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Abstract. This write up introduces some elementary results in ana-
lytic number theory, including Mertens’ theorem, Chebychev’s bound on
π(x), asymptotes for other arithmetic functions; it also outlines the ideas
behind some more involved results, namely the prime number theorem,
using complex analysis, and upper bounds for the number of twin primes,
using sieve methods.

1 Introduction

We know, from the time of Euclid, that there are infinitely many primes. A
natural question that follows is how are the primes distributed; somewhat sur-
prisingly, we can find out a lot about this question, despite not having a good
way of determining if a specific number is prime. Let π(x) be the prime-counting
function, which denotes the number of primes less than or equal to x. It was
first conjectured, from numerical data, that π(x) ∼ x/ log x, which means that
π(x) is almost equal to x/ log x when x is large. Chebyshev then proved that,
when x become large, π(x)/(x/ log x) lies in the range [log 2, 2 log 2], and if
limx→∞ π(x)/(x/ log x) exists, the limit must be 1 (which would then implies
π(x) ∼ x/ log x). In 1859, Riemann introduced the connection between the ze-
ros of the Riemann zeta function and the distribution of prime numbers; sub-
sequently, in 1896, Hadamard and de la Valée Poussin independently proved
π(x) ∼ x/ log x, which is now known as the prime number theorem. Many differ-
ent proofs of the prime number theorem have subsequently been found, including
an elementary proof, by Selberg and Erdös in 1949, that does not involve the
zeros of the zeta function. Moreover, if the Riemann hypothesis is true, we would
know even more about π(x) (that the error, when approximating π(x) by li(x),
is of the order O (

√
x log x)).

We can also try to investigate the distribution of twin primes, which are
primes p where p+ 2 is also a prime, or of primes of the form p and p+ r, which
come in pairs. It has long been conjectured that there are infinitely many primes
that come in pairs p and p+ r, for some even number r ≥ 2, although this result
is only proven for r ≥ 246, due to the efforts of Yitang Zhang, James Maynard
and Terrence Tao. There are also conjectures on how these pairs of primes are
distributed. Let πr(x) denote the number of pairs of primes p and p+r less than
or equal to x. Hardy and Littlewood conjectured that πr(x) ∼ c(r)x/(log x)2,
where c(r) is a constant depending on r. A proof of the conjecture is not known,
but an upper bound on πr(x), which is of the same order of magnitude as the
conjectured value, can be obtained by sieve methods.



In this write up, we aim to give an outline of the prime number theorem, and
that of an upper bound for the number of primes of the form p and p + r. We
will include most of the relevant background knowledge for these two results,
and give references to some more technical arguments. We begin in section 2 on
the technique of partial summation. The technique allows us to obtain Stirling’s
formula and three results due to Mertens, which will be useful in the sieve meth-
ods later on. We will also outline Chebyshev’s theorem, which tells us something
about the function π(x).

Sections 3 and 4 demonstrate how to calculate the average values of im-
portant arithmetic functions. Section 3 deals with ω(n), the number of distinct
prime factors of n, and Ω(n), the number of prime factors of n counted with
multiplicity; section 4 deals with d(n), the number of divisors of n, and other
multiplicative functions. The work on ω(n) and Ω(n) is relevant for the sieve
methods later on, and it can be applied to the multiplication table problem,
which is presented in section 3. The work on multiplicative functions, combined
with partial summation from section 2, will allow us to evaluate a wide range of
expressions. Moreover, the use of Perron’s formula, which we introduce in section
4, is relevant to the prime number theorem.

Section 5 contains the outline of the prime number theorem. It begins with a
modification of Perron’s formula, which simplifies the problem. Then we discuss
properties of the Riemann zeta function, in particular its growth rate and its
zeros. We finish by evaluating a contour integral and obtaining the desired main
term.

Sections 6 and 7 are about sieve methods. Section 6 discusses Brun’s pure
sieve, and section 7 Selberg’s sieve. The form of Brun’s sieve that we present
will give us upper bounds on the number of primes and twin primes, which
are not on the order of the conjectured values, but will still enable us to show
that the sum of the reciprocals of the twin primes converges (by using partial
summation). Selberg’s sieve will give us bounds for πr(x) on the order of Hardy
and Littlewood’s conjecture.

Before we dive into the various results, we will first introduce a few notations:

1. For functions f and g, f = O(g) means that there exists a constant C such
that |f(x)| < Cg(x) for all large enough x.

2. f = o(g) means that for all ε > 0, there exists some x0 such that x > x0
implies f(x) < εg(x).

3. f � g means the same thing as f = O(g), and f � g means g = O(f).
4. f ∼ g means that limx→infty

f(x)
g(x) = 1, which is equivalent to f(x) = g(x) +

o(g(x))
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2 Estimation of Sums by Partial Summation

In this section, we will introduce the method of partial summation, which allows
us to obtain asymptotic formulae such as logN ! = N logN −N + 1

2 logN +C0 +
O
(

1
N

)
(Stirling’s formula). This formula leads to the following result:

Theorem 1 (Chebyshev). Let

a = lim inf
x→∞

π(x)

x/ log x

and
A = lim sup

x→∞

π(x)

x/ log x

then
log 2 ≤ a ≤ A ≤ 2 log 2

Moreover, if a = A, that is limx→∞ π(x)/(x log x) exists, then a = A = 1.

which provides a bound on π(x) when x is large. We can also obtain the
following three formulae, due to Mertens,

Theorem 2 (Mertens). As x→∞, we have∏
p≤x

(
1− 1

p

)
∼ e−γ

log x

where γ is Euler’s constant. Secondly, for some constant B, we have∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
Finally, we have ∑

p≤x

log p

p
= log x+O(1)

The sums evaluated above will come up frequently, hence are very useful.
The first sum comes up in the sieve of Eratosthenes and other sieve methods
that we will discuss later on (more detailed discussion of the materials in this
section can be found at [1]).

2.1 Partial summation

We begin by trying to estimate the sum
∑
n≤x

1
n . By considering the integral of

1
t from 1 to x, we conclude that this sum is roughly log x. But we can achieve a
more precise result than that. We will introduce a technique called partial sum-
mation. Suppose we have some integer sequence a(n), where A(x) =

∑
n≤x a(n)
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denotes the partial sums. If we know something about A(n), we want to use that
knowledge to help us estimate the sum

∑
n≤x a(n)f(n), where f is a function on

the reals. For example, in the sum
∑
n≤x

1
n , we have a(n) = 1 for all n (so A(n)

is simply n), and f(x) = 1
x . Given this setting, we have the following result:

Lemma 1 (Partial Summation).

∑
n≤x

a(n)f(n) = A(x)f(x)−
∫ x

1

f ′(t)A(t)dt

Proof. Assume first that x is an integer. Note that∑
n≤x

a(n)f(n) =
∑
n≤x

(A(n)−A(n− 1))f(n)

= A(x)f(x)−
∑

n≤x−1

A(n)(f(n+ 1)− f(n))

= A(x)f(x)−
∑

n≤x−1

∫ n+1

n

f ′(t)A(t)dt

= A(x)f(x)−
∫ x

1

f ′(t)A(t)dt

As desired. The case when x is not an integer is very similar.

Using this technique on
∑
n≤x

1
n , we can get a better handle of the error,

which comes from estimating the sum by an integral:

∑
n≤x

1

n
= 1−

∫ x

1

− 1

t2
btcdt

= 1 +

∫ x

1

1

t2
(t− {t})dt

= 1 +

∫ x

1

1

t
dt−

∫ x

1

{t}
t2
dt

= log x+

(
1−

∫ ∞
1

{t}
t2
dt

)
+

∫ ∞
x

{t}
t2
dt

Where {t} = t − btc is the fractional part of t, which is bounded by 1,
hence both the second and third term above are bounded by

∫∞
1

1
t2 dt, which is

bounded. The second term, 1−
∫∞
1
{t}
t2 dt, is Euler’s constant, denoted as γ. The

third term is bounded by
∫∞
x

1
t2 dt = 1

x . Thus we have the following result:

∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
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Partial summation will allow us to compute asymptotes for many other im-
portant sums, one of which is logN ! =

∑
n≤N log n. Following the earlier nota-

tion, we let a(n) = 1, f(x) = log x, then we have:

∑
n≤N

log n = N logN −
∫ N

1

btc
t
dt

= N logN −N + 1 +

∫ N

1

{t}
t
dt

then we let

B(x) =

∫ x

1

{t}
t
dt =

x

2
+ C(x)

where C(x) is bounded, then integrating by parts gives us:

∫ N

1

{t}
t
dt =

B(N)

N
+

∫ N

1

B(t)

t2
dt

=
1

2
+O

(
1

N

)
+

1

2
logN +

∫ N

1

C(t)

t2
dt

=
1

2
logN + C +O

(
1

N

)
where C is some constant, so

logN ! =
∑
n≤N

log n = N logN −N +
1

2
logN + C0 +O

(
1

N

)

which is actually Stirling’s formula.

2.2 Chebyshev’s bound on π(x)

We can say more about logN !. In particular, we can express it as such:

logN ! =
∑
n≤N

log n =
∑
n≤N

∑
pα||n

log pα

where pα||n means that α is the largest power of p that divides n. For con-
venience, we introduce the von Mangoldt function, Λ(n), which is equal to log p,
when n is a prime power, pk, and equal to 0 otherwise. Thus, going back to the
sum and exchanging the order of summation, we have:
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∑
n≤N

log n =
∑
n≤N

∑
d|n

Λ(d)

=
∑
d≤N

Λ(d)
∑
d|n
n≤N

1

=
∑
d≤N

Λ(d)

⌊
N

d

⌋

= N
∑
d≤N

Λ(d)

d
+O

∑
d≤N

Λ(d)



(1)

In the sum
∑
d≤N

Λ(d)
d , Λ(d) serves to pick out the reciprocals of primes with

weights of log p; it also picks out reciprocals of prime powers, but these only
make a negligible contribution to the sum, as we will see later when we discuss
Mertens’ theorem.

If we can get a handle on the error term O
(∑

d≤N Λ(d)
)
, then we would

be able to derive an asymptotic formula for
∑
d≤N

Λ(d)
d , from our earlier work

on logN !. The quantity
∑
d≤N Λ(d), which we will denote as ψ(N), is very

important and will come up in many of our later work. Notice that:

ψ(N) =
∑
p≤N

∑
k≥1
pk≤N

log p =
∑
p≤N

log p

⌊
logN

log p

⌋
≤ logNπ(N)

where π(N) denotes the number of primes less than or equal to N , which we
will study in much greater depth later. Further manipulations with ψ(N) can
actually give us bounds on π(N). First note that:

logN ! =
∑
n≤N

log n

=
∑
n≤N

∑
d|n

Λ(d)

=
∑
d≤N

Λ(d)
∑

k≤N/d

1

=
∑
k≤N

∑
d≤N/k

Λ(d)

= ψ(N) + ψ(N/2) + ψ(N/3) + ...

so using the above identity on 2N and N , we have that:

log
2N !

N !2
= ψ(2N)− ψ(2N/2) + ψ(2N/3)− ψ(2N/4) + ...
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since ψ(n) is increasing, we have that:

ψ(2N)− ψ(N) ≤ log
2N !

N !2
≤ ψ(2N)

We know that 2N !
N !2

=
(
2N
N

)
, and, because

(
2N
N

)
is the largest of the coefficients(

2N
k

)
, we have:

4N

2N + 1
≤
(

2N

N

)
≤ 4N

Thus we are able to extract upper and lower bounds for ψ(x) and π(x). The
lower bound for ψ(x) comes easily:

ψ(2N) ≥ log
4N

2N + 1
= 2N log 2 +O (logN)

Since ψ(2N) ≤ log 2Nπ(2N), we have, after replacing 2N with x,

π(x) ≥ x

log x
log 2 +O(1)

The upper bound for ψ(x) requires a little more work (recall that we are
interested in this upper bound because it would give us the error term in (1)).
We have that:

ψ(2N)− ψ(N) ≤ N log 4

Replacing the integer N with a real number x, we have:

ψ(2x)− ψ(x) ≤ x log 4 +O (log x)

Then replacing x by x/2, x/4, and so on, we have that:

ψ(2x) ≤ (x+
x

2
+
x

4
+ ...) log 4 +O(log x2) = 2x log 4 +O(log x2)

Thus we see that ψ(x) = O(x). In fact, we will see later that ψ(x) ∼ x, and
this statement is equivalent to the prime number theorem, that π(x) ∼ x

log x . For
now let us see how we can get an upper bound for π(x). Note that:

ψ(2x)− ψ(x) =
∑

x≤n≤2x

Λ(n) ≥
∑

x≤p≤2x

log p ≥ log x(π(2x)− π(x))

The first inequality holds because we are removing contributions from the
prime powers, and the second one holds because log p ≤ log x.

∑
p≤N log p will

also turn out to be a quantity of interest, and we will denote it as ϑ(N). Notice
that ϑ(N) is very similar to ψ(N), except without the contributions from the
prime powers. In particular, note that
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ψ(N) = ϑ(N) + ϑ(N
1
2 ) + ϑ(N

1
3 ) + ... = ϑ(N) +O

(√
N logN

)
and since ψ(x) ∼ x, ϑ(x) ∼ x as well, so again we see that contributions from

prime powers are small when x gets large.
Going back to the inequality, we can follow a similar argument that we

sketched out for ψ(x) to get an upper bound for π(x) (details see [1]), and
so we have shown how to obtain the two bounds in Chebyshev’s theorem (the
statement in the theorem about the case when the limit exists is discussed in
[1]).

2.3 Mertens’ theorem

We now have an upper bound on ψ(x), so we can go back to (1), and we can
write out:

logN ! = N
∑
d≤N

Λ(d)

d
+O(N)

combined with the result logN ! = N logN −N + 1
2 logN +C0 +O( 1

N ), the
formula above gives us: ∑

d≤N

Λ(d)

d
= logN +O(1)

The sum above, as mentioned before, picks out the reciprocals of primes and
prime powers with weight log p:∑

d≤N

Λ(d)

d
=
∑
p≤N

log p

p
+
∑
p≤
√
N

log p
∑
k≥2
pk≤N

1

pk

the contribution from prime powers turns out to be just a constant, because
the geometric series is bounded:

∑
k≥2
pk≤N

1

pk
<

∞∑
k=2

1

pk
= O

(
1

p2

)

and since log p = O
(√
p
)
, we have:

∑
p≤
√

(N)

log p

p2
�
∑
p

√
p

p2
<

∞∑
n=1

1

n
3
2

= O (1)

Where the order of the last sum comes from integration. Our calculation
shows that the higher prime powers only contribute a constant’s worth, so we
have:
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∑
d≤N

Λ(d)

d
=
∑
p≤N

log p

p
+O (1)

and ∑
p≤N

log p

p
= logN +O(1)

We have thus proved the third statement from Mertens’ theorem, and the
other two follow readily. The estimate for

∑
p≤x

1
p can be achieved by partial

summation, letting a(n) = logn
n when n is prime and 0 otherwise, and f(x) =

1
log x . The estimate for

∏
p≤x

(
1− 1

p

)
follows by taking log on the expression,

considering its Taylor expansion, and using the result about
∑
p≤x

1
p .

2.4 Sieve of Eratosthenes

The quantity
∏
p≤x

(
1− 1

p

)
will appear in many places, and one such place is the

estimation of π(x). A direct way to estimate π(x) is via the sieve of Eratosthenes:
if we take away the numbers less than x which are multiples of primes less that√
x, then the remaining numbers will be all the primes less than x. In general,

starting with some y < x, if we take away the multiples of primes less than y,
we will be left with the set

{n ≤ x : p|n =⇒ p ≤ y}

The way to count the numbers that are not multiples of a set of primes p1,
p2, ..., pk is by inclusion-exclusion: first, for each prime pm, subtract away the
number of multiples of pk below x, which will be

⌊
x
pi

⌋
; then, for each pair of

primes pi and pj , add back the number of multiples of pipj ,
⌊

x
pipj

⌋
, which would

have been subtracted twice earlier; then subtract the number of multiples of
three primes,

⌊
x

pipjpk

⌋
, and continue until we are left with the right amount.

To help with notation, we will introduce the Möbius function, µ(n), which is
defined on the integers as follows:

µ(n) =


1 if n is square-free and n has an even number of prime factors;
−1 if n is square-free and n has an off number of prime factors;
0 if n is not square-free.

where a number is not square-free means that it has a square that is greater
than 1 as a divisor. An extremely important property of µ(n) is that it is a
multiplicative function, which means that for any integers a and b, where (a, b) =
1, we have that µ(ab) = µ(a)µ(b). This property implies that the value that µ(n)
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takes is entirely determined by its values on the prime powers, where µ(p) = −1,
and µ(pk) = 0, for k > 1.

Going back to the inclusion-exclusion process, we see that the quantity we
are looking for can be expressed as such:

{n ≤ x : p|n =⇒ p ≤ y} =
∑
d

p|d =⇒ p≤y

µ(d)#{n ≤ x : d|n}

=
∑
d

p|d =⇒ p≤y

µ(d)
⌊x
d

⌋

= x
∑
d

p|d =⇒ p≤y

µ(d)

d
+O

 ∑
d

p|d =⇒ p≤y

|µ(d)|


The main term above is

x
∑
d

p|d =⇒ p≤y

µ(d)

d
= x

∏
p≤y

(
1− 1

p

)

and the error term is

O

 ∑
d

p|d =⇒ p≤y

|µ(d)|

 = O(2π(y))

Then, letting y =
√
x for example, and noting that π(x) < y + {n ≤ x :

p|n =⇒ p ≤ y}, the main term above gives us that π(x) is bounded by 2x
log x

(which is about a factor of 2 out). However, this bound is not valid, because
when y =

√
x the error term is much larger than the main term. In fact, in order

to make the error term smaller than the main term, we have to choose y = log x,
giving us the bound of x

log log x , which is much worse. One way to proceed from
the current result, and we will see this later, is to adapt the sieve method so that
we can get a smaller error term. We will also present an overview of the proof
of the prime number theorem (that π(x) ∼ x

log x ) later on. Before moving onto
these results, we will devote some time to presenting important functions on the
integers.

3 ω(n) and Ω(n)

We begin the exposition of integer functions with ω(n) =
∑
p|n 1, the number of

distinct prime factors of n, and Ω(n) =
∑
pα||n α, the number of prime factors

of n counted with multiplicity. In particular, ω(n) is additive, meaning that
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f(ab) = f(a) + f(b), for (a, b) = 1, and Ω(n) is completely additive, meaning
that f(ab) = f(a) + f(b) always. These two functions are useful in many areas.
ω(n) will be used to define a function that approximates µ(n) in our discussion
on Brun’s sieve later on. Ω(n) can be nicely applied to give a result due to Erdös:

Theorem 3 (Erdös). The number of distinct integers in the N ×N multipli-
cation table is o(N2).

which we will see at the end of this section (more details can again be found
at [1]).

For such integer functions, we might like to investigate the maximum and
minimum values that they can take, as well as their average value and variance.
In the case for Ω(n), the minimum value is 1 (when n is a prime), and the
maximum value maxn≤N Ω(n) =

⌊
logN
log 2

⌋
, because each prime factor is less than

or equal to 2. As for ω(n), the minimum value is also 1, and the maximum value
we would expect to be obtained by a product of distinct primes, which turns out
to be on the order of logN/ log logN , which is smaller than that of Ω(n).

We are more interested in the average values, that is looking for asymptotic
formulae for 1

N

∑
n≤N ω(n) and 1

N

∑
n≤N Ω(n) as N gets large. Note that:

ω̄(n) =
1

N

∑
n≤N

ω(n) =
1

N

∑
n≤N

∑
p|n

1 =
1

N

∑
p≤N

∑
n≤N
p|n

1 =
1

N

∑
p≤N

(
N

p
+O(1)

)

by using Merten’s theorem on the sum of reciprocal of primes, we have that
the average of ω(n) is of order log logN . It turns out that the average of Ω(n) is
also of order log logN , again because the contribution of prime powers is small.

As for the variance, note that

1

N
(ω(n)− ω̄(n))2 =

1

N

∑
n≤N

ω(n)
2 − ω̄(n)

2

=
1

N

∑
p1,p2≤N

∑
n≤N
p1|n
p2|n

1− ω̄(n)
2

After carefully investigating the first sum, we can show that it is of order
log logN2 + O(log logN), and so the variance is O(log logN), because ω̄(n)

2 is
of order log logN2. Thus we have the following result:

Theorem 4 (Hardy-Ramanujan; Turan). The average value of ω(n) with
n ≤ N is log logN+B+O(1/ logN), where B is some constant, and the variance
is

1

N
(ω(n)− ω̄(n))2 = O(log logN)
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It turns out that the two asymptotic results above are also true for Ω(n),
which can be deduced from the theorem explicitly by showing some quantity
such as 1

N

∑
n≤N (Ω(n) − ω(n))2 � 1. An important point to note is that the

variance is small compared to the square of the mean, which means that the the
typical values of ω(n), and similarly of Ω(n), are concentrated near the mean
value. More explicitly, we have:

Corollary 1. Let f(N) be some function that tends to infinity with N . Then
the set

E = {n ≤ N : |ω(n)− log log n| ≥ f(N)
√

log logN}

satisfies

|E| � N

f(N)
2

So almost all n ≤ N satisfies ω(n) ∼ log logN . The corollary comes easily
from the theorem, because the variance is at least

1

N
|E|(f(N)

√
log logN)2

and then we can use the result of the theorem. We know much more about
the variances: Erdös and Kac showed that the quantity

ω(n)− log logN√
log logN

has a normal distribution with mean 0 and variance 1.
With the Hardy and Ramanujan’s theorem, we can achieve a neat result of

Erdös known as the multiplication problem, which was stated in Theorem 3.
To prove the theorem, we will use Theorem 4 for Ω(n) instead of ω(n).

Suppose a, b ≤ N , so n = ab appears in the multiplication table. If a and b are
typical numbers below N , then they should have around log logN prime factors,
so n should have around Ω(n) = Ω(a) +Ω(b) = 2 log logN prime factors. But a
typical number below N2 only has log logN2 ∼ log logN factors, so the numbers
in the multiplication table must be unusual (full proof is this idea presented with
more details, which can be found in [1]).

What is known about Ω(n) and ω(n) is also related to permutations, because
the cycle decomposition of a permutation can be thought of as a factorization,
so we can also ask questions such as how many cycles does a typical element of
Sn decompose into. More details can also be found in Sound’s notes.

4 Multiplicative Functions

Multiplicative functions are functions on the integers that satisfy f(ab) = f(a)f(b)
for (a, b) = 1. We have already seen an example of a multiplicative function,
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namely µ(n). Another example of such functions is d(n) =
∑
d|n 1, the di-

visor function, which counts the number of divisors of n. d(n) is multiplica-
tive because, if n = pa11 p

a2
2 ...p

ak
k is written in its prime factorization, then

d(n) = (a1 + 1)(a2 + 1)...(ak + 1), so indeed d(ab) = d(a)d(b) for coprime a
and b. We are particularly interested in how to evaluate averages of multiplica-
tive functions, because an asymptotic formula for the average value, combined
with the method of partial summation, will allow us to estimate a large variety
of expressions. Moreover, in calculating the averages, we will introduce the use of
Perron’s formula, which will give a connection between the distribution of prime
numbers and the zeros of the Riemann zeta function.

Let us consider d(n). We can find its maximum value: we claim that for any
ε > 0, there exists a constant C(ε) such that

d(n) ≤ C(ε)nε

To see this, note that

d(n)

nε
=
∏
pa||n

a+ 1

paε
≤
∏
pa||n

max
a≥0

a+ 1

paε

we can check by differentiation that a+1
paε does attain a maximum, and for p

large enough the maximum is simply 1, and thus the upper bound follows.
As for the average value d̄(n) = 1

N

∑
n≤N d(n), note that

∑
n≤N

d(n) =
∑
n≤N

∑
d|n

1

=
∑
d≤N

∑
n≤N
d|n

1

=
∑
d≤N

N

d
+O(N)

= N logN +O(N)

If we evaluate the sum by the hyperbola method, we can actually get that∑
n≤N d(n) = N logN + (2γ − 1)N + O(

√
N) (details see [1]). In any case, we

have d̄(n) = logN +O(1).

4.1 Method of convolution

Before we proceed to more general cases of multiplicative functions, we will
introduce an important operator on the multiplicative functions, and that is the
Dirichlet convolution. For functions f and g, the Dirichlet convolution, f ∗ g, is
given by:

13



(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
) =

∑
ab=n

f(a)g(b)

It is not hard to check that if f and g are both multiplicative, then f ∗ g
will also be multiplicative, because for coprime a and b, the factors of ab can be
uniquely written as the product of a factor of a times a factor of b. It is also not
hard to check the Möbius inversion formula, that if g = 1 ∗ f , then f = µ ∗ g
(the key is that (1 ∗ µ)(n) is equal to 1 for n = 1 and 0 for all other n, which
can be easily verified).

Going back to the example with d(n), we note that d = 1 ∗ 1. Moreover,
the method for evaluating

∑
n≤N d(n) suggests a general method for evaluating

sums of multiplicative functions: if we want to evaluate
∑
n≤N f(n), with f(n)

being quite complicated, we can write f = 1 ∗ g, with g = µ ∗ f by the inversion
formula; with some luck, g should be a simpler function that f , and then we can
evaluate the sum involving g (with d(n), the function 1 is certainly simpler).

As an example, we will evaluate the sum
∑
n≤N µ(n)

2. Note that µ(n)
2 is 1

on square-free integers and 0 elsewhere. We will write µ2 = 1∗a for some function
a = µ ∗ µ2. Because a is a multiplicative function, its values are determined by
its values on the prime powers, which turn out to be a(p2) = −1, and a(pk) = 0
for k 6= 1. Thus we have:

∑
n≤N

µ2(n) =
∑
n≤N

∑
cd=n

a(d)

=
∑
d≤N

a(d)
∑
n≤N
d|n

1

=
∑
d≤N

a(d)

(
N

d
+O(1)

)

= N
∑
d≤N

a(d)

d
+O(

√
N)

The error is O(
√
N) because a(n) is 0 unless n is a square. Looking at the

main term we have:

N
∑
d≤N

a(d)

d
= N

∞∑
d=1

a(d)

d
+O

N ∑
d≥N

|a(d)|
d


Again a(n) is only non zero on squares, so

O

N ∑
d≥N

|a(d)|
d

 = O

N ∑
e≥
√
N

1

e2

 = O(
√
N)
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at the same time, because a(n) is multiplicative, we can exchange the sum
in the main term into an Euler product:

∞∑
d=1

a(d)

d
=
∏
p

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2

Thus we have ∑
n≤N

µ2(n) =
6

π2
N +O(

√
N)

Using the method of writing functions as convolutions of simpler functions,
we can also calculate sums of functions such as d3(n) =

∑
abc=n 1 = (1 ∗ d)(n) =

(1 ∗ 1 ∗ 1)(n), and we have
∑
n≤N d3(n) = NP (logN) +O(N2/3 logN), where P

is a polynomial of degree 2 with leading coefficient 1
2 . More generally, let dk(n)

be the k-th divisor function, which denotes the number of ways n can be written
as a product of k numbers, then we have dk(n) = (1∗dk−1)(n), and we can show
that

∑
n≤N dk(n) = NPk(logN) +O(N (k−1/k)+ε using our method.

Incidentally, note that dk(n) are the coefficients of the Dirichlet series of
ζk(s):

ζk(s) =

( ∞∑
n=1

1

ns

)k
=

∞∑
n=1

dk(n)

ns

If we consider the coefficients of the Dirichlet series of ζπ(s), then we can de-
fine the function dπ(n), which is also multiplicative. But dπ(n) does not only take
integer values, so the sum

∑
n≤N dπ(n) cannot be evaluated using the convolu-

tion method easily. Instead, there is a complex analytic method which handles
such sums.

4.2 Perron’s formula

The key to the complex analytic method is Perron’s formula, which is given
below:

Proposition 1. For y > 0 and c > 0,

1

2πi

∫ c+i∞

c−i∞

ys

s
ds =


1 y > 1
1
2 y = 1

0 y < 1

When y > 1, we want to shift the line of integration to the left, so ys becomes
very small, and we pick up a pole at 0 with residue 1; when y < 1, we shift the
line of integration to the right, so again ys becomes small, and this time we
pass through no poles, so the integral evaluates to 0 (the case for y = 1 is more
complicated).
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With this formula in hand, we can try to evaluate
∑
n≤x a(n) by analyzing

A(s) =
∑∞
n=1

a(n)
ns . In particular, note that

1

2πi

∫ c+i∞

c−i∞
A(s)

xs

s
ds =

∞∑
n=1

a(n)
1

2πi

∫
(c)

(x
n

)s 1

s
ds =

∑
n≤x

a(n)

with the caveat that x should not be chosen to be an integer, so the weight
of 1

2 from Perron’s formula does not come up. Using this method, we can try to
find the asymptotic formula for

∑
n≤N dπ(n). Note that:

∞∑
n=1

dπ(n)

ns
= ζ(s)

π
= exp(π log ζ(s))

and we will want to shift contours from c > 1 to some c > 0. The term above
gives us a logarithmic singularity at s = 1, which turns out to give the following
main term (more details can be found at [1]):∑

n≤x

dπ(n) ∼ x(log x)π−1

Γ (π)

where Γ (z) =
∫∞
0
xz−1e−xdx is the gamma function, a meromorphic function

with simple poles at the non-positive integers, with the property that Γ (n) =
(n− 1)!.

It turns out that Perron’s formula allows us to relate the zeros of the zeta
function to π(x), and this idea leads to the proof of the prime number theorem.
To be more specific, notice that for Re s > 1,

ζ(s) =
∏
p

(
1− 1

ps

)−1
log ζ(s) =

∑
p

− log

(
1− 1

ps

)
=
∑
p

∞∑
k=1

1

kpks

ζ ′

ζ
(s) =

∑
p

∞∑
k=1

−k log p

kpks
= −

∑
p

∞∑
k=1

Λ(pk)

kpks
= −

∞∑
n=1

Λ(n)

ns

Using Perron’s formula, and taking c > 1, we have:

ψ(x) =
∑
n≤x

Λ(n) =
1

2πi

∫
(c)

(
−ζ
′

ζ
(s)

)
xs

s
ds (2)

Moving the line of integration to the left, and picking up poles at s = 1,
s = 0, and s = ρ where ρ will denote all the zeros of the zeta function, we have
that:

ψ(x) = x+
∑
ρ

xρ

ρ
+
ζ ′

ζ
(0)
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We mentioned earlier that ψ(x) ∼ x is equivalent to π(x) ∼ x
log x , so to prove

the prime number theorem, we want to show that x becomes the main term in
the formula above. In fact, we will not need to shift the line of integration all
the way to c = −∞ and include all the zeros of the zeta function. Instead, we
only need to shift the line slightly to the left of 1, so we pick up the residue of x,
and get an asymptotic formula from there. We will give an outline of the proof
of the prime number theorem in the next section.

5 The Prime Number Theorem

We will now present one of the main results of this write up, the prime number
theorem:

Theorem 5 (Prime Number Theorem). As x→∞, we have

ψ(x) ∼ x

and
π(x) ∼ x

log x

We present the proof in three steps. First we discuss the set up of the proof.
We will not be using Perron’s formula, as we demonstrated at the end of the
previous section, but a variant of it. Then we quote some results on the growth
rate of the Riemann zeta function, and demonstrate that the function has a zero
free region close the the line Re s = 1. We finish by considering the relevant
contour integral, and show that the main term is what we desire.

5.1 Set up

We begin by discussing why ψ(x) ∼ x and π(x) ∼ x
log x are equivalent. We

already know that ψ(x) ∼ x and ϑ(x) ∼ x are equivalent. Because ϑ(x) =∑
p≤x log p and π(x) =

∑
p≤x 1, we can simply go from the asymptote of one to

the other via partial summation (in fact we can get π(x) ∼ li(x), with li(x) being
the logarithmic integral). We will actually prove the prime number theorem by
showing that ψ1(x) ∼ x2

2 , where

ψ1(x) =
∑
n≤x

Λ(n)(x− n) =

∫ x

0

ψ(t)dt

Again we can check this statement is equivalent to the other statements by
partial summation. The reason why we will work with ψ1(x) is that we can use
a smoother variant of Perron’s formula:

1

2πi

∫
(c)

ys

s(s+ 1)
ds =

{
1− 1

y y > 1

0 y ≤ 1
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from which we get the identity:

ψ1(x) =
∑
n≤x

Λ(n)(x− n) =

(
1

2πi

∫
(c)

−ζ
′

ζ
(s)

xs

s(s+ 1)
ds

)
x (3)

This identity is easier to work with, compared to (2), because of the extra
factor of (s + 1) in the denominator, which makes the integral converge more
easily when we shift contours. However, it is also possible to prove the prime
number theorem just by working with ψ(x).

From (3), we will consider the integral

1

2πi

∫
(c)

F (s)ds =
1

2πi

∫
(c)

−ζ
′

ζ
(s)

xs+1

s(s+ 1)
ds (4)

We will show how to shift the line of integration to get the desired main term
of x

2

2 later on. Before we do so, we need to establish some properties of the zeta
function.

5.2 Growth rate and zero free region of the zeta function

Recall that the Riemann zeta function is defined for Re s > 1 as:

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
and it has an analytic continuation with a simple pole at s = 1 (more details

about the zeta function can be found at [5]). Note that, for s = σ + it, if σ > 1
then ζ(s) is bounded by ζ(σ), so ζ is bounded uniformly to the right of the line
Re s = 1. Moreover, the zeta function does not grow quickly on the line Re s = 1
away from the pole, which is exhibited in the following proposition:

Proposition 2. Suppose s = σ + it, then for each 0 ≤ σ0 ≤ 1 and ε > 0, there
exists a constant cε such that:

1. |ζ(s)| ≤ cε|t|1−σ0+ε, if σ0 ≤ σ and |t| ≥ 1.
2. |ζ ′(s)| ≤ cε|t|ε, if σ ≥ 1 and |t| ≥ 1.
3. 1/|ζ(s)| ≤ cε, if σ ≥ 1 and |t| ≥ 1.

The proof is not very difficult, and can be found in [4]. Another important
property of the zeta function is that it has no zeros on the line Re s = 1, and
we discuss the proof now. First, we have the following trig identity:

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0

We want to show that the zeta function has no zeros on the line Re s = 1
(when the real part is larger than 1, we can write the zeta function into an Euler
product, which then shows that it cannot be zero). Now note that, for Re s > 1,
we have:
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Re (log ζ(s)) = Re

(∑
p

∞∑
k=1

1

kpks

)

=
∑
p

∞∑
k=1

1

k
p−kσ cos(kt log p)

Applying the formula above to ζ(1 + ε), ζ(1 + ε+ it), and ζ(1 + ε+ 2it), and
taking a clever linear combination, we have:

3 log |ζ(1 + ε)|+ 4 log |ζ(1 + ε+ it)|+ log |ζ(1 + ε+ 2it)|
= 3Re (log ζ(1 + ε)) + 4Re (log ζ(1 + ε+ it)) + Re (log ζ(1 + ε+ 2it))

=
∑
p

∞∑
k=1

1

k
p−k(1+ε) (3 + 4 cos(kt log p) + cos(2kt log p))

≥ 0

Hence we have ∣∣∣ζ(1 + ε)
3
ζ(1 + ε+ it)

4
ζ(1 + ε+ 2it)

∣∣∣ ≥ 1

If the zeta function is 0 at some 1 + it, then taking ε→ 0, we have∣∣∣ζ(1 + ε)
3
ζ(1 + ε+ it)

4
ζ(1 + ε+ 2it)

∣∣∣→ 0

which is a contradiction, so the zeta function cannot have any zeros on the line
Re s = 1. The intuition for considering the quantity

∣∣∣ζ(1 + ε)
3
ζ(1 + ε+ it)

4
ζ(1 + ε+ 2it)

∣∣∣
is that, if 1+it is a zero, then we are multiplying together three poles, four zeros,
and some regular holomorphic component, which should be small.

Because the zeta function is holomorphic, it cannot have a limiting sequence
of zeros. Hence there exists some δ such that for Re s ∈ (1−δ, 1], the zeta function
has no zeros. We now know enough about the zeta function to complete the proof
of the prime number theorem.

5.3 Completing the proof

Going back to the integral in (4), we will shift the line of integration from
c− i∞→ c+ i∞, with c > 1, to the following (shown in Figure 1):

1− i∞→ 1− iT → 1− δ − iT → 1− δ + iT → 1 + iT → 1 + i∞

where T is some parameter, and δ is such that the zeta function has no zeros
in [1 − δ, 1], which means that shifting the contour as above will only pick up
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Fig. 1. Line of integration that we shift to; image taken from [4]

the residue at s = 1, which is x2

2 , and it will be the main term. We now want to
show that the contributions from the other integrals are small compared to the
main term, for which we will use the bounds from Proposition 2. We examine
each line segment of the integral along the specified path. Firstly, for a large
enough choice of T , we have:∣∣∣∣∣

∫ 1−iT

1−i∞
F (s)ds

∣∣∣∣∣ ≤ εx2

2
and

∣∣∣∣∫ 1+i∞

1+iT

F (s)ds

∣∣∣∣ ≤ εx2

2

because |xs+1| = x2 when the real part of s is 1, and |ζ ′(s)/ζ(s)| ≤ A|t|ε by
the proposition, so the integral is bounded by∣∣∣∣∣

∫ 1−iT

1−i∞
F (s)ds

∣∣∣∣∣ ≤ Cx2
∫ ∞
T

|t|ε

t2
dt

The integral is bounded and can be made arbitrarily small, so we have our
earlier bound. As for the other vertical segment, we have:∣∣∣∣∣

∫ 1−δ+iT

1−δ−iT
F (s)ds

∣∣∣∣∣ ≤ CTx2−δ
where the constant CT depends on T . This bound is simply because that on

the segment 1 − δ − iT → 1 − δ + iT the component − ζ
′

ζ (s) 1
s(s+1) is bounded

above. Finally, for the two horizontal segments, we have:
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∣∣∣∣∣
∫ 1−δ−iT

1−iT
F (s)ds

∣∣∣∣∣ ≤ C ′T
∫ 1

1−δ
x1+σdσ ≤ C ′T

x2

log x

Thus the contribution from the integrals are all small compared to the main
term, and so ψ1(x) ∼ x2

2 , which implies the prime number theorem.

6 Brun’s Pure Sieve

In the final two sections, we will present the other main result of this write up:
the upper bound for the number of twin primes (and of pairs of primes of the
form p and p+r). The method we use is the sieve method, motivated by the sieve
of Eratosthenes. In this section, we will develop Brun’s pure sieve, which will give
us the bounds π(x)� (x log log x)/ log x (a factor of log log x out from the true
value, given by the prime number theorem) and π2(x) � (x log log x)2/(log x)2

(a factor of (log log x)2 out from Hardy and Littlewood’s conjectured value).
Even though the bound for the number of twin primes is not optimal, we can
still deduce from it, by using partial summation, that the sum of reciprocals of
twin primes is bounded, which is a nice corollary. We achieve better bounds in
the next section, using Selberg’s sieve.

Let us define S(x, y;P ) to be the number of n such that x < n ≤ x+ y, and
n is coprime with P . Recall our discussion of the sieve of Eratosthenes, which
we can use to get an expression for S(x, y;P ). In particular, we need to use the
fact that

∑
d|n µ(d) is 1 for n = 1 and 0 for all other n, from which we get the

following:

S(x, y;P ) =
∑

x<n≤x+y

∑
d|n
d|P

µ(d)

=
∑
d|P

µ(d)
∑
d|n

x<n≤x+y

1

= y
∑
d|P

µ(d)

d
+O

∑
d|P

|µ(d)|


The second line in the above calculation shows the inclusion-exclusion process

from the sieve of Eratosthenes more explicitly. The issue with this formula, as
we have previously discussed, is that the error term is very large. If we let
P =

∏
p≤z p be a product of distinct primes, then, in order to get a meaningful

bound, we must choose z = log y, and then we have

S(x, y;P ) ∼ e−γ y

log log y

Since we also have π(x+ y)− π(x) ≤ ω(P ) + S(x, y;P ), we have that
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π(x+ y)− π(x) ≤ e−γ y

log log y

which is a very weak bound (we might expect the actual bound to be on the
order of y/ log y, from the prime number theorem, and this speculation turns out
to be correct). In order to get a better upper bound, we might try to find some
function µ2(n) such that

∑
d|n µ2(d) ≥

∑
d|n µ2(d) for all n, and that the error

term O
(∑

d|P µ2(d)
)
is small. Brun found a µ2(n) that satisfies these conditions:

µ2(n) =

{
µ(n) if ω(n) ≤ 2h for some integer h
0 otherwise

So we have

∑
d|n

µ2(d) =

2h∑
j=0

∑
d|n

ω(d)=j

µ(d) =

2h∑
j=0

(−1)j
(
ω(n)

j

)
= (−1)2h

(
ω(n)− 1

2h

)

The last identity can be shown by comparing coefficients in the power series
expansion of (1− x)−1(1− x)2h and (1− x)2h−1. Thus we see that µ2(n) indeed
satisfies our earlier requirements. Again letting P =

∏
p≤z p, we have:

π(x+ y)− π(x) ≤ z + S(x, y;P )

= y
∑
d|P

µ2(d)

d
+O

z +
∑
d|P

ω(d)≤2h

|µ(d)|



= y
∏
p≤z

(
1− 1

p

)
+O

z +
∑
d|P

ω(d)≤2h

1 + y
∑
d|P

ω(d)>2h

1

d


We know that the main term is e−γy/ log z by Mertens. The second error

term does not exceed z2h. It turns out we can choose h so that the third term
is bounded by y/(log z)v, where v is some integer larger than 3. Then, choosing
z = y1/(10 log log y) (details see [3]), we have that:

π(x+ y)− π(x)� y log log y

log y

This result does improve upon our previous bound, although it still has an
extra factor of log log y. The power of the sieve method is that its argument can
be generalized to many problems. For example, we could also investigate J(y),
the number of twin primes below y. Again we let P =

∏
≤z p, and we will bound

J(y) by the number of n ≤ y such that n(n+ 2) is coprime to P , so we have
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J(y) ≤ z +
∑
n≤y

∑
d|n(n+2)
d|P

µ2(d)

= z +
∑
d|P

µ2(d)
∑
n≤y

d|n(n+2)

1

We want to answer the question of how many n modulo d are there such that
n(n + 2) ≡ 0. If d is prime, then the answer is 1 if d = 2 and 2 otherwise. The
number of solutions to n(n + 2) ≡ 0 mod d can thus be written as ρ(d), where
ρ(n) is completely multiplicative, and takes ρ(2) = 1, ρ(p) = 2 (this is because
of the Chinese remainder theorem: if d|n(n + 2), then for each p|d, p|n(n + 2),
so the number of solutions modulo d is the product of the number of solutions
modulo p). Thus we have:

J(y) ≤ y
∑
d|P

µ(d)ρ(d)

d
+O

z +
∑
d|P

ω(d)≤2h

ρ(d) + y
∑
d|P

ω(d)>2h

ρ(d)

d


where the main term is given by:

1

2
y
∏

2<p≤z

(
1− 2

p

)
≤ 2x

∏
p≤z

(
1− 1

p

)2

∼ 2e−2γ
y

(log z)2

making a similar choice of h and z as we did before (more details discussed
in [3]), we get the result:

Theorem 6 (Brun). As y →∞, we have:

J(y)� y(log log y)2

(log y)2

and then, using partial summation, and setting a(n) as the indicator function
for twin primes, and f(x) = 1

x , we get the following:

Corollary 2. Let J denote the set of twin primes, then:∑
p∈J

1

p
<∞

7 Selberg’s Sieve

We will now introduce Selberg’s sieve, with the aim of getting a better bound
for the number of pairs of primes of the form p and p+ r.
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We return to the identity

S(x, y;P ) =
∑

x<n≤x+y

∑
d|p
d|n

µ(n) = y
∑
d|P

µ(d)

d
+O

∑
d|P

|µ(d)|


The method to find an upper bound that we discussed in the last section

was to find some
∑
d|n µ2(n) ≥

∑
d|n µ(n) that makes the the error small. Sel-

berg proposed a slightly different method: to find some function Λn such that(∑
d|n Λd

)2
≥
∑
d|n µ(n). We will require two other constraints be satisfied: that

Λ1 = 1, and Λn = 0 for n > z for some z. Then we have:

S(x, y;P ) ≤
∑

x<n≤x+y

∑
d|n
d|P

Λd


2

=
∑
d|p
e|P

ΛdΛe
∑

x<n≤x+y
d|n
e|n

1

= y
∑
d|p
e|P

ΛdΛe
[d, e]

+O


∑
d|P

|Λd|

2


where [d, e] = lcm(d, e). We now have a quadratic form in Λd, so we wish to
diagonalize it. Using the identity

∑
d|n φ(d) = n, and that de = (d, e)[d, e], we

have:

∑
d|p
e|P

ΛdΛe
[d, e]

=
∑
d|p
e|P

Λd
d

Λe
e

(d, e)

=
∑
d|p
e|P

Λd
d

Λe
e

∑
f |d
f |e

φ(f)

=
∑
f |P

φ(f)
∑
d

f |d|P

Λd
d

∑
e

f |e|P

Λe
e

=
∑
f |P

φ(f)yf
2

where
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yf =
∑
d

f |d|P

Λ(d)

d

by a variant of the Möbius inversion formula, we also have that

Λd
d

=
∑
f

d|f |P

yfµ(f/d)

So our constraints on Λn, that Λ1 = 1 and Λn = 0 for n > z, can be
translated to the constraints

∑
f |P yfµ(f) = 1 and yf = 0 for f > z. We

have not yet specified the values of yf and Λd, so what we want is to choose
values for these two functions to minimize the quadratic form, subject to our
linear constraints, which can be done using Lagrange multipliers. Because of the
following factorization:

∑
f |P

φ(f)yf
2 =

∑
f |p
f≤z

φ(f)

(
yf −

µ(f)

φ(f)LP (z)

)2

+
1

LP (z)

where

LP (z) =
∑
n≤z
n|P

µ(n)
2

φ(n)

we see that the optimal choice of yf that minimizes our quadratic form is

yf =
µ(f)

φ(f)LP (z)

Going back to

S(x, y;P ) = y
∑
d|p
e|P

ΛdΛe
[d, e]

+O


∑
d|P

|Λd|

2


with our choice of yf , and hence of Λd, we have (details found in [2]):

S(x, y;P ) ≤ y

LP (z)
+O

(
z2

LP (z)2

)
we can also show that LP (z) ≤ log z, if we let P =

∏
p≤z p. Letting z =

√
y,

we have that

S(x, y;P ) ≤ 2y

log y
+O

(
y

(log y)2

)
and hence
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π(x+ y)− π(x) ≤ 2y

log y
+O

(
y

(log y)2

)
And now we are only out by a factor of 2.
Notice that S(x, y;P ) is the set of numbers n in (x, x+y] with n ≡ 0 modulo

some p|P sieved out. It is very natural to ask what the bound for S′(x, y;P )
would be, where we sieve out numbers that are cp modulo each p|P , instead
of sieving out the 0 residue class. By a simple argument in Montgomery and
Vaughan, S′(x, y;P ) can be bounded by the same bound as the bound for
S(x, y;P ) that we have above.

We can also considering sieving out multiple residue classes for each p|P
instead of just one (which is exactly what we did when we tried to bound twin
primes in the previous section: sieving out n(n + 2) ≡ 0 modulo p is simply
sieving out the 0 and −2 residue classes). Let B(p) be a set of ’bad’ residue
classes that we want to sieve out, and let b(p) be the size of B(p). Consider the
quantity:

a(n) =
∏
p|P

n≡B(p) mod p

p

so the values of n that remain after sieving are exactly the ones for which
a(n) = 1. Now p|a(n) if and only if n ≡ B(p) modulo p. By the Chinese remainder
theorem, for some m and all p|m, there are exactly

∏
p|m b(p) residue classes of

m that lie in bad residue classes of p. Thus b(m) is a completely multiplicative
function that represents the number of bad residues modulo m. After sieving
out all B(p) for p|P , we are left with:

∑
x<n≤x+y

∑
d|P
d|a(n)

µ(d) ≤
∑

x<n≤x+y

 ∑
d|P
d|a(n)Λ(d)


2

=
∑
d|P
e|P

ΛdΛe
∑

x<n≤x+y
[d,e]|a(n)

1

= y
∑
d|P
e|P

b([d, e])

[d, e]
ΛdΛe +O

∑
d|P
e|P

|ΛdΛe|b([d, e])


Again we diagonalize the main term, and we get∑

d|P
e|P

b([d, e])

[d, e]
ΛdΛe =

∑
f |P

1

g(f)
yf

2
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where

g(f) =
∏
p|f

b(p)

p− b(p)

for square-free f , and

yf =
∑
d

f |d|P

b(d)

d
Λd

Again the linear constraints Λ1 = 1 and Λd = 0 for d > z translate to∑
f |P yfµ(f) = 1 and yf = 0 for f > z, and again we have a factorization

∑
f |P

1

g(f)
yf

2 =
∑
f |p
f≤z

1

g(f)

(
yf −

µ(f)g(f)

L

)2

+
1

L

where

L =
∑
f |P
f≤z

µ(f)2g(f)

Thus the main term is minimized by taking

yf =
µ(f)g(f)

L

for f ≤ z.
We can apply the work above to bound the number of twin primes, with

b(2) = 1 and b(p) = 2 for p > 2. Letting P =
∏
p≤z p and choosing z =

√
y, we

can show that (details see [2]):

Theorem 7. The number of integers n in (x, x+ y] such that (n(n+ 2), P ) = 1
does not exceed

8cy

(log y)2
+O

(
y log log y

(log y)3

)
where

c = 2
∏
p>2

(
1− 1

(p− 1)2

)
Thus the number of twin primes in the interval (x, x+ y] is bounded by the

above formula. We can also consider the number of primes p such that p + r is
also prime, for some even number r, in the interval (x, x + y]. In this case, we
have b(p) = 1 for all p|r, and b(p) = 2 for p - r. Going through the argument as
before, we arrive at the following:
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Theorem 8. For an even number r, the number of primes p ∈ (x, x + y] such
that p+ r is also prime is bounded by

8c(r)y

(log y)2
+O

(
y log log y

(log y)3

)
where

c(r) =

∏
p|r
p 6=2

p− 1

p− 2

 c

where c is the constant from before.

Hardy and Littlewood’s first conjecture states that the number of primes
p ≤ y such that p+ r is also prime is asymptotic to c(r)y

(log y)2 , so our bound from
Selberg’s sieve is off by a factor of 8.
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