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Abstract

For a finite abelian group G, the generalized Erdős–Ginzburg–Ziv constant sk(G) is the smallest

m such that a sequence of m elements in G always contains a k-element subsequence which sums

to zero. We produce the first exponential lower bound for s2p(Cr
p), introduce new techniques for

determining congruences between the number of zero-sum subsequences of given lengths in the

groups Cr
p , and use these techniques to rederive exact values for s3p(C3

p) and s4p(C4
p).

1 Introduction

In 1961, Erdős, Ginzburg, and Ziv proved that among any 2n � 1 integers, one can always find n of
them whose average is an integer [2]. Today, this result is usually phrased more abstractly in terms of
finite abelian groups, which is to say, sums of finite cyclic groups. Henceforth, let p be an odd prime,
and let C

p

:= Z/pZ. The oddness condition on p exists because in the case p = 2, the theory becomes
trivial, but produces results distinct from that obtained with p odd. The EGZ Theorem, then, states
that for any (2p � 1)-sequence in C

p

, there exists a subsequence of exactly p elements that sums to
zero.

The first step in generalizing this result is defining the Erdős–Ginzburg–Ziv constant for arbitrary
groups. Recall that the exponent of a finite group is the largest order among its elements.

Definition 1. Let G be a finite abelian group, with prime exponent p. Then, the Erdős–Ginzburg–

Ziv constant of G, denoted s
p

(G), is the smallest m such that a sequence of m elements in G always

contains a subsequence of p elements that sums to zero.

It is important to note that we have defined the EGZ constant for subsequences and not subsets -
we will allow repeats. Since we are concerned with sums of elements in an abelian group, the order of
a sequence does not matter either. In what follows, if X is a sequence, we write x 2 X to mean “x
appears at least once in X.”

It is also easy to see why we are interested in zero-sum subsequences of lengths that are multiples
of p. Indeed, showing that a sequence of a certain size must always contain a zero-sum subsequence
of length k for k ⌘ a mod p and a 6= 0 is impossible: we can choose some element g 2 G of order p,
and then the sequence consisting of g repeated an arbitrarily large number of times has no length k

zero-sum subsequence, as k · g = a · g 6= 0. Thus, the EGZ constant s
k

(G) cannot exist.
Of course, we can still consider sequences whose lengths are 0 mod p, and this opens the door to

defining an even more general property, which is the central focus of this paper.
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Definition 2. Let G be a finite abelian group with exponent p. The k-th generalized EGZ constant, de-

noted s
kp

(G), is the smallest m such that a sequence of m elements in G always contains a subsequence

of kp elements that sums to zero.

It may seem curious that we have been dealing only with groups of prime exponent. In most cases,
and especially in the case of cyclic groups and their powers, these turn out to be the most interesting
structurally, as we can synthesize results about groups with exponent p and exponent q into results
about groups with exponent pq.

The EGZ problem, especially in the “smallest” case of k = 1, has proven to be surprisingly in-
tractable. In the almost sixty years since the Erdős paper, the only dimensions in which s

p

has been
exactly determined for all p are one and two. That is, we know the precise values of s

p

(G) when G = C

p

and when G = C

2
p

. The former result of s
p

(C
p

) = 2p�1 comes from the original Erdős paper, while the
latter of s

p

(C2
p

) = 4p�3 is rather recent, and due to Reiher [2], [9]. Although it was Reiher who pinned
down the actual value for C

2
p

, Rónyai also did notable work, proving an upper bound of 4p � 2 and
in the process developing methods that have become widespread in additive combinatorics [10]. Our
results largely come from attempts to extend and systematize congruence-based techniques presented
by Reiher. A description of the resulting framework forms the bulk of section 4 and section 5.

More recently, Naslund has obtained exponential upper bounds on s
p

(Cr

p

) for general r by using the
so-called “slice rank” method, which generalizes the standard tensor rank of a function [8]. Specifically,
he shows that

s
p

(Cr

p

) < 3p!(2p� 1)(J(p)p)r,

where J(p) is a constant, depending on p, which lies between .841 and .918 and decreases as p grows.
1

Our results are primarily in the area of higher-order generalized EGZ constants, specifically s2p and
s3p. In this paper, we prove the following theorems.

Theorem 1. The generalized EGZ constant s2p(Cr

p

) satisfies the following bound

s2p(C
r

p

) >
p(1.25)r

2

That is, there is a sequence of p(1.25)r/2 elements in C

r

p

that contains no zero-sum subsequence of
length 2p. This result, shown in section 3, is new, and in fact is the first exponential lower bound on
s2p(Cr

p

) for an arbitrary dimension r. We will also derive the known exponential lower bound

s
p

(Cr

p

) > (p� 1)2r

in section 2.
Another result is an exact value for s3p in the three-dimensional case.

Theorem 2. s3p(C3
p

) = 6p� 3 for p > 3.

This comes from careful examination of systems of congruences, detailed in section 5. Both this
and the following theorem are due to Kubertin [7]. Our final result is proven in section 6.

Theorem 3. s4p(C4
p

) = 8p� 4 for p > 4.

We will also use new techniques to rederive the upper bound in the known result that 5p+ p�1
2 +3 

s2p(C3
p

)  6p� 3, due to Gao and Thangadurai [4].

1
Examining the preprint of Naslund’s paper, one finds that the 2p� 1 factor in this bound is instead written as p� 1.

This di↵erence comes from the the fact that Naslund considers sequences of unique elements only, as subsets of Fr
p.
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2 Background Theory

For the rest of the paper, unless explicitly stated otherwise, X is taken to be a sequence in C

r

p

for
arbitrary r.

To get a handle on s
p

(Cr

p

) for general r, we begin by restating the elementary bounds proved by
Harborth [5].

Proposition 1.

(p� 1)2r < s
p

(Cr

p

) < (p� 1)pr + 1.

Proof. For the lower bound, we will proceed by induction on the dimension. As a base case, is clear
that in C

p

, the sequence of (p� 1)⇥ 1 and (p� 1)⇥ 0 has no p-length zero-sum subsequence.
Now consider the sequence X given by taking p � 1 of each vector in the Hamming cube {0, 1}r.

We claim that no subsequence of p elements in X sums to zero. Such a subsequence must contain
exactly 0 or p ones in each of the r coordinates. It is impossible that all coordinates contain p ones,
since we only have p � 1 of the vector (1, 1, . . . , 1), and only one choice afterwards to bring us to a
p-subsequence. Thus, some coordinate must stay at 0, and we reduce to the case of the dimension one
lower.

The upper bound is a pigeonhole argument. Given (p�1)pr elements of Cr

p

, we either have exactly
p� 1 of each element in C

r

p

or at least p of some element ↵. In the latter case, the p copies of ↵ sum

to 0. Otherwise, we can choose any element x and take p�1
2 copies of x and p�1

2 copies of �x. These,
combined with a single copy of the zero vector, give a length p zero-sum subsequence.

Remark 1. This upper bound is believed to be far larger than the actual value. Specifically, s
p

(Cr

p

) is
believed to be linear in p for any fixed r, as is the case for r = 1 and 2. In general, for large enough k,
s
kp

(Cr

p

) is known to be linear. Even better, it is known that

s
kp

(Cr

p

) = (r + k)p� r (1)

for k su�ciently large [3].
However, determining the values of k at which this behavior kicks in is an open question, which is

described as determining the phase transition at r. When r = 3,Equation 1 holds for k � 4, as per
a result of Gao and Thangadurai [4]. Theorem 2 shows that in three dimensions this behavior begins
exactly at k = 3, since s3p(C3

p

) = 6p� 3 but s2p(C3
p

) 6= 5p� 3.

3 Lower Bounds on s
kp

(Cr

p

)

We now describe the proof that s2p(Cr

p

) has a lower bound exponential in r. The construction is
probabilistic, and uses a somewhat crude union bound to achieve its end. While more advanced
probabilistic techniques such as the Lóvas Local Lemma net small gains, they do not improve the
exponential constant, which is the most important element [1].

Proof of Theorem 1. Let

N =
p(1.25� ")r

2

for " > 0, and let q = 1/5+ ". For the rest of the proof, we supress the ", with the understanding that
all quantities related to N and q are arbitrarily close to the stated values. Choose a sequence X of N
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random vectors in {0, 1}r as follows. For each v that is a term of X (hence a vector), let v
i

= 1 with
probability q and v

i

= 0 with probability 1� q, with each coordinate in each vector independent. Let
Z be the number of zero-sum 2p-subsequences in X. We show that E[Z] < 1, and so there must be
some possible X with no such subsequences.

Consider some arbitrary 2p-subsequence Y of X. For Y to be zero-sum, each of the r coordinates
must sum to 0 mod p, and so contains exactly 0, p, or 2p ones. For any coordinate i  r, let P0 be the
probability that coordinate i contains 0 ones, P

p

the probability that it contains p ones, and P2p the
probability that it contains 2p ones (clearly, this is not dependent on i). We have

P0 = (1� q)2p

P

p

=

✓
2p

p

◆
q

p(1� q)p < 22pqp(1� q)p

P2p = q

2p
,

the values from a standard binomial distribution with probability of success q.
Now, if Q is the probability that coordinate i sums to zero, we have

Q = P0 + P

p

+ P2p < (1� q)2p + 22pqp(1� q)p + q

2p
.

For 1/5 < q < 4/5, we see by solving for q in the inequalities P

p

> P0 and P

p

> P2p that the second
term dominates the first and third when p is large. So, asymptotically, we have

Q < 22p
✓
1

5

◆
p

✓
4

5

◆
p

<

✓
4

5

◆2p

.

Since Q is the probability that any one coordinate in Y sums to zero, the probability that Y as a whole
is zero-sum is Qr. Since each 2p-subsequence of X is zero-sum with equal probability, we have

E[Z] =

✓
N

2p

◆
Q

r

<

✓
2N

p

◆2p ✓4

5

◆2pr

<

✓
5

4

◆2pr ✓4

5

◆2pr

< 1,

as desired.

This result is notable because in addition to being the first exponential lower bound on s2p for
general r, it is also of the expected order of growth in p. Indeed, an order of growth larger than linear
in p would be alarming, as it would indicate that the linear formulas thus observed do not generalize
to higher dimensions.

As previously mentioned, one might try several strategies for raising this lower bound. In particular,
the calculation of the expectation of Z really consists of performing a union bound by summing
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the probabilities of each event, without regard to intersection. One might therefore attempt to use
the method of alterations. This proceeds as follows. If we relax our requirements and show that
E[Y ] < N/2, we can remove one element from each length 2p zero-sum subsequence, and be left with
a new set X

0 with size on the same order as X, but that does not contain any length 2p zero-sum
subsequences. As it turns out, this strategy does not result in any improvements to the exponential
constant 5/4.

The next question one might ask is how well this method generalizes to give lower bounds on s
kp

for
arbitrary k. The answer turns out to be “rather poorly.” Indeed, suppose we were instead interested
in kp-subsequences. If we repeat the above construction with

N =
p(1 + �)r

k

and try to optimize for �, we first must calculate the probability that a given coordinate i  r sums to
zero. We now have k component probabilities, P0 through P

kp

. By the same logic as above, we see

P

ip

=

✓
kp

ip

◆
q

ip(1� q)(k�i)p
.

If we want the two “most skewed” terms P0 and P

p

to dominate, we set

(1� q)kp =

✓
kp

p

◆
(1� q)(k�1)p

q

p

.

Bounding the binomial coe�cient on the right, we see
⇣

kp

p

⌘
p

(1� q)(k�1)p
q

p

< (1� q)kp <

⇣
ekp

p

⌘
p

(1� q)(k�1)p
q

p

k

p

q

p

< (1� q)p < (ek)pqp

kq < 1� q < ekq

1
ek+1 < q <

1
k�1 .

In this range, P0 and P

p

are approximately equal, and so we can approximate Q ⇡ 2(1� q)kp. Then,

E[Z] =

✓
N

k

◆
Q

r

<

✓
kN

p

◆
kp ⇥

2(1� q)kp
⇤
r

< 2r [(1 + �)(1� q)]kpr .

If we want E[Z] < 1, we must have

2r [(1 + �)(1� q)]kpr < 1

(1 + �)(1� q) < 2
�1
kp

� <

2
�1
kp

1� q

� 1.

For q in the range determined above, the permissible values of � approach zero as k grows, since the
numerator and denominator of the fraction both go to one. Therefore, this gives us nothing if we seek
a general bound for s

kp

(Cr

p

) for completely general k and p. However, if we are interested in specific
values of k, i.e. s3p, one can still attempt to optimize q in order to achieve an exponential lower bound
- it just becomes less e↵ective for large k.
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4 Algebraic Lemmas

For the rest of the paper, assume that p > r is a prime. Further, the case p = 2 is in general trivial.
We therefore also assume that p is odd.

In order to prove Theorem 2, we will first need to develop several lemmas that provide relations and
congruences between the number of zero-sum subsequences in a given X. The method of examination
of these relations is entirely di↵erent from the approaches previously in this paper. We will therefore
need some new notation.

Definition 3. Let X be a sequence of elements of C

r

p

. Then if Y is a subsequence of X, we write

(kp | Y ) to indicate the number of zero-sum subsequences of Y with length kp.

We also �

k

to indicate (kp | X), with �0 = 1. We will only consider �

k

to be defined if k � 0 is

small enough so that kp  |X|. Finally, let ~� refer to the vector of all �

i

, meaning

~

� := (�0,�1, . . . ,�`

).

We will also frequently omit the modulus in expressions of the form x ⌘ y (mod p), letting it be
clear from context.

The first result we will need is the Chevalley-Warning Theorem. This is a well-known, purely
algebraic theorem about common zeros of polynomials over finite fields.

Lemma 1 (Chevalley-Warning Theorem). Let F be a finite field, and f1, . . . , fr 2 F[X1, . . . , Xn

], where

n >

rX

i=1

deg(f
i

),

Then, the number of common solutions (a1, . . . , an) 2 Fn

to all of the f

i

is divisible by the characteristic

of F.

Proof. See [9].

Our strategy, then, will be to design a collection of polynomials such that their zeros give us
information about the number of zero-sum subsequences of a given subsequence. Our first step is the
following lemma:

Lemma 2. Pick s, k so that kp � s > (r + 1)(p� 1). Let X be a sequence in C

r

p

, with |X| = kp � s.

Then X

i

(�1)i�
i

⌘ 0 mod p

The result is a generalization of a construction used by Reiher to arbitrary dimensions [9].

Proof. Let the sequence X be given by {(a1i, . . . , ari)}, and let n = |X|. In other words, we fix an
(arbitrary) ordering on the elements of X so that we may use them in sums. Then, a

ji

is the j-th

6



coordinate of the i-th vector in X. Now, define a collection of r + 1 polynomials over F
p

by

f0(x1, . . . , xn

) =
nX

i=1

x

p�1
i

f1(x1, . . . , xn

) =
nX

i=1

a1ix
p�1
i

...

f

r

(x1, . . . , xr

) =
nX

i=1

a

ri

x

p�1
i

.

We can think of the x

i

as indicating whether or not to choose a specific element in X as part of
a particular subsequence. In other words, we can associate each subsequence Y of X to the set of
(x1, . . . , xn

) such that x

i

6= 0 if and only if the i-th element of X is in Y . Then, f0 is zero when
|Y | ⌘ 0 mod p. For i > 0, f

i

is zero when the the corresponding coordinate in Y sums to zero across
the chosen elements. So, the common zeros of the f

i

exactly encode the zero-sum subsequences of X
whose lengths are multiples of p.

Now, suppose we have a zero-sum subsequence of length lp. To count the common zeroes of the
f

i

that this subsequence induces, we note that exactly lp of the x

i

must be non-zero, and that we can
choose for each of these any element of F⇥

p

. So, the total number of zeros is (p� 1)lp ⌘ (�1)lp. When
we sum across all possible lengths of subsequences (including the trivial subsequence of length zero),
we see by the Chevalley-Warning Theorem that

X

i

(�1)i�
i

⌘ 0 mod p

as desired.

This single congruence can, somewhat surprisingly, be used to generate a family of further inde-
pendent congruences on the (lp | X) that we encode as a matrix over F

p

.
For our next lemma, recall the conventions that

�
x

y

�
= 0 if x < y, and that

�0
0

�
= 1.

Lemma 3. Pick s with 0  s < r. Consider a sequence X in C

r

p

with |X| = kp � r + s for some

k � r + 1. Let A be the (k � r)⇥ k matrix

0

BBBB@

�
k�1
k�1

�
�
�
k�2
k�2

�
. . . (�1)k�1

�0
0

�
�
k�1
k�2

�
�
�
k�2
k�3

�
. . . (�1)k�1

�0
1

�

.

.

.

.

.

.

.

.

.

.

.

.�
k�1

k�r�1

�
�
�

k�2
k�r�2

�
. . . (�1)k�1

� 0
k�r�1

�

1

CCCCA

Then A

~

� ⌘ ~0, when the entries are taken modulo p.

As an example, consider a sequence of 6p� 3 elements in C

3
p

. The matrix encoding the relations of
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the above lemma is

0

@
1 �1 1 �1 1 �1
5 �4 3 �2 1 0
10 �6 3 �1 0 0

1

A

0

BBBBBB@

�0

�1

�2

�3

�4

�5

1

CCCCCCA
⌘ ~0

Notice that the first row encodes the alternating sum from the previous lemma.

Definition 4. A matrix determined as in the lemma for a sequence X is called the relation matrix for

X.

Note that the relation matrix for X is only dependent on |X|, and not the actual elements it
contains. Relation matrices are always truncated versions of Pascal’s triangle, with an alternating sign
on each column. 2

Proof of Lemma 3. For each r + 1  n  k, consider some arbitrary subsequence Y ⇢ X with |Y | =
np� r + s. As long as n � r + 1, Lemma 2 still holds, and

1� (p | Y ) + (2p | Y )� · · ·+ (�1)n�1((n� 1)p | Y ) ⌘ 0

If we sum across all possible Y of size np� r + s, we see that
X

|Y |=np�r+s

⇥
1� (p | Y ) + (2p | Y )� · · ·+ (�1)n�1((n� 1)p | Y )

⇤
⌘ 0

Now, each lp-length zero-sum subsequence is counted multiple times in this sum. If we know exactly
how many times, at least modulo p, this will give us a new equation

X

i

c

i

�

i

⌘ 0 (2)

To calculate c

l

, consider how many of our Y contain any particular length lp zero-sum subsequence.
We need a total of np� r+ s elements, and have already fixed lp. Thus, we can choose the remaining
(n� l)p� r+ s from among |X|� lp = (k� l)p� r+ s elements. So, each such subsequence is counted

✓
(k � l)p� r + s

(n� l)p� r + s

◆

times. We wish to evaluate this modulo p. Writing it out explicitly and gathering the p factors gives
✓
(k � l)p� r + s

(n� l)p� r + s

◆
⌘ [(k � l)p� r + s]!

[(k � n)p]![(n� l)p� r + s]!

⌘ (k � l � 1)! · pk�l�1 · (p� r + s)! · ((p� 1)!)k�l�1

[(k � n)! · pk�n · ((p� 1)!)k�n][(n� l � 1)! · pn�l�1 · (p� r + s)! · ((p� 1)!)n�l�1]

⌘ (k � l � 1)!

(k � n)!(n� l � 1)!

⌘
✓
k � l � 1

n� l � 1

◆

2
A program to generate relation matrices has been included in Appendix A
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So, Equation 2 is calculated to be

✓
k � 1

n� 1

◆
�0 �

✓
k � 2

n� 2

◆
�1 + · · ·+ (�1)n�1

�

n

⌘ 0

which gives us precisely the desired relationship on a row of the relation matrix of X.

By summing over appropriately sized subsets of X, we were able to derive relations involving fewer
and fewer of the terms (lp | X). We will now use these relations to prove a rather extreme restriction
on how many of these terms can take on a value of 0 mod p.

5 Upper bounds on s
kp

(C3
p

)

Having developed the results of section 4, there are a number of strategies one can pursue using the
following idea: if X is a su�ciently long sequence and we would like to show that some �

i

is non-
zero, we may set it to zero and use our relations to produce some oddity from which we can derive a
contradiction. The following result and its corollary subsumed all our previous attempts, and produced
a quick proof of Theorem 2.

Lemma 4. Let A be a relation matrix. Then any (k � r)⇥ (k � r) submatrix of A is invertible.

Proof. This is an immediate consequence of the first lemma of [6].

Lemma 5 (Independence Lemma). Let X be a sequence in C

r

p

, of length kp � r + s, with k � r + 1
and 0  s < r. Then at most r � 1 of the �

i

satisfy �

i

⌘ 0.

Proof. Suppose r of the �

i

satisfy �

i

⌘ 0, say �

t1 , . . . ,�tr . Form the relation matrix A of X. Then

by removing the t

i

-th columns, we obtain a (k � r) ⇥ (k � r) matrix A

0. Letting ~

�

0 be ~

� with the

�

ti removed, we have A

0
~

�

0 ⌘ ~0. By Lemma 4, we know that A

0 is invertible. Thus ~

�

0 ⌘ ~0, but by

definition �0 = 1, so that �0 is in ~

�

0, yielding a contradiction.

A brief expository note may be helpful here. One of the di�culties of examining the EGZ constant
is that one can obtain no useful information about the overlap between two sequences unless they
are completely disjoint or one is contained in the other. For example, suppose we wish to determine
information from the existence of particular zero-sum subsequences of length p and 3p in a sequence
X. If they are disjoint, we obtain a length 4p zero-sum subsequence. If one is contained in the other,
we obtain a length 2p zero-sum subsequence. In both these cases, we may have significantly increased
our understanding of X. On the other hand, if the sequences have even a single element in common,
there is no evident information to be gained.

This example suggests that the statements about X that will most easily build up into other state-
ments are those concerning the existence of disjoint zero-sum subsequences, especially those contained
in zero-sum subsequences we already have information about. The following corollary allows us to use
the existence of long zero-sum subsequences to obtain statements about the existence and disjointness
of strictly contained zero-sum subsequences.

Definition 5. Given a zero-sum subsequence Z ✓ X of length a multiple of p, we say Z splits if Z

strictly contains a zero-sum subsequence W that also has length a multiple of p.
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Evidently, the sum across W and Z\W both come to zero. The lemma may then be interpreted as
a description of exactly which lengths of subsequences can be “atomic” in each dimension, and tells us
that this is independent of p.

Lemma 6 (Splitting Lemma). Let X be a zero-sum sequence of length kp > (r + 1)(p� 1). Then X

splits.

Proof. Remove any vector from X to obtain a sequence to which we can apply Lemma 5.

Theorem 2 now follows rapidly.

Proof. For the lower bound, it is clear that the sequence consisting of 3p� 1 copies of the zero vector
and p� 1 copies of each standard basis vector e1, e2, e3 contains no zero-sum subsequence of length 3p.
For the upper bound, fix a sequence X with |X| = 6p� 3, and suppose that �3 = 0. By the splitting
lemma we know any zero-sum subsequence of length 5p must split, and since �3 = 0, any such splitting
must involve a length p zero-sum subsequence. Thus if �1 = 0, we have �5 = 0, which contradicts the
independence lemma, so that we can pick a zero-sum subsequence Y of length p.

Note that X\Y has length 5p � 3, so we may apply the independence lemma. Certainly (3p |
X\Y ) = 0, so at most one of (p | X\Y ), (2p | X\Y ), (4p | X\Y ) is zero. Any zero-sum subsequence of
length 4p must split, and by assumption any such splitting must be into pairs of zero-sum subsequences
of length 2p. Thus (2p|X\Y ) = 0 implies (4p | X\Y ) = 0, which is a contradiction. Letting Z ⇢ X\Y
be any zero-sum subsequence with |Z| = 2p, putting Z and Y together yields a length 3p zero-sum
subsequence.

To further demonstrate the simplicity and clarity these results make possible, we will also rederive
a known upper bound from [4].

Theorem 4. s2p(C3
p

)  6p� 3.

Proof. Pick X with |X| = 6p � 3, and suppose �2 = 0. Then by the splitting lemma �4 = 0,
so there must be a length p zero-sum subsequence Y ⇢ X. Note that |X\Y | = 5p � 3, and that
(2p | X\Y ) = (4p | X\Y ) = 0, so by the independence lemma we can pick a zero-sum subsequence
Z ⇢ X\Y with |Z| = p. Combining Z with Y then gives a contradiction.

6 Avenues for Further Research

At this point in the paper, we reach the boundary of speculation and conjecture. The framework we
have developed seems potentially suited to proving upper bounds on “diagonals”. To illustrate why,
consider the following new result.

Proof of Theorem 3. This is a lower bound, again by the construction using 4p� 1 copies of the zero
vector and p � 1 of each standard basis vector. We now show that it is also an upper bound. Let
|X| = 8p � 4, and suppose �4 = 0. By the independence lemma at most two of �1, . . . ,�7 are zero.
Further, any zero-sum subsequence of length 7p splits.

If �2 > 0, pick a zero-sum subsequence Y of length 2p. Then |X\Y | = 6p � 4, so applying the
independence lemma gives that at most two of (p | X\Y ), (2p | X\Y ), (3p | X\Y ), (5p | X\Y ) are
zero. If X\Y has a zero-sum subsequence of length 2p, we may combine it with Y to obtain a length
4p zero-sum subsequence, giving a contradiction. Thus (2p | X\Y ) = 0. This implies any length 5p
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zero-sum subsequence in X\Y splits into zero-sum subsequences with lengths 3p, p, p, but combining
the two p length subsequences contradicts (2p | X\Y ) = 0. Thus (5p | X\Y ) = 0, so X\Y contains
some zero-sum subsequence Q with |Q| = p.

Set W = X\(Y [Q), so that |W | = 5p� 4. At most one of (p | W ), (3p | W ) are zero. If we have a
length p zero-sum subsequence in W , combining it with Q gives a length 2p zero-sum subsequence in
X\Y , which is a contradiction, but if we have a length 3p zero-sum subsequence, combining it with Q

gives a length 4p zero-sum subsequence, which is also a contradiction.
Our starting assumption here was that �2 > 0, so we now know that �2 = 0. The splitting lemma

immediately gives us that �5 = 0, so the remaining �

i

are non-zero. In particular, there exists a
length 7p zero-sum subsequence. This splits, but the only possible splitting is into subsequences of
lengths 3p, 3p and p. Combining the last two gives a length 4p zero-sum subsequence, which is a
contradiction.

Note that here, in Theorem 2, and in the primordial result s
p

(C
p

) = 2p � 1, as well as for other
values not mentioned in this paper, we have that s

np

(Cn

p

) = 2np � n (although our methods require
p > n). In fact this is known as a lower bound generally [4]. When holding p fixed and laying out
values of s

kp

(Cr

p

) in an array according to k and r, these are diagonal entries.
We have reason to suspect that for a fixed r, the least k for which s

kp

(Cr

p

) is amenable to our
methods will be either r or not much less than r. The idea is as follows.

Definition 6. A zero-sum subsequence Y of X is atomic if it is of such a length that it does not

necessarily split, and |Y | is a multiple of p. We also call lengths atomic if subsequences of that length

are atomic, and �

i

atomic if they correspond to atomic lengths.

Given a sequence X in C

r

p

, we know that �1, . . . ,�r

are atomic. The hypothesis that X contains
a kp length zero-sum subsequence is checked by setting �

k

= 0 and searching for a contradiction. If a
zero-sum subsequence of X splits, certainly it can be split entirely into atomic subsequences Y1, Y2, Y`

.
However, no combination of these subsequences can have total length summing to kp. Thus, the �

m

that allows sequences to split in the fewest ways when set to zero should intuitively be the largest
atomic �

i

, which is to say, �
k

. In other words, the least k for which our methods reach their peak
applicability when attempting to determine s

kp

(Cr

p

) should just be k = r.
It is widely believed that the phase transition of 1 occurs precisely at the diagonal. If the pat-

tern continues, and can be proven by examination of congruences, the result would provide a strong
indication that this conjecture is correct.

A Relation Matrix Generator

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

int k;

try{

k = stoi(argv[1]);

} catch (...) {
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cout << "Error: argument must be an integer" << endl;

return 0;

}

cout << "Calculating for |X| = " << k << "p - 1." << endl << endl;

int numRows = k - 3;

int numCols = k;

int relationMatrix[numRows][numCols];

//Construct Pascal’s triangle

for(int row = 0; row < numRows; row++) {

for(int col = numCols - 1; col >= 0; col--) { //Build from right

if(row == 0 || row == numCols - 1 - col){ //First row is ones

relationMatrix[row][col] = 1;

} else if (col > numCols - row - 1){ //Zeros in the bottom right

relationMatrix[row][col] = 0;

} else { //Sum of the ’above’ elements otherwise

relationMatrix[row][col] = abs(relationMatrix[row][col + 1])

+ abs(relationMatrix[row - 1][col + 1]);

}

relationMatrix[row][col] *= col % 2 == 0 ? 1 : -1;

}

}

if(argc == 2) {

//Row reduction - easy because the matrix is upper triangular

for(int row = 0; row < numRows; row++) {

int pivot = numCols - row - 1; //Location of the 1 to keep

for(int col = pivot - 1; col > 2; col--) { //Always two free variables

int curVal = relationMatrix[row][col];

int multiplier = curVal * (col % 2 == 0 ? 1 : -1);

for(int i = 0; i < pivot; i++) {

relationMatrix[row][i] -= multiplier *

relationMatrix[numCols - 1 - col][i];

}

}

if(relationMatrix[row][pivot] == -1) { //Make the pivot always +1

for(int col = 0; col <= pivot; col++)

relationMatrix[row][col] *= -1;

}

}

}

//Print matrix

for(int col = 0; col < numCols; col++) { //Header

cout << "b_" << col << "\t";
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}

cout << endl;

for(int col = 0; col < numCols; col++) { //Separator

cout << "--------";

}

cout << endl;

for(int row = 0; row < numRows; row++) { //Values

for(int col = 0; col < numCols; col++) {

cout << relationMatrix[row][col] << "\t";

}

cout << endl;

}

cout << endl;

}
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