have a closed form. That is, on a computer one can compute–relatively
quickly–the set of representatives, but that computation is specific to that N .

First, we need to determine a set of representatives of cusps. Note that certain cusps are equivalent via
Γ0(N), such as for N = 9,

−1
3 =

( 5 −1
−9 2

)(1
6

)
Now, two cusps x, y are equivalent if there is some γ ∈ Γ0(N) such that y = γx. Setting γ =

(
a b
Nc d

)
,

with ad−Nbc = 1, we see that

y = ax+ b

Ncx+ d

Ncxy + dy − ax− ad

Nc
= b− ab

Nc
(d+Ncx)(a−Ncy) = 1

So, if there exist integer a, b, c, d such that this is true, then x and y are equivalent as cusps. Now, from
here we choose cusps of the form x = 1

x′ , x
′ ∈ Z. Then we can bash out a set of cusps using a computer

using the following code:

def bruteForceInverseCusps(N):
# Calculates the number of cusps
totalCusps = -1
for d in range(N):

if N%(d+1) == 0:
totalCusps += euler_phi(gcd(d+1, N/(d+1)))

# This is going to be a set of inverses of cusps,
# i.e. if x is a cusp, then 1/x will be in this list
invCusps = [0]; x = 2
while x < N and len(invCusps) < totalCusps:

if gcd(x, N) > 1:
newCusp = true
for y in invCusps:

if gcd(y, N) == gcd(x, N) and newCusp:
newCusp = false
xP = x/gcd(x, N); yP = y/gcd(y, N); NP = N/gcd(x, N)
arg = xP*inverse_mod(int(yP), int(NP))
try:

crt([1, int(arg)], [int(y), int(NP)])
except: # This is actually good, it means that x and y are

newCusp = true #NOT equivalent of level N
if newCusp:

invCusps.append(x)
x = toggleCount(x)

return ret
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Here, toggleCount simply counts numbers in the order {0, 1, -1, 2, -2, ...}, so we get cusps spread evenly
over the positive and negative x-axis.

From here, we need to construct dN matrices that aren’t equivalent via Γ0(N). Since we already know
that we can’t get between different cusps that we’ve chosen, we need to find a number of matrices for any
particular cusp. So, for the cusp x = 1

c , define

βc,k =
( 1 k
c 1+ck

)
Then, if βc,k ≡ βc,l, this means that

βc,k = γβc,l

βc,kβ
−1
c,l = γ ∈ Γ0(N)

( ∗ ∗p∗ ∗ ) =
( 1+cl −l
−c 1

) ( 1+c(l−k) k−l
c2(l−k) 1+c(k−l)

)
∈ Γ0(N)( 1 k

c 1+ck
)

So, this is true if N |c2(k − l). So, we take the several values of k, following the toggleCount method of
alternating + and -, such that c2(k1 − k2) is never divisible by N for different k1, k2. This also includes the
identity matrix, since 0 is an element of our list of inverse cusps.

Now, all of these cosets form a set of representatives for SL2(Z) of Γ0(N), so we can write

SL2(Z) =
⋃
α∈S

Γ0(N)α

for S = {αk} ∪ {βc,k}
This construction of cosets gives an idea of what the fin fundamental domain looks like for prime powers

and composites. Here is an example for N = 9:

Figure 11: Fin domains for p = 9, divided by coset representatives

Now we consider the bump domain for N = p2, as we can explicitly construct a set of cusps for these
N . We know that Γ0(p2) will have ε∞ = p + 1 different cusps, which can be verified to be at 1

kp for
0 < |k| ≤ (p− 1)/2

Then, we define the fundamental domain as the area above all the arcs

Ap2 =
⋃

(q,p)=1

{e
iθ + q

p2 | θ ∈ [0, π]}

Bp2 = Ap,f ∪
{

1/2 + it | t ≥
√

3
2p
}
∪
{
− 1/2 + it | t ≥

√
3

2p
}
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Figure 12: Bump domains for N = 9

Then the fundamental domain Fp2 is the area within Bp2 including Bp2 .

8.2 Graphs of F q
k,p(θ)

[H]

Figure 13: F 3
22,13(θ)

Figure 14: F 4
22,13(θ)
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Figure 15: F 5
22,13(θ)

Figure 16: F 1
28,11(θ)
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Figure 17: F 2
28,11(θ)

Figure 18: F 3
28,11(θ)
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8.3 Dimension Formula for Mk(Γ) and Eigenforms
One interesting fact about the space of weight k, level N modular forms is that it forms a finite dimensional
vector space over C. Holomorphicity of modular forms on the extended upper half plane H∗ = H∪Q∪ {∞}
makes the space Mk(Γ) finite dimensional. An explicit formula for the dimension of Mk(Γ) also exists. The
formula is derived from the study of modular curves (X(Γ)) as a Riemann Surface.

Hecke operators are commuting endomorphisms of the vector space Mk(Γ) and its subspace Sk(Γ), the
space of cusp forms. By studying their properties, it is possible to find a canonical basis for the vector space
which are simultaneous eigenvectors for the Hecke operators.

8.3.1 Dimension Formula for Mk(Γ)

In this section, we state some important results about modular forms without proof to state the dimension
formula for the space of weight k modular forms for a congruence subgroup Γ, Mk(Γ). We will follow
notations in [3] in this section.

Definition 15. For any congruence subgroup Γ of SL2(Z) acting on the upper half plane from the left, the
modular curve Y (Γ) is defined as the quotient space of orbits under Γ

Y (Γ) = Γ \H = {Γτ : τ ∈ H}

The modular curve for Γ0(N) is denoted Y0(N).

By composing the natural projection map from the upper half plane to Y (Γ) defined as π : τ 7→ Γτ
with appropriate coordinate maps, Y (Γ) can be given a local coordinate chart to be treated as a Riemann
surface. However, Y (Γ) is not a compact surface due to the cusps, which are the Γ-equivalence class of
Q ∪ {∞}. Thus, Y (Γ) can be compactified by adjoining the cusps, and the resulting compact Riemann
surface is denoted X(Γ). Topologically, X(Γ) is a torus with genus g. Using the Riemann-Hurwitz formula,
it can be shown that the genus of X(Γ) is given by the following formula:

g = 1 + d

12 −
ε2

4 −
ε3

3 −
ε∞
2 (7)

where ε2, ε3 and ε∞ are the number of elliptic points and cusps for X(Γ), and d is the index [SL2(Z) : Γ],
as in the previous section.

We established that X(Γ) is a compact Riemann surface, and obtained a formula for the genus g of
X(Γ). Now we can state the dimension formula for the spaceMk(Γ) and Sk(Γ) (Derivation of these formulas
involve the Riemann-Roch Theorem and some other theories on meromorphic functions and meromorphic
differentials. For more detailed proof for these formulas, one can refer to [3]).

Theorem 9. Let k be an even integer, and Γ be a congruence subgroup of SL2(Z). Then,

dim(Mk(Γ)) = (k − 1)(g − 1) +
⌊
k

4

⌋
ε2 +

⌊
k

3

⌋
ε3 + k

2 ε∞ k ≥ 2 (8)

and
dim(Sk(Γ)) = (k − 1)(g − 1) +

⌊
k

4

⌋
ε2 +

⌊
k

3

⌋
ε3 + (k2 − 1)ε∞ k ≥ 4. (9)

dim(Mk(Γ)) = 1 if k = 0, and dim(Sk(Γ)) = g if k = 2, and the dimensions are 0 otherwise.

The dimension formulas for odd k also exists, but we will not state them in this paper.
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8.3.2 Hecke Operators and Eigenforms

Hecke operators are special type of operators acting on modular forms that take Mk(Γ) to itself and Sk(Γ)
to itself. They form a group of endomorphisms of Mk(Γ) and Sk(Γ). The Tn operators, which are to be
defined below, are a family of Hecke operators with some useful properties. Along with the definition we
introduce some useful properties of the Tn Hecke operators.

Definition 16. Let n be a positive integer. Then, the n-th Hecke operator Tn acts on a modular form f(τ)
of weight k by the following formula:

Tnf(τ) = nk−1
∑

a≥1,ad=n,0≤b<d
d−kf

(
aτ + b

d

)
(10)

The Tn operator maps a weight k modular form (resp. cusp form) to another weight k modular form
(resp. cusp form). Also, the family of Tn operators commute with each other, i.e. TnTm = TmTn for positive
integers m and n. Furthermore, for relatively prime m and n, we have that TmTn = Tmn.

Other than being commuting endomorphisms of vector spaces Mk and Sk (modular forms and cusps
forms of weight k), Hecke operators have a very nice property that they are normal operators under the
Petersson inner product. For weight k modular forms f, g, the Petersson inner product is given by

〈f, g〉 = 1
VΓ

∫
X(Γ)

f(τ)g(τ)(Im(τ))kdµ(τ)

where VΓ =
∫
X(Γ) dµ(τ), and µ is the hyperbolic measure. (Formally, the Petersson inner product can only

be defined for 〈, 〉 : Mk(Γ)× Sk(Γ) 7→ C.)
The Spectral Theorem of linear algebra states that a normal operators on a finite dimensional inner-

product space has an orthogonal basis of eigenvectors for the operator. Also from linear algebra, commuting
family of normal operators can have simultaneous eigenvectors (since the space has modular forms as its
elements, they will be called eigenforms). Thus, we have the following conclusion.

Theorem 10. The space Mk(Γ) has an orthogonal basis of simultaneous eigenforms for the Hecke operators.

In [3], a construction of a canonical basis for the space Mk(Γ) is explained in detail. This is achieved
by further developing the relationship between the Fourier coefficients of eigenforms and the Tn operators.
However, for the purpose of this report, it is enough to note that there is a canonical basis of the space of
modular forms that is an orthogonal list of simultaneous eigenforms for the Hecke operators.
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